Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10

Abstract

Several microbes have been suspected as pathogenetic factors in schizophrenia. We have previously observed increased frequencies of chlamydial infections and of human lymphocyte antigen (HLA)-A10 in independent studies of schizophrenia. Our aim here was to analyze frequencies of three types of Chlamydiaceae in schizophrenic patients (n=72), random controls (n=225) and hospital-patient controls (n=36), together with HLA-A genotypes. Patients were diagnosed with schizophrenia according to Diagnostic and Statistical Manual of Mental Disorders-IV. Blood samples were collected at the beginning of hospitalization and analyzed with Chlamydiaceae species-specific polymerase chain reaction (PCR). Control panels consisted of randomly selected volunteers and hospitalized, non-schizophrenic patients. We found chlamydial infection in 40.3% of the schizophrenic patients compared to 6.7% in the controls. The association of schizophrenia with Chlamydiaceae infections was highly significant (P=1.39 × 10−10, odds ratio (OR)=9.43), especially with Chlamydophila psittaci (P=2.81 × 10−7, OR=24.39). Schizophrenic carriers of the HLA-A10 genotype were clearly most often infected with Chlamydophila, especially C. psittaci (P=8.03 × 10−5, OR=50.00). Chlamydophila infections represent the highest risk factor yet found to be associated with schizophrenia. This risk is even further enhanced in carriers of the HLA-A10 genotype.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Karlsson H . Viruses and schizophrenia, connection or coincidence? NeuroReport 2003; 14: 535–542.

    Article  Google Scholar 

  2. Torrey EF, Yolken RH . Toxoplasma gondii and schizophrenia. Emerg Infect Dis 2003; 9: 1375–1380.

    Article  Google Scholar 

  3. Brown AS, Schaefer CA, Quesenberry Jr CP, Liu L, Babulas VP, Susser ES . Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry 2005; 162: 767–773.

    Article  Google Scholar 

  4. Thaker GK, Carpenter Jr WT . Advances in schizophrenia. Nat Med 2001; 7: 667–671.

    Article  CAS  Google Scholar 

  5. Lewis DA . Retroviruses and the pathogenesis of schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4293–4294.

    Article  CAS  Google Scholar 

  6. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH . Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 2001; 58: 1032–1037.

    Article  CAS  Google Scholar 

  7. Fellerhoff B, Laumbacher B, Wank R . High risk of schizophrenia and other mental disorders associated with chlamydial infections: hypothesis to combine drug treatment and adoptive immunotherapy. Med Hypotheses 2005; 65: 243–252.

    Article  Google Scholar 

  8. Wank R . Schizophrenia and other mental disorders require long-term adoptive immunotherapy. Med Hypotheses 2002; 59: 154–158.

    Article  Google Scholar 

  9. Subtil A, Dautry-Varsat A . Chlamydia: five years A.G. (after genome). Curr Opin Microbiol 2004; 7: 85–92.

    Article  CAS  Google Scholar 

  10. Krull M, Maass M, Suttorp N, Rupp J . Chlamydophila pneumoniae. Mechanisms of target cell infection and activation. Thromb Haemost 2005; 94: 319–326.

    PubMed  Google Scholar 

  11. Xavier M, Correa B, Coromina M, Canas N, Guimaraes J . Sudden psychotic episode probably due to meningoencephalitis and Chlamydia pneumoniae acute infection. Clin Pract Epidemol Ment Health 2005; 1: 15.

    Article  Google Scholar 

  12. Pozniak AL, Lobzin Iu V, Mikhailenko AA, Mudritskii VM, Nuralova IV, Makarov VI . Acute chlamydial lesions of the nervous system: etiology, diagnosis, clinical aspects. Klin Med (Mosk) 2002; 80: 31–34.

    CAS  Google Scholar 

  13. Brewis C, McFerran DJ . ‘Farmer's ear’: sudden sensorineural hearing loss due to Chlamydia psittaci infection. J Laryngol Otol 1997; 111: 855–857.

    Article  CAS  Google Scholar 

  14. Reis J, Le Faou A, Levy F, Kapfer MT, Gut JP . Confusional form of Chlamydia psittaci encephalitis. Diagnostic value of microimmunofluorescence. A case. Presse Med 1985; 14: 87–89.

    CAS  PubMed  Google Scholar 

  15. Schlossberg D . Chlamydia psittaci (psittacosis). In: Mandell GL, Bennett JE, Dolin R (eds). Principle and Practice of Infectious Diseases. Churchill Livingston: Philadelphia, 2000, pp 2004–2007.

    Google Scholar 

  16. Levine JE, Yang SY . SSOP typing of the Tenth International Histocompatibility Workshop reference cell lines for HLA-C alleles. Tissue Antigens 1994; 44: 174–183.

    Article  CAS  Google Scholar 

  17. Madico G, Quinn TC, Boman J, Gaydos CA . Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S-23S spacer rRNA genes. J Clin Microbiol 2000; 38: 1085–1093.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim TG, Lee YH, Choi HB, Han H . Two newly discovered alleles of major histocompatibility complex-encoded LMP7 in Korean populations. Hum Immunol 1996; 46: 61–64.

    Article  CAS  Google Scholar 

  19. Laumbacher B, Muller N, Bondy B, Schlesinger B, Gu S, Fellerhoff B et al. Significant frequency deviation of the class I polymorphism HLA-A10 in schizophrenic patients. J Med Genet 2003; 40: 217–219.

    Article  CAS  Google Scholar 

  20. Fukano H . Comparison of five PCR assays for detecting Chlamydophila pneumoniae DNA. Microbiol Immunol 2004; 48: 441–448.

    Article  CAS  Google Scholar 

  21. Sessa R, Di Pietro M, Schiavoni G, Santino I, Cipriani P, Romano S et al. Prevalence of Chlamydia pneumoniae in peripheral blood mononuclear cells in Italian patients with acute ischaemic heart disease. Atherosclerosis 2001; 159: 521–525.

    Article  CAS  Google Scholar 

  22. Ferreri AJ, Guidoboni M, Ponzoni M, De Conciliis C, Dell'Oro S, Fleischhauer K et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 2004; 96: 586–594.

    Article  Google Scholar 

  23. MacIntyre A, Abramov R, Hammond CJ, Hudson AP, Arking EJ, Little CS et al. Chlamydia pneumoniae infection promotes the transmigration of monocytes through human brain endothelial cells. J Neurosci Res 2003; 71: 740–750.

    Article  CAS  Google Scholar 

  24. Murray A, Ward ME . Control mechanisms governing the infectivity of Chlamydia trachomatis for HeLa cells: the role of calmodulin. J Gen Microbiol 1984; 130: 193–201.

    CAS  PubMed  Google Scholar 

  25. Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, Guarner J et al. Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 2001; 33: 492–503.

    Article  CAS  Google Scholar 

  26. Everett KD . Chlamydia and Chlamydiales: more than meets the eye. Vet Microbiol 2000; 75: 109–126.

    Article  CAS  Google Scholar 

  27. Johnsen S, Andersen PL, Stanek G, Christiansen G, Birkelund S, Berthelsen LM et al. Chlamydia antibody response in healthy volunteers immunized with nonchlamydial antigens: a randomized, double-blind, placebo-controlled study. Clin Infect Dis 2003; 36: 586–591.

    Article  CAS  Google Scholar 

  28. Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H . Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 1996; 246: 279–284.

    Article  CAS  Google Scholar 

  29. Raivich G, Banati R . Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 2004; 46: 261–281.

    Article  CAS  Google Scholar 

  30. Risch N . Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 1990; 46: 229–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bray NJ, Owen MJ . Searching for schizophrenia genes. Trends Mol Med 2001; 7: 169–174.

    Article  CAS  Google Scholar 

  32. Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH . Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4634–4639.

    Article  CAS  Google Scholar 

  33. Pearce BD . Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 2001; 6: 634–646.

    Article  CAS  Google Scholar 

  34. Yolken RH, Karlsson H, Yee F, Johnston-Wilson NL, Torrey EF . Endogenous retroviruses and schizophrenia. Brain Res Brain Res Rev 2000; 31: 193–199.

    Article  CAS  Google Scholar 

  35. Muller N, Ackenheil M . Immunoglobulin and albumin content of cerebrospinal fluid in schizophrenic patients: relationship to negative symptomatology. Schizophr Res 1995; 14: 223–228.

    Article  CAS  Google Scholar 

  36. Licinio J, Seibyl JP, Altemus M, Charney DS, Krystal JH . Elevated CSF levels of interleukin-2 in neuroleptic-free schizophrenic patients. Am J Psychiatry 1993; 150: 1408–1410.

    Article  CAS  Google Scholar 

  37. Barak V, Barak Y, Levine J, Nisman B, Roisman I . Changes in interleukin-1 beta and soluble interleukin-2 receptor levels in CSF and serum of schizophrenic patients. J Basic Clin Physiol Pharmacol 1995; 6: 61–69.

    Article  CAS  Google Scholar 

  38. McAllister CG, van Kammen DP, Rehn TJ, Miller AL, Gurklis J, Kelley ME et al. Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am J Psychiatry 1995; 152: 1291–1297.

    Article  CAS  Google Scholar 

  39. Debattista J, Timms P, Allan J, Allan J . Immunopathogenesis of Chlamydia trachomatis infections in women. Fertil Steril 2003; 79: 1273–1287.

    Article  Google Scholar 

  40. Thome J, Foley P, Riederer P . Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J Neural Transm 1998; 105: 85–100.

    Article  CAS  Google Scholar 

  41. Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P et al. Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 2001; 52: 79–86.

    Article  CAS  Google Scholar 

  42. Rattiner LM, Davis M, Ressler KJ . Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist 2005; 11: 323–333.

    Article  CAS  Google Scholar 

  43. Lessmann V, Gottmann K, Malcangio M . Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 2003; 69: 341–374.

    Article  CAS  Google Scholar 

  44. Schuman EM . Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol 1999; 9: 105–109.

    Article  CAS  Google Scholar 

  45. Besser M, Wank R . Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 1999; 162: 6303–6306.

    CAS  PubMed  Google Scholar 

  46. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 2000; 15: 331–345.

    Article  CAS  Google Scholar 

  47. Boulanger LM, Huh GS, Shatz CJ . Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol 2001; 11: 568–578.

    Article  CAS  Google Scholar 

  48. Torrey EF, Yolken RH . Could schizophrenia be a viral zoonosis transmitted from house cats? Schizophr Bull 1995; 21: 167–171.

    Article  CAS  Google Scholar 

  49. Peeling RW, Brunham RC . Chlamydiae as pathogens: new species and new issues. Emerg Infect Dis 1996; 2: 307–319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by Annemarie and Karl-Heinz Gansbühler. We enjoyed the scientific discussion with DJ Schendel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Fellerhoff.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fellerhoff, B., Laumbacher, B., Mueller, N. et al. Associations between Chlamydophila infections, schizophrenia and risk of HLA-A10. Mol Psychiatry 12, 264–272 (2007). https://doi.org/10.1038/sj.mp.4001925

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001925

Keywords

This article is cited by

Search

Quick links