Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation

Abstract

The Ras-related GTP-binding protein Cdc42 is implicated in a variety of biological activities including the establishment of cell polarity in yeast, the regulation of cell morphology, motility and cell-cycle progression in mammalian cells and the induction of malignant transformation1,2. We identified a Cdc42 mutant (Cdc42F28L) which binds GTP in the absence of a guanine nucleotide exchange factor, but still hydrolyses GTP with a turnover number identical to that for wild-type Cdc42 (ref. 3). Expression of this mutant in NIH 3T3 fibroblasts causes cellular transformation, mimicking many of the characteristics of cells transformed by the Dbl oncoprotein, a known guanine nucleotide exchange factor for Cdc42 (ref. 4). Here we searched for new Cdc42 targets in an effort to understand how Cdc42 mediates cellular transformation. We identified the γ-subunit of the coatomer complex (γCOP) as a specific binding partner for activated Cdc42. The binding of Cdc42 to γCOP is essential for a transforming signal distinct from those elicited by Ras.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coatomer subunits associate with activated Cdc42.
Figure 2: A dilysine sequence within the carboxy-terminal end of Cdc42 is necessary for binding coatomer.
Figure 3: Effects of Cdc42 and Arf1 on the ER to Golgi transport of VSV-G protein.
Figure 4: Comparisons of the effects of Cdc42F28L and Cdc42F28Lss on the rate of intracellular transport of the VSV-G protein.
Figure 5: The ability of activated Cdc42 to bind to γCOP is essential for cellular transformation.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 ( 1996).

    Article  CAS  Google Scholar 

  2. Johnson, D. I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54– 105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin, R., Bagrodia, S., Cerione, R. A. & Manor, D. A novel Cdc42Hs mutant induces cellular transformation. Curr. Biol. 7, 794–797 ( 1997).

    Article  CAS  Google Scholar 

  4. Hart, M. J., Eva, A., Evans, T., Aaronson, S. A. & Cerione, R. A. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354, 311–314 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Manser, E., Leung, T., Salihuddin, H., Zhao, Z.-S. & Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367, 40–46 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Bagrodia, S., Taylor, S. J., Creasy, C. L., Chernoff, J. & Cerione, R. A. Identification of a mouse p21Cdc42/Rac activated kinase. J. Biol. Chem. 270, 22731 –22737 (1995).

    Article  CAS  Google Scholar 

  7. Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734 ( 1996).

    Article  CAS  Google Scholar 

  8. Hart, M. J., Callow, M. G., Souza, B. & Polakis, P. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J. 15, 2997–3005 (1996).

    Article  CAS  Google Scholar 

  9. Serafini, T. et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 ( 1991).

    Article  CAS  Google Scholar 

  10. Waters, M. G., Serafini, T. & Rothman, J. E. ‘Coatomer’: a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349, 248–251 ( 1991).

    Article  ADS  CAS  Google Scholar 

  11. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Harter, C. et al. Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway. Proc. Natl Acad. Sci. USA 93, 1902 –1906 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Lowe, M. & Kreis, T. E. In vitro assembly and disassembly of coatomer. J. Biol. Chem. 270, 31364– 31371 (1995).

    Article  CAS  Google Scholar 

  14. Letourner, F. et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199 –1207 (1994).

    Article  Google Scholar 

  15. Harter, C. & Wieland, F. T. A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer. Proc. Natl Acad. Sci. USA 95, 11649– 11654 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495 –506 (1999).

    Article  CAS  Google Scholar 

  17. Erickson, J. W., Cerione, R. A. & Hart, M. J. Identification of an actin cytoskeletal complex that includes IQGAP and the Cdc42 GTPase. J. Biol. Chem. 272, 24443–24447 (1997).

    Article  CAS  Google Scholar 

  18. Kreis, T. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 5, 931–941 ( 1986).

    Article  CAS  Google Scholar 

  19. Musch, A., Xu, H., Shields, D. & Rodriguez-Boulan, E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J. Cell Biol. 133, 543–558 (1996).

    Article  CAS  Google Scholar 

  20. Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

    CAS  PubMed  Google Scholar 

  21. Wu, W., Lin, R., Cerione, R. A. & Manor, D. Transformation activity of Cdc42 requires a region unique to Rho-related proteins. J. Biol. Chem. 273, 16655–16658 ( 1998).

    Article  CAS  Google Scholar 

  22. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  23. Erickson, J. W., Zhang, C. J., Kahn, R. A., Evans, T. & Cerione, R. A. Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem. 271, 26850–26854 (1996).

    Article  CAS  Google Scholar 

  24. Lin, R., Cerione, R. A. & Manor, D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J. Biol. Chem. 274 , 23633–23641 (1999).

    Article  CAS  Google Scholar 

  25. Bershadsky, A. D. & Futerman, A. H. Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration. Proc. Natl Acad. Sci. USA 91, 5686–5689 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Peranen, J., Auvinen, P., Virta, H., Wepf, R. & Simons, K. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 135, 153–167 (1996).

    Article  CAS  Google Scholar 

  27. White, M. A. et al. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541 (1995).

    Article  CAS  Google Scholar 

  28. Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17, 1324–1335 ( 1997).

    Article  CAS  Google Scholar 

  29. McCallum, S. J., Erickson, J. W. & Cerione, R. A. Characterization of the association of the actin-binding protein, IQGAP, and activated Cdc42 with Golgi membranes. J. Biol. Chem. 273, 22537–22544 ( 1998).

    Article  CAS  Google Scholar 

  30. Bagrodia, S., Taylor, S. J., Jordan, K. A., Van Aelst, L. & Cerione, R. A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633– 23636 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Harter and F. Wieland for the anti-α/γCOP antibody and the cDNA for γCOP; A. Musch for advice on VSV-G transport assays; J. Lippinoctt-Schwartz for the plasmid expressing VSV-G; and C. Westmiller for secretarial assistance. We also acknowledge support from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Cerione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Erickson, J., Lin, R. et al. The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation . Nature 405, 800–804 (2000). https://doi.org/10.1038/35015585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015585

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing