Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automatic policing of biochemical annotations using genomic correlations

Abstract

With the increasing role of computational tools in the analysis of sequenced genomes, there is an urgent need to maintain high accuracy of functional annotations. Misannotations can be easily generated and propagated through databases by functional transfer based on sequence homology. We developed and optimized an automatic policing method to detect biochemical misannotations using context genomic correlations. The method works by finding genes with unusually weak genomic correlations in their assigned network positions. We demonstrate the accuracy of the method using a cross-validated approach. In addition, we show that the method identifies a significant number of potential misannotations in Bacillus subtilis, including metabolic assignments already shown to be incorrect experimentally. The experimental analysis of the mispredicted genes forming the leucine degradation pathway in B. subtilis demonstrates that computational policing tools can generate important biological hypotheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the developed approach.
Figure 2: Performance of the developed method.
Figure 3: Function of genes forming the yng cluster in B. subtilis.

Similar content being viewed by others

References

  1. Andrade, M.A. et al. Automated genome sequence analysis and annotation. Bioinformatics 15, 391–412 (1999).

    Article  CAS  Google Scholar 

  2. Rost, B. Enzyme function less conserved than anticipated. J. Mol. Biol. 318, 595–608 (2002).

    Article  CAS  Google Scholar 

  3. Tian, W. & Skolnick, J. How well is enzyme function conserved as a function of pairwise sequence identity? J. Mol. Biol. 333, 863–882 (2003).

    Article  CAS  Google Scholar 

  4. Brenner, S.E. Errors in genome annotation. Trends Genet. 15, 132–133 (1999).

    Article  CAS  Google Scholar 

  5. Gilks, W.R., Audit, B., De Angelis, D., Tsoka, S. & Ouzounis, C.A. Modeling the percolation of annotation errors in a database of protein sequences. Bioinformatics 18, 1641–1649 (2002).

    Article  CAS  Google Scholar 

  6. Linial, M. How incorrect annotations evolve–the case of short ORFs. Trends Biotechnol. 21, 298–300 (2003).

    Article  CAS  Google Scholar 

  7. Wieser, D., Kretschmann, E. & Apweiler, R. Filtering erroneous protein annotation. Bioinformatics 20 (suppl. 1), i342–i347 (2004).

    Article  CAS  Google Scholar 

  8. Bairoch, A., Bucher, P. & Hofmann, K. The PROSITE database, its status in 1997. Nucleic Acids Res. 25, 217–221 (1997).

    Article  CAS  Google Scholar 

  9. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  10. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005).

    Article  CAS  Google Scholar 

  11. Green, M.L. & Karp, P.D. Genome annotation errors in pathway databases due to semantic ambiguity in partial EC numbers. Nucleic Acids Res. 33, 4035–4039 (2005).

    Article  CAS  Google Scholar 

  12. Dandekar, T., Snel, B., Huynen, M. & Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998).

    Article  CAS  Google Scholar 

  13. Lee, J.M. & Sonnhammer, E.L. Genomic gene clustering analysis of pathways in eukaryotes. Genome Res. 13, 875–882 (2003).

    Article  CAS  Google Scholar 

  14. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G.D. & Maltsev, N. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896–2901 (1999).

    Article  CAS  Google Scholar 

  15. Huynen, M.A. & Bork, P. Measuring genome evolution. Proc. Natl. Acad. Sci. USA 95, 5849–5856 (1998).

    Article  CAS  Google Scholar 

  16. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. & Yeates, T.O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288 (1999).

    Article  CAS  Google Scholar 

  17. Enright, A.J., Iliopoulos, I., Kyrpides, N.C. & Ouzounis, C.A. Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999).

    Article  CAS  Google Scholar 

  18. Marcotte, E.M. et al. Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article  CAS  Google Scholar 

  19. Yanai, I., Derti, A. & DeLisi, C. Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes. Proc. Natl. Acad. Sci. USA 98, 7940–7945 (2001).

    Article  CAS  Google Scholar 

  20. Kharchenko, P., Vitkup, D. & Church, G.M. Filling gaps in a metabolic network using expression information. Bioinformatics 20, i178–i185 (2004).

    Article  CAS  Google Scholar 

  21. Kharchenko, P., Church, G.M. & Vitkup, D. Expression dynamics of a cellular metabolic network. Mol. Syst. Biol. 1, 2005.0016 (2005).

    Article  Google Scholar 

  22. Chen, L. & Vitkup, D. Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol. 7, R17 (2006).

    Article  Google Scholar 

  23. Freund, Y. & Mason, L. The alternating decision tree learning algorithm. in Proceedings of the Sixteenth International Conference on Machine Learning (eds. Bratko, I. & Dzeroski, S.) 124–133 (Morgan Kaufmann Publishers Inc., San Francisco, 1999).

  24. Freund, Y. & Schapire, R.E. A short introduction introduction to Boosting. J. Jpn. Soc. Artif. Intell. 14, 771–780 (1999).

    Google Scholar 

  25. Middendorf, M., Kundaje, A., Wiggins, C.H., Freund, Y. & Leslie, C. Predicting genetic regulatory response using classification. Bioinformatics 20, i232–i240 (2004).

    Article  CAS  Google Scholar 

  26. Kharchenko, P., Chen, L., Freund, Y., Vitkup, D. & Church, G.M. Identifying metabolic enzymes with multiple types of associated evidence. BMC Bioinformatics 7, 177 (2006).

    Article  Google Scholar 

  27. Kuepfer, L., Sauer, U. & Blank, L.M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421–1430 (2005).

    Article  CAS  Google Scholar 

  28. Reed, J.L., Vo, T.D., Schilling, C.H. & Palsson, B.O. An expanded genome-scale model of Escherichia coli K-12. Genome Biol. 4, R54 (2003).

    Article  Google Scholar 

  29. Kanehisa, M. et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006).

    Article  CAS  Google Scholar 

  30. Caspi, R. et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34, D511–D516 (2006).

    Article  CAS  Google Scholar 

  31. Jerga, A., Lu, Y.J., Schujman, G.E., de Mendoza, D. & Rock, C.O. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J. Biol. Chem. 282, 21738–21745 (2007).

    Article  CAS  Google Scholar 

  32. Minami, H., Suzuki, H. & Kumagai, H. Gamma-glutamyltranspeptidase, but not YwrD, is important in utilization of extracellular blutathione as a sulfur source in Bacillus subtilis. J. Bacteriol. 186, 1213–1214 (2004).

    Article  CAS  Google Scholar 

  33. Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).

    Article  CAS  Google Scholar 

  34. Eichenberger, P. et al. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327, 945–972 (2003).

    Article  CAS  Google Scholar 

  35. Sonenshein, A.L., Hoch, J. & Losick, R. Bacillus subtilis and Its Closest Relatives (American Society for Microbiology Press, Washington DC, 2001).

  36. Sauer, U. et al. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62, 3687–3696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaneda, T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55, 288–302 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez-Pastor, J.E., Hobbs, E. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).

    Article  CAS  Google Scholar 

  39. Ellermeier, C.D., Hobbs, E., Gonzalez-Pastor, J.E. & Losick, R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124, 549–559 (2006).

    Article  CAS  Google Scholar 

  40. Debarbouille, M., Gardan, R., Arnaud, M. & Rapoport, G. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181, 2059–2066 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Letovsky, S. & Kasif, S. Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics 19 (suppl. 1), i197–i204 (2003).

    Article  Google Scholar 

  42. Borenstein, E., Shlomi, T., Ruppin, E. & Sharan, R. Gene loss rate: a probabilistic measure for the conservation of eukaryotic genes. Nucleic Acids Res. 35, e7 (2007).

    Article  Google Scholar 

  43. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG database at GenomeNet. Nucleic Acids Res. 30, 42–46 (2002).

    Article  CAS  Google Scholar 

  44. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  45. Wu, L.F. et al. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet. 31, 255–265 (2002).

    Article  CAS  Google Scholar 

  46. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  47. Barrett, T. et al. NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res. 33, D562–D566 (2005).

    Article  CAS  Google Scholar 

  48. Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  CAS  Google Scholar 

  49. Schaeffer, P.J., Millet, J. & Aubert, J.P. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54, 704–711 (1965).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Feldman, A. Rzhetsky, M. de Hoon, S. Gilman and C. Weinreb for comments on the manuscript and valuable discussions. This work was supported in part by US National Institutes of Health grant GM079759 to D.V. and National Centers for Biomedical Computing (MAGNet) grant U54CA121852 to Columbia University.

Author information

Authors and Affiliations

Authors

Contributions

T.-L.H., L.C. and D.V. performed computational research and data analysis. D.V. conceived and directed computational research. O.R. performed experimental research and analysis. U.S. conceived and directed experimental research. L.C., T.-L.H. and D.V. cowrote the paper. All authors read and edited the manuscript.

Corresponding author

Correspondence to Dennis Vitkup.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, TL., Revelles, O., Chen, L. et al. Automatic policing of biochemical annotations using genomic correlations. Nat Chem Biol 6, 34–40 (2010). https://doi.org/10.1038/nchembio.266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing