Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase

Abstract

During anaphase identical sister chromatids separate and move towards opposite poles of the mitotic spindle1,2. In the spindle, kinetochore microtubules3 have their plus ends embedded in the kinetochore and their minus ends at the spindle pole. Two models have been proposed to account for the movement of chromatids during anaphase. In the ‘Pac-Man’ model, kinetochores induce the depolymerization of kinetochore microtubules at their plus ends, which allows chromatids to move towards the pole by ‘chewing up’ microtubule tracks4,5. In the ‘poleward flux’ model, kinetochores anchor kinetochore microtubules and chromatids are pulled towards the poles through the depolymerization of kinetochore microtubules at the minus ends6. Here, we show that two functionally distinct microtubule-destabilizing KinI kinesin enzymes (so named because they possess a kinesin-like ATPase domain positioned internally within the polypeptide) are responsible for normal chromatid-to-pole motion in Drosophila. One of them, KLP59C, is required to depolymerize kinetochore microtubules at their kinetochore-associated plus ends, thereby contributing to chromatid motility through a Pac-Man-based mechanism. The other, KLP10A, is required to depolymerize microtubules at their pole-associated minus ends, thereby moving chromatids by means of poleward flux.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KLP10A and KLP59C perform distinct functions and localize to distinct sites in mitotic cells.
Figure 2: KLP10A inhibition perturbs mitotic spindle assembly and chromosome segregation.
Figure 3: KLP59C inhibition perturbs chromosome segregation but not spindle assembly.
Figure 4: KLP10A is required for poleward flux whereas KLP59C is required for Pac-Man-based chromosome motility.

Similar content being viewed by others

References

  1. Mitchison, T. J. & Salmon, E. D. Mitosis: a history of division. Nature Cell Biol. 3, E17–E21 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitchison, T. J., Evans, L., Schulze, E. & Kirschner, M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45, 515–527 (1986)

    Article  CAS  PubMed  Google Scholar 

  5. Gorbsky, G. J., Sammak, P. J. & Borisy, G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9–18 (1987)

    Article  CAS  PubMed  Google Scholar 

  6. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652 (1989)

    Article  CAS  PubMed  Google Scholar 

  7. Hunter, A. W. & Wordeman, L. How motor proteins influence microtubule polymerization dynamics. J. Cell Sci. 24, 4379–4389 (2000)

    Google Scholar 

  8. Wordeman, L. & Mitchison, T. J. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95–104 (1995)

    Article  CAS  PubMed  Google Scholar 

  9. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996)

    Article  CAS  PubMed  Google Scholar 

  10. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. KinI kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Maney, T., Hunter, A. W., Wagenbach, M. & Wordeman, L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J. Cell Biol. 142, 787–801 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kline-Smith, S. L. & Walczak, C. E. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol. Biol. Cell 13, 2718–2731 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walczak, C. E., Gan, E. C., Desai, A., Mitchison, T. J. & Kline-Smith, S. L. The microtubule-destabilizing kinesin XKCM1 is required for chromosome positioning during spindle assembly. Curr. Biol. 12, 1885–1889 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, L. S. B. & Gunawardena, S. Flying through the Drosophila cytoskeletal genome. J. Cell Biol. 150, F63–F68 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan, W. & Theurkauf, W. E. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr. Opin. Cell Biol. 7, 18–22 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan, W., Fogarty, P. & Theurkauf, W. E. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development 118, 1245–1254 (1993)

    CAS  PubMed  Google Scholar 

  17. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Brust-Mascher, I. & Scholey, J. M. Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol. Biol. Cell 13, 3967–3975 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maddox, P., Desai, A., Oegema, K., Mitchison, T. J. & Salmon, E. D. Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos. Curr. Biol. 12, 1670–1674 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Waters, J. C., Mitchison, T. J., Rieder, C. L. & Salmon, E. D. The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Troxell, C. L. et al. pkl1+ and klp2+: Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol. Biol. Cell 12, 3476–3488 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. West, R. R., Malmstrom, T., Troxell, C. L. & McIntosh, J. R. Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol. Biol. Cell 12, 3919–3932 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. West, R. R., Malmstrom, T. & McIntosh, J. R. Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. J. Cell Sci. 115, 931–940 (2002)

    CAS  PubMed  Google Scholar 

  25. Garcia, M. A., Koonrugsa, N. & Toda, T. Two kinesin-like KinI family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase. Curr. Biol. 12, 610–621 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bousbaa, H., Correia, L., Gorbsky, G. J. & Sunkel, C. E. Mitotic phosphoepitopes are expressed in Kc cells, neuroblasts and isolated chromosomes of Drosophila melanogaster. J. Cell Sci. 110, 1979–1988 (1997)

    CAS  PubMed  Google Scholar 

  28. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W. & Scholey, J. M. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nature Cell Biol. 1, 51–54 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Valdes-Perez, R. E. & Minden, J. S. Drosophila melanogaster syncytial nuclear divisions are patterned: time-lapse images, hypothesis and computational evidence. J. Theor. Biol. 175, 525–532 (1995)

    Article  CAS  PubMed  Google Scholar 

  30. McIntosh, J. R., Grishchuk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Kenigsberg, D. Buster, P. Baas, F. McNally, A. Asenjo and H. Sosa for critically reading the manuscript; I. Brust-Mascher for advice on FSM; and A. Desai and J. Minden for help with rhodamine-histone preparations. We also thank C. Sunkel for providing GFP-Polo kinase flies and protocols for isolating mitotic chromosomes. We are grateful to the following individuals for their gifts: GFP–tubulin flies from A. Spradling; GFP-DTACC flies from J. Raff; GFP–Rod flies from R. Karess; GFP-Cid flies from S. Henikoff; and G. Karpen for the anti-Cid antibody. We thank G. Law, P. Franklin and R. Sleeper (PerkinElmer) for their assistance with the Ultraview confocal microscope. This work was supported by grants from the National Institutes of Health to D.J.S., C.E.W, R.D.V. and J.M.S.. C.E.W is a Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sharp.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1 (PDF 806 kb)

Supplementary Figure 2 (PDF 23 kb)

Supplementary Figure 3 (PDF 65 kb)

Supplementary Figure 4 (PDF 42 kb)

Supplementary Figure 5 (PDF 15 kb)

Supplementary Figure 6 (PDF 60 kb)

Supplementary Figure 7 (PDF 186 kb)

Supplementary Figure 8 (PDF 131 kb)

Supplementary Figure 9 (PDF 129 kb)

Supplementary Figure 10 (PDF 269 kb)

Supplementary Figure 11 (PDF 355 kb)

Supplementary Figure 12 (PDF 13 kb)

Supplementary Table 1 (PDF 10 kb)

Supplementary Table 2 (PDF 15 kb)

Supplementary Table 3 (PDF 12 kb)

Supplementary Table 4 (PDF 13 kb)

41586_2004_BFnature02256_MOESM17_ESM.zip

Supplementary Movie 1: 4-D (xyz/time) movie of mitosis in a control-injected syncytial blastoderm-stage embryo expressing GFP-tubulin. (ZIP 1220 kb)

41586_2004_BFnature02256_MOESM18_ESM.mov

Supplementary Movie 2: 4-D movie showing mitosis in a control-injected embryo containing GFP-histones (green) and rhodamine-tubulin (red). (MOV 1259 kb)

Supplementary Movie 3: 4-D movie from an anti-KLP10A antibody-injected embryo expressing GFP-tubulin. (ZIP 1667 kb)

41586_2004_BFnature02256_MOESM20_ESM.mov

Supplementary Movie 4: 4-D movie from anti-KLP10A antibody-injected embryo containing GFP-histones (green) and rhodamine-tubulin (red). (MOV 1737 kb)

41586_2004_BFnature02256_MOESM21_ESM.zip

Supplementary Movie 5: 4-D movie from an anti-KLP59C antibody-injected embryo containing GFP-histones (green) and rhodamine-tubulin (red). (ZIP 1116 kb)

41586_2004_BFnature02256_MOESM22_ESM.zip

Supplementary Movie 6: FSM movie showing microtubule-behaviors in spindles from a control-injected embryo. (ZIP 1156 kb)

41586_2004_BFnature02256_MOESM23_ESM.zip

Supplementary Movie 7: FSM movie showing microtubule behaviors in a spindle from an anti-KLP10A antibody-injected embryo. (ZIP 1197 kb)

Supplementary Figure Legends (DOC 46 kb)

Supplementary Movie Legends (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, G., Rogers, S., Schwimmer, T. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370 (2004). https://doi.org/10.1038/nature02256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02256

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing