Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards the computational design of solid catalysts

Abstract

Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts with increased activity and catalysts with improved selectivity. We discuss how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tailoring materials.
Figure 2: Comparison of experimental results for three different catalytic reactions with the results of kinetic models based on DFT calculations.
Figure 3: Identification of a descriptor for the methanation reaction (CO + 3H2 → CH4 + H2O).
Figure 4: The d-band model — understanding the electronic origin of variations in surface chemistry.
Figure 5: Computational screening for methanation catalysts.
Figure 6: Screening for hydrogen-evolution catalysts.
Figure 7: Computational design of ethylene oxide (EO) synthesis catalysts with improved selectivity.
Figure 8: Identifying catalysts for selective acetylene hydrogenation.
Figure 9: Linking DFT calculations with industrial reactor design and catalyst selection.

Similar content being viewed by others

References

  1. Thomas, J. M. & Thomas, W.-J. Principle and Practice of Heterogeneous Catalysis (VCH, 1997).

    Google Scholar 

  2. Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998).

    Article  CAS  Google Scholar 

  3. Alapati, S. V., Johnson, J. K. & Sholl, D. S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Phys. Chem. Chem. Phys. 9, 1438–1452 (2007).

    Article  CAS  Google Scholar 

  4. Piquini, P., Graf, P. A. & Zunger, A. Band-gap design of quaternary (In, Ga)(As, Sb) semiconductors via the inverse-band-structure approach. Phys. Rev. Lett. 100, 186403 (2008).

    Article  CAS  Google Scholar 

  5. Wondimagegn, T., Wang, D., Razavi, A. & Ziegler, T. Computational design of C-2-symmetric metallocene-based catalysts for the synthesis of high molecular weight polymers from ethylene/propylene copolymerization. Organometallics 27, 6434–6439 (2008).

    Article  CAS  Google Scholar 

  6. Conley, B. L. et al. Design and study of homogeneous catalysts for the selective, low temperature oxidation of hydrocarbons. J. Mol. Cat. A-Chem. 251, 8–23 (2006).

    Article  CAS  Google Scholar 

  7. Nilsson, A., Pettersson, L. G. M. & Nørskov, J. K. (eds) Chemical Bonding at Surfaces and Interfaces (Elsevier, 2008).

    Google Scholar 

  8. Ertl, G. Reactions at surfaces: from atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  9. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley, 1994).

    Google Scholar 

  10. Yeo, Y. Y., Vattuone, L. & King, D. A. Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}. J. Chem. Phys. 106, 392–401 (1997).

    Article  CAS  Google Scholar 

  11. Goodman, D. W., Kelley, R. D., Madey, T. E. & Yates, J. T. Kinetics of the hydrogenation of CO over a single crystal nickel-catalyst. J. Catal. 63, 226–234 (1980).

    Article  CAS  Google Scholar 

  12. Lytken, O. et al. Energetics of cyclohexene adsorption and reaction on Pt(111) by low-temperature microcalorimetry. J. Am. Chem. Soc. 130, 10247–10257 (2008).

    Article  CAS  Google Scholar 

  13. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133–1138 (1965).

    Article  Google Scholar 

  14. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  15. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density functional theory using revised PBE functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  16. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis — calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  17. Hansen, E. W. & Neurock, M. First-principles-based Monte Carlo simulation of ethylene hydrogenation kinetics on Pd. J. Catal. 196, 241–252 (2000).

    Article  CAS  Google Scholar 

  18. Reuter, K., Frenkel, D. & Scheffler, M. The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105 (2004).

    Article  CAS  Google Scholar 

  19. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kandoi, S. et al. Prediction of experimental methanol decomposition rates on platinum from first principles. Top. Catal. 37, 17–28 (2006).

    Article  CAS  Google Scholar 

  21. Hansen, K. H. et al. Palladium nanocrystals on Al2O3: Structure and adhesion energy. Phys. Rev. Lett. 83, 4120–4123 (1999).

    Article  CAS  Google Scholar 

  22. Hansen, T. W. et al. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508–1510 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    Article  CAS  Google Scholar 

  24. Hofmann, S. et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602–608 (2007).

    Article  CAS  Google Scholar 

  25. Gontard, L. C. et al. Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem. Int. Ed. 46, 3683–3685 (2007).

    Article  CAS  Google Scholar 

  26. Kohn, W. Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168–3171 (1996).

    Article  CAS  Google Scholar 

  27. Prodan, E. & Kohn, W. Nearsightedness of electronic matter. Proc. Natl Acad. Sci. USA 102, 11635–11638 (2005).

    Article  CAS  Google Scholar 

  28. Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002).

    Article  CAS  Google Scholar 

  29. Ciobica, I. M. & van Santen, R. A. Carbon monoxide dissociation on planar and stepped Ru(0001) surfaces. J. Phys. Chem. B 107, 3808–3812 (2003).

    Article  CAS  Google Scholar 

  30. Pallassana, V. & Neurock, M. Electronic factors governing ethylene hydrogenation and dehydrogenation activity of pseudomorphic Pd-ML/Re(0001), Pd-ML/Ru(0001), Pd(111), and Pd-ML/Au(111) surfaces. J. Catal. 191, 301–317 (2000).

    Article  CAS  Google Scholar 

  31. Alcalá, R., Mavrikakis, M. & Dumesic, J. A. DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111). J. Catal. 218, 178–190 (2003).

    Article  CAS  Google Scholar 

  32. Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    Article  CAS  Google Scholar 

  33. Bligaard, T. et al. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  CAS  Google Scholar 

  34. Sabatier, P. Hydrogénations et déshydrogénations par catalyse. Ber. Deutsch. Chem. Gesellshaft 44, 1984–2001 (1911).

    Article  CAS  Google Scholar 

  35. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Boudart, M. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Weitkamp, J.) 1 (Wiley-VCH, Weinheim, 1997).

    Book  Google Scholar 

  37. Falsig, H. et al. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem. Int. Ed. 47, 4835–4835 (2008).

    Article  CAS  Google Scholar 

  38. Cheng, J. & Hu, P. Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. J. Am. Chem. Soc. 130, 10868–10869 (2008).

    Article  CAS  Google Scholar 

  39. Holloway, S., Lundqvist, B. I. & Nørskov, J. K. in Proc. 8th Conference on Catalysis, Berlin vol. IV, p.85 (Verlag Chemie, 1984).

    Google Scholar 

  40. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  41. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article  Google Scholar 

  42. Roudgar, A. & Gross, A. Local reactivity of metal overlayers: Density functional theory calculations of Pd on Au. Phys. Rev. B 67, 33409 (2003).

    Article  CAS  Google Scholar 

  43. Gajdos, M., Eichler, A. & Hafner, J. CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations. J. Phys. Condens. Matter 16, 1141–1164 (2004).

    Article  CAS  Google Scholar 

  44. Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100 111–114 (2005).

    Article  CAS  Google Scholar 

  45. Besenbacher, F. et al. Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998).

    Article  CAS  Google Scholar 

  46. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: Bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Toulhoat, H. & Raybaud, P. Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors. J. Catal. 216, 63–72 (2003).

    Article  CAS  Google Scholar 

  48. Strasser, P. et al. High throughput experimental and theoretical predictive screening of materials. A comparative study of search strategies for new fuel cell anode catalysts. Phys. Chem. B 107, 11013–11021 (2003).

    Article  CAS  Google Scholar 

  49. Greely, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater. 3, 810–815 (2004).

    Article  CAS  Google Scholar 

  50. Andersson, M. P. et al. Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. J. Catal. 239, 501–506 (2006).

    Article  CAS  Google Scholar 

  51. Sabatier, P. & Senderens, J. B. New methane synthesis. Compte Rendu Acad. Sci. Paris 134, 514–516 (1902).

    CAS  Google Scholar 

  52. Sehested, J. et al. Discovery of technical methanation catalysts based on computational screening. Top. Catal. 45, 9–13 (2007).

    Article  CAS  Google Scholar 

  53. Jinnouchi, R. & Anderson, A. B. Aqueous and surface redox potentials from self-consistently determined Gibbs energies. J. Phys. Chem. C 112, 8747–8750 (2008).

    Article  CAS  Google Scholar 

  54. Rossmeisl, J., Skúlason, E., Björketun, M. E., Tripkovic, V. & Nørskov, J. K. Modeling the electrified solid-liquid interface. Chem. Phys. Lett. 466, 68–71 (2008).

    Article  CAS  Google Scholar 

  55. Shubina, T. E. & Koper, M. T. M. Co-adsorption of water and hydroxyl on a Pt2Ru surface. Electrochem. Commun. 8, 703–706 (2006).

    Article  CAS  Google Scholar 

  56. Roudgar, A. & Gross, A. Water bilayer on the Pd/Au(111) overlayer system: Coadsorption and electric field effects. Chem. Phys. Lett. 409, 157–162 (2005).

    Article  CAS  Google Scholar 

  57. Sugino, O. et al. First-principles molecular dynamics simulation of biased electrode/solution interface. Surf. Sci. 601, 5237–5240 (2007).

    Article  CAS  Google Scholar 

  58. Filhol, J. S. & Neurock, M. Elucidation of the electrochemical activation of water over Pd by first principles. Angew. Chem. Int. Ed. 45, 402–406 (2006).

    Article  CAS  Google Scholar 

  59. Conway, B. E. & Bockris, J. O. M. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–541 (1957).

    Article  CAS  Google Scholar 

  60. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  CAS  Google Scholar 

  61. Trasatti, S. Work function, electronegativity, and electrochemical behavior of metals.3. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  62. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152 J23–J26 (2005).

    Article  CAS  Google Scholar 

  63. Hinnemann, B. et al. Biomimetic hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  Google Scholar 

  64. Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  65. Gómez, R., Feliu, J. M. & Aldaz, A. Effects of irreversibly adsorbed bismuth on hydrogen adsorption and evolution on Pt(111). Electrochim. Acta 42, 1675–1683 (1997).

    Article  Google Scholar 

  66. Evans, D. J. & Pickett, C. J. Chemistry and the hydrogenases. Chem. Soc. Rev. 32, 268–275 (2003).

    Article  CAS  Google Scholar 

  67. Rees, D. C. & Howard, J. B. The interface between the biological and inorganic worlds: Iron-sulfur metalloclusters. Science 300, 929–931 (2003).

    Article  CAS  Google Scholar 

  68. Siegbahn, P. E. M., Tye, J. W. & Hall, M. B. Computational studies of [NiFe] and [FeFe] hydrogenases. Chem Rev. 107, 4414–4435 (2007).

    Article  CAS  Google Scholar 

  69. Topsøe, H., Clausen, B. S. & Massoth, F. E. in Catalysis, Science and Technology Vol. 11 (eds Anderson, J. R. & Boudart, M.) 1–310 (Springer, 1996).

    Book  Google Scholar 

  70. Helveg, S. et al. Atomic-scale structure of single-layer MoS2 nano-clusters. Phys. Rev. Lett. 84, 951–954 (2000).

    Article  CAS  Google Scholar 

  71. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  72. Somorjai, G. A. & Yang, M. The surface science of catalytic selectivity. Top. Catal. 24, 61–72 (2003).

    Article  CAS  Google Scholar 

  73. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry. 4th edn (Wiley-VCH, 2003).

    Book  Google Scholar 

  74. Lefort, T. E. Process for the production of ethylene oxide. French Patent 729952 (1931).

  75. Brainard, R. L. & Madix, R. J. Surface-mediated isomerization and oxidation of allyl alcohol on Cu(110). J. Am. Chem. Soc. 111, 3826–3835 (1989).

    Article  CAS  Google Scholar 

  76. Linic, S. & Barteau, M. A. Formation of a stable surface oxametallacycles that produces ethylene oxide. J. Am. Chem. Soc. 124, 310–317 (2002).

    Article  CAS  Google Scholar 

  77. Linic, S. & Barteau, M. A. Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J. Catal. 214, 200–212 (2003).

    Article  CAS  Google Scholar 

  78. Linic, S., Jankowiak, J. & Barteau, M. A. Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. J. Catal. 224, 489–493 (2004).

    Article  CAS  Google Scholar 

  79. Lemons, R. A. Fuel-cells for transportation. J. Power Sources 29, 251–264 (1990).

    Article  CAS  Google Scholar 

  80. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Mater. 7, 333–338 (2008).

    Article  CAS  Google Scholar 

  81. Liu, P., Logadottir, A. & Nørskov, J. K. Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim. Acta 48, 3731–3742 (2003).

    Article  CAS  Google Scholar 

  82. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  Google Scholar 

  83. Shustorovich, E. & Bell, A. T. The thermochemistry of C-2 hydrocarbons on transition-metal surfaces - the bond-order-conservation approach. Surf. Sci. 205, 492–512 (1988).

    Article  CAS  Google Scholar 

  84. Kovnir, K. et al. A new approach to well-defined, stable and site-isolated catalysts. Sci. Technol. Adv. Mater. 8, 420–427 (2007).

    Article  CAS  Google Scholar 

  85. Volpe, M. A., Rodriguez, P. & Gigola, C. E. Preparation of Pd-Pb/α-Al2O3 catalysts for selective hydrogenation using PbBu4: the role of metal-support boundary atoms and the formation of a stable surface complex. Catal. Lett. 61, 27–32 (1999).

    Article  CAS  Google Scholar 

  86. Choudhary, T. V., Sivadinarayana, C., Datye, A. K., Kumar, D. & Goodman, D. W. Acetylene hydrogenation on Au-based catalysts. Catal. Lett. 86, 1–8 (2003).

    Article  CAS  Google Scholar 

  87. Blankenship, S. A., Voight, R. W., Perkins, J. A. & Fried, J. E. Process for selective hydrogenation of acetylene in an ethylene purification process. US Patent 6,509,292 (2003).

  88. Kohan, A. F., Ceder, G., Morgan, D. & van de Walle, C. G. First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019–15027 (2000).

    Article  CAS  Google Scholar 

  89. Solans-Monfort, X., Branchadell, V., Sodupe, M., Sierka, M. & Sauer, J. Electron hole formation in acidic zeolite catalysts. J. Chem. Phys. 121, 6034–6041 (2004).

    Article  CAS  Google Scholar 

  90. Pacchioni, G. Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements. J. Chem. Phys. 128, 182505 (2008).

    Article  CAS  Google Scholar 

  91. Chretien, S. & Metiu, H. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: The importance of spin conservation. J. Chem. Phys. 129, 074705 (2008).

    Article  CAS  Google Scholar 

  92. Eder, F. & Lercher, J. A. Alkane sorption in molecular sieves: The contribution of ordering, intermolecular interactions, and sorption on Brønsted acid sites. Zeolites 18, 75–81 (1997).

    Article  CAS  Google Scholar 

  93. Dion, M., Rydberg, H., Schroder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  94. Chakarova-Kack, S. D., Schroder, E., Lundqvist, B. I. & Langreth, D. C. Application of van der Waals density functional to an extended system: Adsorption of benzene and naphthalene on graphite. Phys. Rev. Lett. 96, 146107 (2006).

    Article  CAS  Google Scholar 

  95. Johannesson, G. H. et al. Combined electronic structure theory and evolutionary search for materials design. Phys. Rev. Lett. 88, 255506 (2002).

    Article  CAS  Google Scholar 

  96. Curtarolo, S., Morgan, D., Persson, K., Rodgers, J. & Ceder, G. Predicting crystal structures with data mining of quantum calculations. Phys. Rev. Lett. 91, 135503 (2003).

    Article  CAS  Google Scholar 

  97. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Article  CAS  Google Scholar 

  98. Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    Article  CAS  Google Scholar 

  99. Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10245 (2004).

    Article  CAS  Google Scholar 

  100. Jacobsen, C. J. H., Dahl, S., Boisen, A., Clausen, B. S. & Nørskov, J. K. Optimal catalyst curves: Connecting DFT calculations with industrial reactor design and catalyst selection. J. Catal. 205, 382–387 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation. J.K.N. acknowledges support from Ib Henriksens Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Nørskov.

Ethics declarations

Competing interests

Haldor Topsøe A/S owns patents on alloys for catalytic ammonia synthesis, steam reforming and methanation as well as patents on reactor designs and transition metal sulfides for hydrotreatment. DTU owns a patent on CO-tolerant fuel cell anode materials, and has applied for a patent on selective hydrogenation catalysts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nørskov, J., Bligaard, T., Rossmeisl, J. et al. Towards the computational design of solid catalysts. Nature Chem 1, 37–46 (2009). https://doi.org/10.1038/nchem.121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing