Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Greenhouse gas emissions intensity of global croplands

Abstract

Stabilizing greenhouse gas (GHG) emissions from croplands as agricultural demand grows is a critical component of climate change mitigation1,2,3. Emissions intensity metrics—including carbon dioxide equivalent emissions per kilocalorie produced (‘production intensity’)—can highlight regions, management practices, and crops as potential foci for mitigation4,5,6,7. Yet the spatial and crop-wise distribution of emissions intensity has been uncertain. Here, we develop global crop-specific circa 2000 estimates of GHG emissions and GHG intensity in high spatial detail, reporting the effects of rice paddy management, peatland draining, and nitrogen (N) fertilizer on CH4, CO2 and N2O emissions. Global mean production intensity is 0.16 Mg CO2e M kcal−1, yet certain cropping practices contribute disproportionately to emissions. Peatland drainage (3.7 Mg CO2e M kcal−1)—concentrated in Europe and Indonesia—accounts for 32% of these cropland emissions despite peatlands producing just 1.1% of total crop kilocalories. Methane emissions from rice (0.58 Mg CO2e M kcal-1), a crucial food staple supplying 15% of total crop kilocalories, contribute 48% of cropland emissions, with outsized production intensity in Vietnam. In contrast, N2O emissions from N fertilizer application (0.033 Mg CO2e M kcal−1) generate only 20% of cropland emissions. We find that current total GHG emissions are largely unrelated to production intensity across crops and countries. Climate mitigation policies should therefore be directed to locations where crops have both high emissions and high intensities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global distribution of circa 2000 greenhouse gas (GHG) emissions from 172 crops.
Figure 2: Global cropland greenhouse gas emissions and intensities of the top ten emitting food crops and regions, and all other crops and regions.
Figure 3: Regional variation in cropland greenhouse gas emissions and intensities.
Figure 4: Increased kilocalorie production relative to cropland greenhouse gas (GHG) emissions under an intensification scenario that relies on additional fertilizer application to close yield gaps for nine crops.

Similar content being viewed by others

References

  1. Foley, J. A. et al. Solutions for a cultivated plane. Nature 478, 337–342 (2011).

    Article  CAS  Google Scholar 

  2. Lipper, L. et al. Climate-smart agriculture for food security. Nat. Clim. Change 4, 1068–1072 (2014).

    Article  Google Scholar 

  3. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  CAS  Google Scholar 

  4. Grassini, P. & Cassman, K. G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl Acad. Sci. USA 109, 1074–1079 (2012).

    Article  CAS  Google Scholar 

  5. Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J. & Van Kessel, C. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903–913 (2010).

    Article  CAS  Google Scholar 

  6. Linquist, B, van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C. & van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18, 194–209 (2012).

    Article  Google Scholar 

  7. West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article  CAS  Google Scholar 

  8. Vermeulen, S. J., Campbell, B. M. & Ingram, J. S. I. Climate change and food systems. Ann. Rev. Environ. Resour. 37, 195–222 (2012).

    Article  Google Scholar 

  9. Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Article  CAS  Google Scholar 

  10. Godfray, H. C. J., Pretty, J., Thomas, S. M., Warham, E. J. & Beddington, J. R. Linking policy on climate and food. Science 331, 1013–1014 (2011).

    Article  CAS  Google Scholar 

  11. FAOSTAT Online Statistical Service (Food and Agriculture Organization (FAO), 2016); http://faostat3.fao.org

  12. Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article  Google Scholar 

  13. Garnett, T. et al. Sustainable intensification in agriculture: premises and policies. Science 341, 33–34 (2013).

    Article  CAS  Google Scholar 

  14. Feng, J. F. et al. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agr. Ecosyst. Environ. 164, 220–228 (2013).

    Article  Google Scholar 

  15. Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    Article  CAS  Google Scholar 

  16. Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).

    Article  Google Scholar 

  17. Yan, X. Y., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles 23, GB2002 (2009).

    Article  Google Scholar 

  18. IPCC: Summary for policymakers. In Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  19. Mohanty, S. Trends in global rice consumption. Rice Today 12, 44–45 (2013).

    Google Scholar 

  20. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) (Institute for Global Environmental Strategies, 2006).

  21. Frolking, S. et al. Peatlands in the Earth’s 21st century climate system. Environ. Rev. 19, 371–396 (2011).

    Article  CAS  Google Scholar 

  22. Davis, S. J., Burney, J. A., Pongratz, J. & Caldeira, K. Methods for attributing land-use emissions to products. Carbon Manage. 5, 233–245 (2014).

    Article  CAS  Google Scholar 

  23. DeFries, R. et al. Global nutrition. Metrics for land-scarce agriculture. Science 349, 238–240 (2015).

    Article  CAS  Google Scholar 

  24. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Article  Google Scholar 

  25. Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    Article  CAS  Google Scholar 

  26. West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  Google Scholar 

  28. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  29. Pittelkow, C. M. et al. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agr. Ecosyst. Environ. 177, 10–20 (2013).

    Article  CAS  Google Scholar 

  30. Merrigan, K. et al. Designing a sustainable diet. Science 350, 165–166 (2015).

    Article  CAS  Google Scholar 

  31. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  32. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  33. IPCC 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) (IPCC, 2014).

  34. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  35. Robinson, T. et al. Global Livestock Production Systems (FAO, International Livestock Research Institute (ILRI), 2011).

    Google Scholar 

  36. Xu, S. P., Jaffe, P. R. & Mauzerall, D. L. A process-based model for methane emission from flooded rice paddy systems. Ecol. Model. 205, 475–491 (2007).

    Article  CAS  Google Scholar 

  37. Portmann, F. T. Global Estimation of Monthly Irrigated and Rainfed Crop Areas on a 5 Arc-minute Grid PhD thesis, Univ. Frankfurt (2011)

  38. AQUASTAT (FAO, 2015); www.fao.org/nr/water/aquastat/main/index.stm

  39. Li, C. S. et al. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys. Res. Lett. 29, 1972 (2002)

    Google Scholar 

  40. Asia Least-cost Greenhouse Gas Abatement Strategy (ALGAS) (Asian Development Bank, Global Environment Facility and United Nations Development Program, 1998)

  41. Adhya, T. K., Linquist, B., Searchinger, T., Wassmann, R. & Yan, X. Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving Water from Rice Production (World Resources Institute, 2014)

    Google Scholar 

  42. Yan, X. Y., Yagi, K., Akiyama, H. & Akimoto, H. Statistical analysis of the major variables controlling methane emission from rice fields. Glob. Change Biol. 11, 1131–1141 (2005)

    Article  Google Scholar 

  43. Huke, R. E. & Huke, E. H. Rice Area by Type of Culture: South, Southeast, and East Asia, A Revised and Updated Data Base (International Rice Research Institute, 1997)

    Google Scholar 

  44. Vandergon, H. A. C. D. & Neue, H. U. Influence of organic-matter incorporation on the methane emission from a wetland rice field. Glob. Biogeochem. Cycles 9, 11–22 (1995)

    Article  Google Scholar 

  45. Bijay-Singh, Shan, Y. H., Johnson-Beebout, S. E., Yadvinder-Singh & Buresh, R. J. Chapter 3 crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 98, 117–199 (2008)

    Article  Google Scholar 

  46. Gupta, P. K. et al. Residue burning in rice-wheat cropping system: causes and implications. Curr. Sci. 87, 1713–1717 (2004)

    CAS  Google Scholar 

  47. Ahmed, T., Ahmad, B. & Ahmad, W. Why do farmers burn rice residue? Examining farmers’ choices in Punjab, Pakistan. Land Use Policy 47, 448–458 (2015)

    Article  Google Scholar 

  48. Yevich, R. & Logan, J. A. An assessment of biofuel use and burning of agricultural waste in the developing world. Glob. Biogeochem. Cycles 17, 1095 (2003)

    Article  Google Scholar 

  49. Yan, X. Y., Ohara, T. & Akimoto, H. Bottom-up estimate of biomass burning in mainland China. Atmos. Environ. 40, 5262–5273 (2006)

    Article  CAS  Google Scholar 

  50. Harmonized World Soil Database V 1.2 (FAO, IIASA, SRIC, ISSCAS and JRC, 2012); http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML

  51. Joosten, H. The Global Peatland CO2 Picture: Peatland Status and Drainage Related Emissions in all Countries of the World 35 (Wetlands International, 2009)

    Google Scholar 

  52. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011)

    Article  Google Scholar 

  53. Lappalainen, E. Global Peat Resources 359 (International Peat Society, 1996)

    Google Scholar 

  54. Joosten, H. Wise Use of Mires and Peatlands 304 (International Mire Conservation Group and International Peat Society, 2002)

    Google Scholar 

  55. Jauhiainen, J. & Silvennoinen, H. Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suo 63, 93–105 (2012)

    Google Scholar 

  56. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil. Trans. R. Soc. 368, 20130122 (2013)

    Article  Google Scholar 

  57. Stehfest, E. & Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 74, 207–228 (2006)

    Article  CAS  Google Scholar 

  58. Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52, 225–248 (1998)

    Article  CAS  Google Scholar 

  59. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2, 659–662 (2009)

    Article  CAS  Google Scholar 

  60. Philibert, A., Loyce, C. & Makowski, D. Quantifying uncertainties in N2O emission due to N fertilizer application in cultivated areas. PLoS ONE 7, e50950 (2012)

    Article  CAS  Google Scholar 

  61. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014)

    Article  CAS  Google Scholar 

  62. Sawamoto, T., Nakajima, Y., Kasuya, M., Tsuruta, H. & Yagi, K. Evaluation of emission factors for indirect N2O emission due to nitrogen leaching in agro-ecosystems. Geophys. Res. Lett. 32, L03403 (2005)

    Article  Google Scholar 

  63. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int J. Climatol. 25, 1965–1978 (2005)

    Article  Google Scholar 

  64. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008)

    Article  Google Scholar 

  65. Zomer, R. et al. Trees and Water: Smallholder Agroforestry on Irrigated Lands in Northern India (International Water Management Institute, 2007)

    Google Scholar 

  66. Batjes, N. H. ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-minutes Global Grid V 1.2 52 (ISRIC, 2012)

    Google Scholar 

  67. Portmann, F. T., Siebert, S. & Döll, P. MIRCA200 - Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24, GB1011 (2010)

    Article  Google Scholar 

  68. MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. BioScience 65, 275–289 (2015)

    Article  Google Scholar 

  69. Licker, R. et al. Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010)

    Article  Google Scholar 

  70. Jägermeyr, J. et al. Integrated crop water management might sustainably halve the global food gap. Environ. Res. Lett. 11, 025002 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Foley for conversations conceptualizing this project. P. Engstrom, H. Rodrigues, D. Makowski, M. Ogg, S. Seibert and J. van de Steeg assisted with methods and data development. The Gordon and Betty Moore Foundation provided primary research funding, with additional support from the University of Minnesota Institute on the Environment, USDA National Institute of Food and Agriculture Hatch project HAW01136-H, managed by the College of Tropical Agriculture and Human Resources (K.M.C.), USDA Agriculture and Food Research Initiative fellowship 2016-67012-25208 (N.D.M.), NSF Hydrological Sciences grant 1521210 (N.D.M.), and the Belmont Forum/FACCE-JPI-funded DEVIL project NE/M021327/1 (J.S.G., M.H. and P.C.W.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.M.C., P.C.W. and J.S.G. conceived the project. K.M.C., J.S.G., N.D.M., M.H., P.H., G.K.M. and K.A.B. provided new data and/or methods. K.M.C. and J.S.G. carried out modelling and analysis. All authors participated in writing the manuscript.

Corresponding author

Correspondence to Kimberly M. Carlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6960 kb)

Supplementary Information

Supplementary Information (XLSX 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, K., Gerber, J., Mueller, N. et al. Greenhouse gas emissions intensity of global croplands. Nature Clim Change 7, 63–68 (2017). https://doi.org/10.1038/nclimate3158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3158

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology