Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes And Tumor suppressor Genes

RETRACTED ARTICLE: Disruption of the Bcr-Abl/Hsp90 protein complex: a possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin

A Retraction to this article was published on 08 April 2020

Abstract

The Bcr-Abl fusion gene encodes for the p210Bcr-Abl or p185Bcr-Abl tyrosine kinase (TK) implicated in the pathogenesis of chronic myelogenous leukemia (CML) or acute lymphoblastic leukemia, respectively. Because Bcr-Abl TK is chaperoned by Hsp90 (90 kDa heat-shock protein), we investigated the effects of novobiocin (NB), an Hsp90 C-terminal inhibitor, on the viability of the Bcr-Abl-positive human leukemia cells HL-60/Bcr-Abl and K562, the expression of Bcr-Abl protein and the interaction between Hsp90 and Bcr-Abl TK. Present studies demonstrate that NB is a potent inhibitor of the growth of Bcr-Abl-positive human leukemia cells. NB induces cytosolic accumulation of cytochrome c and activation of caspase-9 and caspase-3, triggering apoptosis of HL-60/Bcr-Abl and K562 cells. Treatment of cell lines with NB disrupts Bcr-Abl /Hsp90 and Bcr-Abl /Hsp70 interactions, resulting in a decreased amount of intracellular Bcr-Abl protein levels. Co-treatment with the proteasome inhibitor N-acetyl leucyl-leucyl norlucinal increases NB-mediated accumulation of Bcr-Abl in the detergent-insoluble cellular fraction, which demonstrates that NB promotes proteasomal degradation of Bcr-Abl. Moreover, both imatinib-resistant K562/G01 and primary CML CD34+ cells are sensitive to NB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Blagosklonny MV, Toretsky J, Neckers L . Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 1995; 11: 933–939.

    CAS  PubMed  Google Scholar 

  2. Chavany C, Mimnaugh E, Miller P, Bitton R, Nguyen P, Trepel J et al. p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J Biol Chem 1996; 271: 4974–4977.

    Article  CAS  Google Scholar 

  3. Stepanova L, Leng X, Parker SB, Harper JW . Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 1996; 10: 1491–1502.

    Article  CAS  Google Scholar 

  4. Scheibel T, Neuhofen S, Weikl T, Mayr C, Reinstein J, Vogel PD et al. ATP-binding properties of human Hsp90. J Biol Chem 1997; 272: 18608–18613.

    Article  CAS  Google Scholar 

  5. Scheibel T, Weikl T, Buchner J . Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc Natl Acad Sci USA 1998; 95: 1495–1499.

    Article  CAS  Google Scholar 

  6. Grenert JP, Sullivan WP, Fadden P, Haystead TAJ, Clark J, Mimnaugh E et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 1997; 272: 23843–23850.

    Article  CAS  Google Scholar 

  7. Grenert JP, Johnson BD, Toft DO . The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J Biol Chem 1999; 274: 17525–17533.

    Article  CAS  Google Scholar 

  8. Marcu MG, Schulte TW, Neckers L . Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 2000; 92: 242–248.

    Article  CAS  Google Scholar 

  9. Allan RK, Mok D, Ward BK, Ratajczak T . Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 2006; 281: 7161–7171.

    Article  CAS  Google Scholar 

  10. Faderl S, Talpaz M, Estrov Z, Kantarjian HM . Chronic myelogenous leukemia. Biology and therapy. Ann Intern Med 1999; 131: 207–219.

    Article  CAS  Google Scholar 

  11. Bagatell R, Whitesell L . Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 2004; 3: 1021–1030.

    Article  CAS  Google Scholar 

  12. Nimmanapalli R, O’Bryan E, Bhalla K . Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61: 1799–1804.

    CAS  PubMed  Google Scholar 

  13. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  Google Scholar 

  14. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 487–491.

    Article  CAS  Google Scholar 

  15. Qi J, Peng H, Gu ZL, Liang ZQ, Yang CZ . Establishment of an imatinib resistant cell line K562/G01 and its characterization. Chin J Hematol 2004; 25: 337–341.

    CAS  Google Scholar 

  16. Bhatia R, McGlave PB, Miller JS, Wissink S, Lin WN, Verfaillie CM . A clinical lysuitable ex vivo expansion culture system for LTC-IC and CFC using stroma-conditioned medium. Exp Hematol 1997; 25: 980–991.

    CAS  PubMed  Google Scholar 

  17. Bhatia R, McGlave PB, Dewald GW, Blazar BR, Verfaillie CM . Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 1995; 85: 3636–3645.

    Article  CAS  Google Scholar 

  18. Jow GM, Chou CJ, Chen BF, Tsai JH . Beauvericin induces cytotoxic effects in human acute lymphoblastic leukemia cells through cytochrome c release, caspase 3 activation: the causative role of calcium. Cancer Lett 2004; 216: 165–173.

    Article  CAS  Google Scholar 

  19. Wu LX, Xu JH, Huang XW, Zhang KZ, Wen CX, Chen YZ . Down-regulation of p210(bcr/abl) by curcumin involves disrupting molecular chaperone functions of Hsp90. Acta Pharmacol Sin 2006; 27: 694–699.

    Article  CAS  Google Scholar 

  20. Perkins CL, Fang G, Kim CN, Bhalla KN . The role of Apaf-1, caspase-9, and Bid proteins in etoposide-or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 2000; 60: 1645–1653.

    CAS  PubMed  Google Scholar 

  21. King MA . Detection of dead cells and measurement of cell killing by flow cytometry. J Immunol Methods 2000; 243: 155–166.

    Article  CAS  Google Scholar 

  22. Amarante-Mendes G, Kim C, Liu L, Huang Y, Perkins C, Green D et al. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 1998; 91: 1700–1705.

    Article  CAS  Google Scholar 

  23. Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S et al. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 2005; 65: 10536–10544.

    Article  CAS  Google Scholar 

  24. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A et al. Mechanistic role of heat shock protein 70 in Bcr-Abl–mediated resistance to apoptosis in human acute leukemia cells. Blood 2005; 105: 1246–1255.

    Article  CAS  Google Scholar 

  25. Johnson BD, Schumacher RJ, Ross ED, Toft DO . Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 1998; 273: 3679–3686.

    Article  CAS  Google Scholar 

  26. Chen S, Prapapanich V, Rimerman RA, Honore B, Smith DF . Interactions of p60, a mediator of progesterone receptor assembly, with heat shock proteins hsp90 and hsp70. Mol Endocrinol 1996; 10: 682–693.

    CAS  PubMed  Google Scholar 

  27. Drusano GL, Townsend RJ, Walsh TJ, Forrest A, Antal EJ, Standiford HC . Steady-state serum pharmacokinetics of novobiocin and rifampin alone and in combination. Antimicrob Agents Chemother 1986; 30: 42–45.

    Article  CAS  Google Scholar 

  28. Burlison JA, Neckers L, Smith AB, Maxwell A, Blagg BSJ . Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of Hsp90. J Am Chem Soc 2006; 128: 15529–15536.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Kapil Bhalla for kindly providing the HL-60/Bcr-Abl cells and MD Xinjian Lin (University of California, San Diego) for acquiring and eventually distributing the HL-60/Bcr-Abl cells to us. We thank Professor Chunzheng Yang (Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China) for kindly providing the K562/G01 cell line. We also gratefully acknowledge the support of this project by the National Natural Science Foundation of China (30171158 and 30472187) and the Natural Science Foundation of the Fujian Province of China (C992001 and C0610025). This study was supported by grants from the National Natural Science Foundation of China (30171158 and 30472187) and the Natural Science Foundation of Fujian Province of China (C992001 and C0610025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J H Xu or Y Z Chen.

Additional information

The authors have retracted this article. An investigation by Fujian Medical University identified multiple errors in the assembly of the figures, most notably in the duplication of loading controls. All authors agree with this retraction.

About this article

Cite this article

Wu, L., Xu, J., Zhang, K. et al. RETRACTED ARTICLE: Disruption of the Bcr-Abl/Hsp90 protein complex: a possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin. Leukemia 22, 1402–1409 (2008). https://doi.org/10.1038/leu.2008.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.89

Keywords

This article is cited by

Search

Quick links