Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia

Abstract

Constitutively active phosphoinositide 3-kinase (PI3K) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it upregulates cell proliferation, survival and drug resistance. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. Here, we have analyzed the therapeutic potential of the pan-PI3K inhibitor NVP-BKM120 (BKM120), an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in G2/M phase cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T lymphoblasts, and promoting a dose- and time-dependent dephosphorylation of Akt and S6RP. BKM120 maintained its pro-apoptotic activity against Jurkat cells even when cocultured with MS-5 stromal cells, which mimic the bone marrow microenvironment. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. Moreover, in vivo administration of BKM120 to a subcutaneous xenotransplant model of human T-ALL significantly delayed tumor growth, thus prolonging survival time. Taken together, our findings indicate that BKM120, either alone or in combination with chemotherapeutic drugs, may be an efficient treatment for T-ALLs that have aberrant upregulation of the PI3K signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES . The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117: 5019–5032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    Article  CAS  PubMed  Google Scholar 

  3. Alharbi RA, Pettengell R, Pandha HS, Morgan R . The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 2013; 27: 1000–1008.

    Article  CAS  PubMed  Google Scholar 

  4. Iacobucci I, Papayannidis C, Lonetti A, Ferrari A, Baccarani M, Martinelli G . Cytogenetic and molecular predictors of outcome in acute lymphocytic leukemia: recent developments. Curr Hematol Malig Rep 2012; 7: 133–143.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bains T, Heinrich MC, Loriaux MM, Beadling C, Nelson D, Warrick A et al. Newly described activating JAK3 mutations in T-cell acute lymphoblastic leukemia. Leukemia 2012; 26: 2144–2146.

    Article  CAS  PubMed  Google Scholar 

  6. Jenkinson S, Koo K, Mansour MR, Goulden N, Vora A, Mitchell C et al. Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia 2013; 27: 41–47.

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn JS, Liu S, Raiser DM, Martinez SA, Feng H, Meeker ND et al. Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia 2012; 26: 2069–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lhermitte L, Ben Abdelali R, Villarese P, Bedjaoui N, Guillemot V, Trinquand A et al. Receptor kinase profiles identify a rationale for multitarget kinase inhibition in immature T-ALL. Leukemia 2013; 27: 305–314.

    Article  CAS  PubMed  Google Scholar 

  9. Cialfi S, Palermo R, Manca S, Checquolo S, Bellavia D, Pelullo M et al. Glucocorticoid sensitivity of T-cell lymphoblastic leukemia/lymphoma is associated with glucocorticoid receptor-mediated inhibition of Notch1 expression. Leukemia 2013; 27: 485–488.

    Article  CAS  PubMed  Google Scholar 

  10. Malyukova A, Brown S, Papa R, O’Brien R, Giles J, Trahair TN et al. FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia 2013; 27: 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  11. Correia NC, Durinck K, Leite AP, Ongenaert M, Rondou P, Speleman F et al. Novel TAL1 targets beyond protein-coding genes: identification of TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia. Leukemia 2013; 27: 1603–1606.

    Article  CAS  PubMed  Google Scholar 

  12. Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H et al. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways. Leukemia 2012; 26: 769–777.

    Article  CAS  PubMed  Google Scholar 

  13. Schotte D, Pieters R, Den Boer ML . MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 2012; 26: 1–12.

    Article  CAS  PubMed  Google Scholar 

  14. Patel B, Kang Y, Cui K, Litt M, Riberio MSJ, Deng C et al. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 2014; 28: 349–361.

    Article  CAS  PubMed  Google Scholar 

  15. Lo Nigro L, Mirabile E, Tumino M, Caserta C, Cazzaniga G, Rizzari C et al. Detection of PICALM-MLLT10 (CALM-AF10) and outcome in children with T-lineage acute lymphoblastic leukemia. Leukemia 2013; 27: 2419–2421.

    Article  CAS  PubMed  Google Scholar 

  16. Marshall GM, Dalla Pozza L, Sutton R, Ng A, de Groot-Kruseman HA, van der Velden VH et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 2013; 27: 1497–1503.

    Article  CAS  PubMed  Google Scholar 

  17. Juntilla MM, Koretzky GA . Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett 2008; 116: 104–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Cheng H, Roberts TM, Zhao JJ . Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8: 627–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silva A, Girio A, Cebola I, Santos CI, Antunes F, Barata JT . Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia 2011; 25: 960–967.

    Article  CAS  PubMed  Google Scholar 

  23. Zenatti PP, Ribeiro D, Li WQ, Zuurbier L, Silva MC, Paganin M et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43: 932–U931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F et al. Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia 2012; 26: 2336–2342.

    Article  CAS  PubMed  Google Scholar 

  25. Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE et al. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia 2013; 27: 650–660.

    Article  CAS  PubMed  Google Scholar 

  26. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 2012; 11: 317–328.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Y, Yang J, Qian J, Zhang L, Lu Y, Li H et al. Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. J Mol Med 2012; 90: 695–706.

    Article  CAS  PubMed  Google Scholar 

  28. Amrein L, Shawi M, Grenier J, Aloyz R, Panasci L . The phosphatidylinositol-3 kinase I inhibitor BKM120 induces cell death in B-chronic lymphocytic leukemia cells in vitro. Int J Cancer 2013; 133: 247–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zang C, Eucker J, Liu H, Coordes A, Lenarz M, Possinger K et al. Inhibition of pan-class I PI3 kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B cell lymphoma. Leuk Lymphoma 2013; e-pub ahead of print 31 May 2013 doi:10.3109/10428194.2013.806800.

    Article  Google Scholar 

  30. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 2012; 30: 282–290.

    Article  CAS  PubMed  Google Scholar 

  31. Matarrese P, Testa U, Cauda R, Vella S, Gambardella L, Malorni W . Expression of P-170 glycoprotein sensitizes lymphoblastoid CEM cells to mitochondria-mediated apoptosis. Biochem J 2001; 355: 587–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Silva A, Laranjeira ABA, Martins LR, Cardoso BA, Demengeot J, Yunes JA et al. IL-7 contributes to the progression of human t-cell acute lymphoblastic leukemias. Cancer Res 2011; 71: 4780–4789.

    Article  CAS  PubMed  Google Scholar 

  33. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  35. Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia 2011; 25: 781–791.

    Article  CAS  PubMed  Google Scholar 

  36. Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 2008; 22: 147–160.

    Article  CAS  PubMed  Google Scholar 

  37. Grimaldi C, Chiarini F, Tabellini G, Ricci F, Tazzari PL, Battistelli M et al. AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications. Leukemia 2012; 26: 91–100.

    Article  CAS  PubMed  Google Scholar 

  38. Telford WG, Bradford J, Godfrey W, Robey RW, Bates SE . Side population analysis using a violet-excited cell-permeable DNA binding dye. Stem Cells 2007; 25: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  39. Martins LR, Lucio P, Melao A, Antunes I, Cardoso BA, Stansfield R et al. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia 2014; 28: 179–182.

    Article  CAS  PubMed  Google Scholar 

  40. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39: D945–D950.

    Article  CAS  PubMed  Google Scholar 

  41. Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 2012; 26: 1195–1202.

    Article  CAS  PubMed  Google Scholar 

  42. Konopleva M, Tabe Y, Zeng Z, Andreeff M . Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 2009; 12: 103–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Law HK, Lau YL, Chan GC . Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 2004; 127: 326–334.

    Article  CAS  PubMed  Google Scholar 

  44. Yamazaki J, Mizukami T, Takizawa K, Kuramitsu M, Momose H, Masumi A et al. Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009; 114: 2709–2720.

    Article  CAS  PubMed  Google Scholar 

  45. Hadnagy A, Gaboury L, Beaulieu R, Balicki D . SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312: 3701–3710.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  47. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 2008; 51: 5522–5532.

    Article  CAS  PubMed  Google Scholar 

  48. Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-Legueux M et al. Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther 2012; 11: 1747–1757.

    Article  CAS  PubMed  Google Scholar 

  49. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H et al. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 2006; 98: 545–556.

    Article  CAS  PubMed  Google Scholar 

  50. Casale F, D’Angelo V, Addeo R, Caraglia M, Crisci S, Rondelli R et al. P-glycoprotein 170 expression and function as an adverse independent prognostic factor in childhood acute lymphoblastic leukemia. Oncol Rep 2004; 12: 1201–1207.

    CAS  PubMed  Google Scholar 

  51. Koul D, Fu J, Shen R, LaFortune TA, Wang S, Tiao N et al. Antitumor activity of NVP-BKM120–a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res 2012; 18: 184–195.

    Article  CAS  PubMed  Google Scholar 

  52. Mueller A, Bachmann E, Linnig M, Khillimberger K, Schimanski CC, Galle PR et al. Selective PI3K inhibition by BKM120 and BEZ235 alone or in combination with chemotherapy in wild-type and mutated human gastrointestinal cancer cell lines. Cancer Chemother Pharmacol 2012; 69: 1601–1615.

    Article  CAS  PubMed  Google Scholar 

  53. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2012; 2: 1048–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2012; 2: 1036–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lane SW, Scadden DT, Gilliland DG . The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer 2004; 101: 2788–2801.

    Article  CAS  PubMed  Google Scholar 

  57. Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K et al. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 2012; 21: 459–472.

    Article  CAS  PubMed  Google Scholar 

  58. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009; 69: 3520–3528.

    Article  CAS  PubMed  Google Scholar 

  59. Stengel C, Jenner E, Meja K, Mayekar S, Khwaja A . Proliferation of PTEN-deficient haematopoietic tumour cells is not affected by isoform-selective inhibition of p110 PI3-kinase and requires blockade of all class 1 PI3K activity. Br J Haematol 2013; 162: 285–289.

    Article  CAS  PubMed  Google Scholar 

  60. Fruman DA, Rommel C . PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discov 2011; 1: 562–572.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from MIUR FIRB 2010 (RBAP10447J_003) to AMM and by grants PTDC/SAU-OBD/104816/2008 and PTDC/SAU-ONC/122428/2010 from Fundação para a Ciência e a Tecnologia (FCT), Portugal, to JTB. ILA received a postdoctoral fellowship (SFRH/BPD/63920/2009) from FCT. FL was supported by Special Project AIRC 5x1000 n. 9962 and Progetto di rilevante Interesse Nazionale, PRIN 2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J T Barata or A M Martelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonetti, A., Antunes, I., Chiarini, F. et al. Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia. Leukemia 28, 1196–1206 (2014). https://doi.org/10.1038/leu.2013.369

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.369

Keywords

This article is cited by

Search

Quick links