Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum encounters of the cold kind

Abstract

Since the introduction of laser-cooling techniques for neutral atoms in the early 1980s, the study of collisional interactions between atoms and molecules has been extended to the regime of ultracold temperatures. With nanokelvin temperatures now attainable, our ability to probe the interactions, both experimentally and theoretically, has also progressed. Understanding of the subtle and often highly quantum-mechanical effects that are manifest at such low energies has advanced to the point where new precision measurements are matched by highly accurate theoretical calculations. Low-energy phenomena such as Bose–Einstein condensation and the photoassociation of atoms into bound molecules are now accurately described with no free parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of neutral atomic and molecular cooling and trapping.
Figure 2: A heuristic argument for understanding why scattering length controls the energetics of particle interactions in a cold quantum gas.
Figure 3: The nature of photoassociation.
Figure 4: Schematic description of two-colour formation of molecules in their ground electronic state by Raman photoassociation.
Figure 5: The nature of threshold scattering with a tuneable resonance level.
Figure 6: Comparison of experimental and theoretical collisional spectra of cooled and trapped Cs atoms at a temperature of a few microkelvin (refs 22,23; and S. Chu, private communication, 2001).

Similar content being viewed by others

References

  1. Weiner, J., Zilio, S., Bagnato, V. S. & Julienne, P. S. Experiments and theory in cold and ultracold collisions. Rev. Mod. Phys. 71, 1–85 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Cohen-Tannoudji, C. Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1997).

    Article  ADS  Google Scholar 

  3. Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1997).

    Article  ADS  Google Scholar 

  4. Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1997).

    Article  ADS  Google Scholar 

  5. Ketterle, W. & Van Druten, N. J. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Roberts, J. L. et al. Controlled collapse of a Bose-Einstein condensate. Phys. Rev. Lett. 86, 4211–4214 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Fioretti, A. et al. Formation of cold Cs2 molecules through photoassociation. Phys. Rev. Lett. 80, 4402–4405 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Takekoshi, T., Patterson, B. M. & Knize, R. J. Observation of cold ground-state cesium molecules produced in a magneto-optical trap. Phys. Rev. A 59, R5–R7 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Nikolov, A. N. et al. Observation of ultracold ground-state potassium molecules. Phys. Rev. Lett. 82, 703–706 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Nikolov, A. N. et al. Efficient production of ground-state potassium molecules at sub-mK temperatures by two-step photoassociation. Phys. Rev. A 84, 246–249 (2000).

    CAS  Google Scholar 

  12. Band, Y. B. & Julienne, P. S. Ultracold molecule production by laser cooled atom photoassociation. Phys. Rev. A 51, R4317–R4320 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Gabbanini, C., Fioretti, A., Lucchesini, A., Gozzini, S. & Mazzoni, M. Cold rubidium molecules formed in a magneto-optical trap. Phys. Rev. Lett. 84, 2814–2817 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Fatemi, F. K., Jones, K. M., Lett, P. D. & Tiesinga, E. Ultracold ground state molecule production in sodium. Phys. Rev. A (in the press).

  15. Weinstein, J. D., deCarvalho, R., Guillet, T., Friedrich, B. & Doyle, J. M. Magnetic trapping of calcium monohydride molecules at millikelvin temperature. Nature 395, 148–150 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Bethlem, H. L. et al. Electrostatic trapping of ammonia molecules. Nature 406, 491–494 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Abraham, E. R. I., McAlexander, W. I., Gerton, J. M. & Hulet, R. G. Triplet s-wave resonance in 6Li collisions and scattering lengths of 6Li and 7Li. Phys. Rev. A 55, R3299–R3302 (1997).

    Article  ADS  CAS  Google Scholar 

  18. van Abeelen, F. A. & Verhaar, B. J. Determination of collisional properties of cold Na atoms from analysis of bound-state photoassociation and Feshbach resonance field data. Phys. Rev. A 59, 578–584 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Crubellier, A. et al. Simple determination of Na2 scattering lengths using observed bound levels at the ground state asymptote. Eur. Phys. J. 6, 211–220 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Bohn, J. L. et al. Collisional properties of ultracold potassium: consequences for degenerate Bose and Fermi gases. Phys. Rev. A 59, 3660–3664 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Burke, J. P. Jr, Bohn, J. L., Esry, B. D. & Greene, C. H., Prospects for mixed-isotope Bose-Einstein condensates in rubidium. Phys. Rev. Lett. 80, 2097–3000 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Chin, C., Vuletic, V., Kerman, A. J. & Chu, S. High resolution Feshbach spectroscopy of cesium. Phys. Rev. Lett. 85, 2717–2720 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Leo, P. J., Williams, C. J. & Julienne, P. S. The collision properties of ultracold 133Cs atoms. Phys. Rev. Lett. 85, 2721–2724 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Dodd, R. J. et al. Role of attractive interactions on Bose-Einstein condensation. Phys. Rev. A 54, 661–664 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Cornish, S. L., Claussen, N. R., Roberts, J. L., Cornell, E. A. & Wieman, C. E. Stable 85Rb Bose-Einstein condensates with widely tuneable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Lett, P. D., Julienne, P. S. & Phillips, W. D. Photoassociative spectroscopy of laser-cooled atoms. Annu. Rev. Phys. Chem. 46, 423–452 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Heinzen, D. J. in Atomic Physics Vol. 14 (eds Wineland, D., Wieman, C. & Smith, S.) 369–388 (AIP Press, New York, 1995).

    Google Scholar 

  29. Stwalley, W. C. & Wang, H. Photoassociation of ultracold atoms: a new spectroscopic technique. J. Mol. Spect. 195, 194–228 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Tiesinga, E. et al. A spectroscopic determination of scattering lengths for sodium atom collisions. J. Res. Natl Inst. Stand. Tech. 101, 505–520 (1996).

    Article  CAS  Google Scholar 

  31. Napolitano, R., Weiner, J., Williams, C. J. & Julienne, P. S. Line shapes of high resolution photoassociation spectra of optically cooled atoms. Phys. Rev. Lett. 73, 1352–1355 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Gerton, J. M., Strekalov, D., Prodan, I. & Hulet, R. G. Direct observation of growth and collapse of a Bose–Einstein condensate with attractive interactions. Nature 408, 692–695 (2000).

    Article  ADS  CAS  Google Scholar 

  34. McAlexander, W. I., Abraham, E. R. I. & Hulet, R. G. Radiative lifetime of the 2P state of lithium. Phys. Rev. A 54, R5–R8 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Jones, K. et al. Measurement of the atomic Na(3P) lifetime and of retardation in the interaction between two atoms bound in a molecule. Europhys. Lett. 35, 85–90 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Wang, H. et al. Precise determination of the dipole matrix element and radiative lifetime of the 39K 4p state by photoassociative spectroscopy. Phys. Rev. A 55, R1569–R1572 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Stwalley, W. C., Uang, Y.-H. & Pichler, G. Pure long-range molecules. Phys. Rev. Lett. 41, 1164–1167 (1978).

    Article  ADS  CAS  Google Scholar 

  38. Stwalley, W. C. Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: new field-dependent scattering resonances and predissociations. Phys. Rev. Lett. 37, 1628–1631 (1981).

    Article  ADS  Google Scholar 

  39. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114 (1993).

    Article  ADS  CAS  Google Scholar 

  40. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151 (1998).

    Article  ADS  CAS  Google Scholar 

  41. Leo, P., Julienne, P. S., Mies, F. H. & Williams, C. J. Collisional frequency shifts in 133Cs fountain clocks. Phys. Rev. Lett. 86, 3743–3746 (2001).

    Article  ADS  CAS  Google Scholar 

  42. Vardi, A., Abrashkevich, D., Frishman, E. & Shapiro, M. Theory of radiative recombination with strong laser pulses and the formation of ultracold molecules via stimulated photo-recombination of cold atoms. J. Chem. Phys. 107, 6166–6174 (1997).

    Article  ADS  CAS  Google Scholar 

  43. Julienne, P. S., Burnett, K., Band, Y. B. & Stwalley, W. C. Stimulated Raman molecule production in Bose-Einstein condensates. Phys. Rev. A 58, R797–R800 (1998).

    Article  ADS  CAS  Google Scholar 

  44. Timmermans, E., Tommasini, P., Cote, R., Hussein, M. & Kerman, A. Rarified liquid properties of hybrid atomic-molecular Bose-Einstein condensates. Phys. Rev. Lett. 83, 2691–2694 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Javanainen, J. & Mackie, M. Coherent photoassociation of a Bose-Einstein condensate. Phys. Rev. A 59, R3186–R3189 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Heinzen, D. J., Wynar, R., Drummond, P. D. & Kheruntsyan, K. V. Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 84, 5029–5033 (2000).

    Article  ADS  CAS  Google Scholar 

  47. Holland, M., Park, J. & Walser, R. Formation of pairing fields in resonantly coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 86, 1915–1918 (2001).

    Article  ADS  CAS  Google Scholar 

  48. Brennen, G. K., Caves, C. M., Jessen, P. S. & Deutsch, I. H. Quantum logical gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999).

    Article  ADS  CAS  Google Scholar 

  49. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  CAS  Google Scholar 

  50. Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    Article  ADS  CAS  Google Scholar 

  51. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  CAS  Google Scholar 

  52. Pu, H. & Meystre, P. Creating macroscopic atomic Einstein-Podolsky-Rosen states from Bose-Einstein condensates. Phys. Rev. Lett. 85, 3987–3990 (2000).

    Article  ADS  CAS  Google Scholar 

  53. Duan, L.-M., Sorensen, A., Cirac, J. I. & Zoller, P. Squeezing and entanglement of atomic beams. Phys. Rev. Lett. 85, 3991–3994 (2000).

    Article  ADS  CAS  Google Scholar 

  54. Tiesinga, E., Williams, C. J., Mies, F. H. & Julienne, P. S. Interacting atoms under strong quantum confinement. Phys. Rev. A 61, 063416-1–063416-8 (2000).

    Article  ADS  Google Scholar 

  55. Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

    Article  ADS  CAS  Google Scholar 

  56. Jessen, P. S. & Deutsch, I. H. Optical lattices. Adv. At. Mol. Opt. Phys. 36, 95–137 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Office of Naval Research, the EPSRC and the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Julienne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, K., Julienne, P., Lett, P. et al. Quantum encounters of the cold kind. Nature 416, 225–232 (2002). https://doi.org/10.1038/416225a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/416225a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing