Comment in 2024

Filter By:

Article Type
Year
  • One of the most innovative possibilities offered by oxides is the use of heat currents for computational purposes. Towards this goal, phase-change oxides, including ferroelectrics, ferromagnets and related materials, could reproduce sources, logic units and memories used in current and future computing schemes.

    • Guillaume F. Nataf
    • Sebastian Volz
    • Brahim Dkhil
    Comment
  • Disabled scientists are under-represented in STEM and face additional barriers at all career stages. The DisabledInSTEM mentoring programme provides support, an opportunity to learn from others and a sense of community to empower disabled scientists and help them succeed in their careers.

    • Alyssa T. Paparella
    Comment
  • The increasing popularity of electric vehicles as an alternative to internal combustion engine vehicles brings new realities, challenges and opportunities for scientists and engineers. A key element of this transition will be to develop solutions for lubrication, thermal management, electrical compatibility and corrosion inhibition. Two-dimensional materials are well poised to address these challenges and enhance the performance, efficiency, durability and, hence, sustainability of electric vehicles during this century and beyond.

    • Diana Berman
    • Leonardo Israel Farfan-Cabrera
    • Ali Erdemir
    Comment
  • Light-emitting perovskite solar cells are emerging optoelectronic devices that integrate light-emitting and electricity-generating functions in one device. This type of device unlocks new possibilities for applications as outdoor light sources, in multifunctional architecture, smart automobiles, self-powered displays and portable power floodlights.

    • Ming Luo
    • Alexey Tarasov
    • Junhao Chu
    Comment
  • As new materials and manufacturing techniques are discovered, their benefits transform every branch of science and engineering. In spacecraft propulsion, a new generation of ion engines could provide unprecedented performance and flexibility in space mission design.

    • Paulo C. Lozano
    Comment
  • Nanoparticles (NPs) administered in the human body will undergo rapid surface modification upon contact with biological fluids driven by their interfacial interaction with a diverse range of biomolecules. Such spontaneous self-assembly and adsorption of proteins and other biomolecules onto the NP surface constitute what is commonly known as the protein or biomolecule corona. This surface biotransformation of the NPs modulates their biological interactions and impact on physiological systems and can influence their overall pharmacological profile. Here, we comment on how the initially considered ‘nuisance’ of the in vivo corona formation can now be considered a nanoparticle engineering tool for biomedical use, such as in endogenous tissue targeting, personalized biomarker discovery and immunomodulation.

    • Marilena Hadjidemetriou
    • Morteza Mahmoudi
    • Kostas Kostarelos
    Comment
  • Solar photovoltaics has tremendous potential to address current gaps in electricity access for resource-challenged settings, such as sub-Saharan Africa. However, a rapid surge in installations and future growth will lead to an increase in waste from panels and batteries, which needs to be tackled urgently. Innovative technical solutions and improved policies and standards are required to address end-of-life challenges for solar photovoltaics in sub-Saharan Africa.

    • Priti Parikh
    • Ryan Wang
    • Jing Meng
    Comment
  • Minimally invasive surgery (MIS) lacks sufficient haptic feedback to the surgeon due to the length and flexibility of surgical tools. This haptic disconnect is exacerbated in robotic-MIS, which utilizes tele-operation to control surgical tools. Tactile sensation in MIS and robotic-MIS can be restored in a safe and conformable manner through soft sensors and soft haptic feedback devices.

    • Arincheyan Gerald
    • Sheila Russo
    Comment
  • The production of conventional meat contributes to climate change and uses up around 70% of available arable land. Cultured meat is emerging as a potential solution, but presently can be only produced at the pilot scale. Biofabrication technologies developed for biomedical applications could be leveraged to introduce automation and standardization in the production of cultured meat, accelerating its path to market.

    • Simon Heine
    • Tilman Ahlfeld
    • Petra J. Kluger
    Comment