Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparative expression analysis of isolated human adipocytes and the human adipose cell lines LiSa-2 and PAZ6

Abstract

Objective:

To obtain insight in the extent to which the human cell lines LiSa-2 and PAZ6 resemble isolated primary human adipocytes.

Design:

A combination of cDNA subtraction (representative difference analysis; RDA) and cDNA microarray analysis was used to select adipose specific genes to compare isolated (pre-)adipocytes with (un)differentiated LiSa-2 and PAZ6 cells.

Measurements:

RDA was performed on adipose tissue against lung tissue. A total of 1400 isolated genes were sequenced and cDNA microarray technology was used for further adipose related gene selection. 30 genes that were found to be enriched in adipose tissue were used to compare isolated human adipocytes and LiSa-2 and PAZ6 cells in the differentiated and undifferentiated states.

Results:

RDA and microarray analysis resulted in the identification of adipose enriched genes, but not in adipose specific genes. Of the 30 most differentially expressed genes, as expected, most were related to lipid metabolism. The second category consisted of methyltransferases, DNMT1, DNMT3a, RNMT and SHMT2, of which the expression was differentiation dependent and higher in differentiated adipocytes. Using the 30 adipose expressed genes, it was found that isolated adipocytes on one hand, and PAZ6 and LiSa-2 adipocytes on the other, differ primarily in lipid metabolism. Furthermore, LiSa-2 cells seem to be more similar to isolated adipocytes than PAZ6 cells.

Conclusion:

The LiSa-2 cell line is a good model for differentiated adipocytes, although one should keep in mind that the lipid metabolism in these cells deviates from the in vivo situation Furthermore, our results imply that methylation may have an important function in terminal adipocyte differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Waki H, Tontonoz P . Endocrine functions of adipose tissue. doi:10.1146/annurev.pathol.2.010506.091859. Annu Rev Pathol 2007; 2: 31–56.

    Article  CAS  Google Scholar 

  2. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B et al. Life without white fat: a transgenic mouse. Genes Dev 1998; 12: 3168–3181.

    Article  CAS  Google Scholar 

  3. Reitman ML, Arioglu E, Gavrilova O, Taylor SI . Lipoatrophy revisited. Trends Endocrinol Metab 2000; 11: 410–416.

    Article  CAS  Google Scholar 

  4. Rosen ED, Spiegelman BM . Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444: 847–853.

    Article  CAS  Google Scholar 

  5. Hunt CR, Ro JH, Dobson DE, Min HY, Spiegelman BM . Adipocyte P2 gene: developmental expression and homology of 5′-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci USA 1986; 83: 3786–3790.

    Article  CAS  Google Scholar 

  6. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF . A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270: 26746–26749.

    Article  CAS  Google Scholar 

  7. Zilberfarb V, Pietri-Rouxel F, Jockers R, Krief S, Delouis C, Issad T et al. Human immortalized brown adipocytes express functional beta3-adrenoceptor coupled to lipolysis. J Cell Sci 1997; 110: 801–807.

    CAS  PubMed  Google Scholar 

  8. Zilberfarb V, Siquier K, Strosberg AD, Issad T . Effect of dexamethasone on adipocyte differentiation markers and tumour necrosis factor-alpha expression in human PAZ6 cells. Diabetologia 2001; 44: 377–386.

    Article  CAS  Google Scholar 

  9. Strobel A, Siquier K, Zilberfarb V, Strosberg AD, Issad T . Effect of thiazolidinediones on expression of UCP2 and adipocyte markers in human PAZ6 adipocytes. Diabetologia 1999; 42: 527–533.

    Article  CAS  Google Scholar 

  10. Grosfeld A, Zilberfarb V, Turban S, Andre J, Guerre-Millo M, Issad T . Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia 2002; 45: 527–530.

    Article  CAS  Google Scholar 

  11. Jockers R, Issad T, Zilberfarb V, de Coppet P, Marullo S, Strosberg AD . Desensitization of the beta-adrenergic response in human brown adipocytes. Endocrinology 1998; 139: 2676–2684.

    Article  CAS  Google Scholar 

  12. Brydon L, Petit L, Delagrange P, Strosberg AD, Jockers R . Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology 2001; 142: 4264–4271.

    Article  CAS  Google Scholar 

  13. Wabitsch M, Bruderlein S, Melzner I, Braun M, Mechtersheimer G, Moller P . LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation. Int J Cancer 2000; 88: 889–894.

    Article  CAS  Google Scholar 

  14. Chow WA, Guo S, Valdes-Albini F . Nelfinavir induces liposarcoma apoptosis and cell cycle arrest by upregulating sterol regulatory element binding protein-1. Anticancer Drugs 2006; 17: 891–903.

    Article  CAS  Google Scholar 

  15. Yano S, Arroyo N, Yano N . Catalase binds Grb2 in tumor cells when stimulated with serum or ligands for integrin receptors. Free Radic Biol Med 2004; 36: 1542–1554.

    Article  CAS  Google Scholar 

  16. Lisitsyn N, Wigler M . Cloning the differences between two complex genomes. Science 1993; 259: 946–951.

    Article  CAS  Google Scholar 

  17. van Beek EA, Bakker AH, Kruyt PM, Hofker MH, Saris WH, Keijer J . Intra- and interindividual variation in gene expression in human adipose tissue. Pflugers Arch 2007; 453: 851–861.

    Article  Google Scholar 

  18. Rodbell M . Metabolism of isolated fat cells. I. Effect of hormones on glucose metabolism and lipolysis. J Biol Chem 1964; 239: 375–380.

    CAS  Google Scholar 

  19. Bakker AH, Van Dielen FM, Greve JW, Adam JA, Buurman WA . Preadipocyte number in omental and subcutaneous adipose tissue of obese individuals. Obes Res 2004; 12: 488–498.

    Article  Google Scholar 

  20. Franssen-van Hal NL, Vorst O, Kramer E, Hall RD, Keijer J . Factors influencing cDNA microarray hybridization on silylated glass slides. Anal Biochem 2002; 308: 5–17.

    Article  CAS  Google Scholar 

  21. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW . Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 1996; 93: 10614–10619.

    Article  CAS  Google Scholar 

  22. Pellis L, Franssen-Van Hal NL, Burema J, Keijer J . The intraclass correlation coefficient applied for evaluation of data correction, labeling methods and rectal biopsy sampling in DNA microarray experiments. Physiol Genomics 2003; 21: 21.

    Google Scholar 

  23. Boeuf S, Klingenspor M, Van Hal NLW, Schneider T, Keijer J, KLaus S . Differential gene expression in white and brown preadipocytes. Physiol Genomics 2001; 7: 15–25.

    Article  CAS  Google Scholar 

  24. Beisvag V, Junge FK, Bergum H, Jolsum L, Lydersen S, Gunther CC et al. GeneTools—application for functional annotation and statistical hypothesis testing. BMC Bioinformatics 2006; 7: 470.

    Article  Google Scholar 

  25. Mineo H, Oda C, Chiji H, Kawada T, Shimizu K, Taira T . Thiazolidinediones exhibit different effects on preadipocytes isolated from rat mesenteric fat tissue and cell line 3T3-L1 cells derived from mice. Cell Biol Int 2007; 31: 703–710.

    Article  CAS  Google Scholar 

  26. Payne VA, Au WS, Gray SL, Nora ED, Rahman SM, Sanders R et al. Sequential regulation of DGAT2 expression by C/EBPbeta and C/EBPalpha during adipogenesis. J Biol Chem 2007; 282: 21005–21014.

    Article  CAS  Google Scholar 

  27. Hermann A, Gowher H, Jeltsch A . Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004; 61: 2571–2587.

    Article  CAS  Google Scholar 

  28. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP . DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000; 25: 338–342.

    Article  CAS  Google Scholar 

  29. Pradhan S, Kim GD . The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J 2002; 21: 779–788.

    Article  CAS  Google Scholar 

  30. Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci USA 2004; 101: 4112–4117.

    Article  CAS  Google Scholar 

  31. Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S, Blanc S et al. Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci USA 2007; 104: 10703–10708.

    Article  CAS  Google Scholar 

  32. Wang Y, Zhang P, Li W, Hou L, Wang J, Liang Y et al. Mouse follicular and marginal zone B cells show differential expression of Dnmt3a and sensitivity to 5′-azacytidine. Immunol Lett 2006; 105: 174–179.

    Article  CAS  Google Scholar 

  33. Warnecke PM, Clark SJ . DNA methylation profile of the mouse skeletal alpha-actin promoter during development and differentiation. Mol Cell Biol 1999; 19: 164–172.

    Article  CAS  Google Scholar 

  34. Walsh CP, Bestor TH . Cytosine methylation and mammalian development. Genes Dev 1999; 13: 26–34.

    Article  CAS  Google Scholar 

  35. Plachot C, Lelievre SA . DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium. Exp Cell Res 2004; 298: 122–132.

    Article  CAS  Google Scholar 

  36. Rai K, Nadauld LD, Chidester S, Manos EJ, James SR, Karpf AR et al. Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 2006; 26: 7077–7085.

    Article  CAS  Google Scholar 

  37. Shuman S . Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 1995; 50: 101–129.

    Article  CAS  Google Scholar 

  38. Furuichi Y, Shatkin AJ . Viral and cellular mRNA capping: past and prospects. Adv Virus Res 2000; 55: 135–184.

    Article  CAS  Google Scholar 

  39. Yoshida E, Atkinson TG, Chakravarthy B . Neuroprotective gene expression profiles in ischemic cortical cultures preconditioned with IGF-1 or bFGF. Brain Res Mol Brain Res 2004; 131: 33–50.

    Article  CAS  Google Scholar 

  40. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 2005; 25: 6225–6234.

    Article  CAS  Google Scholar 

  41. Sadowski HB, Wheeler TT, Young DA . Gene expression during 3T3-L1 adipocyte differentiation. Characterization of initial responses to the inducing agents and changes during commitment to differentiation. J Biol Chem 1992; 267: 4722–4731.

    CAS  PubMed  Google Scholar 

  42. Urs S, Smith C, Campbell B, Saxton AM, Taylor J, Zhang B et al. Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J Nutr 2004; 134: 762–770.

    Article  CAS  Google Scholar 

  43. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B . UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 2001; 1504: 82–106.

    Article  CAS  Google Scholar 

  44. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007; 104: 4401–4406.

    Article  CAS  Google Scholar 

  45. Kok EJ, Franssen-van Hal NL, Winnubst LN, Kramer EH, Dijksma WT, Kuiper HA et al. Assessment of representational difference analysis (RDA) to construct informative cDNA microarrays for gene expression analysis of species with limited transcriptome information, using red and green tomatoes as a model. J Plant Physiol 2007; 164: 337–349.

    Article  CAS  Google Scholar 

  46. Zervos EE, Tanner SM, Osborne DA, Bloomston M, Rosemurgy AS, Ellison EC et al. Differential gene expression in patients genetically predisposed to pancreatic cancer. J Surg Res 2006; 135: 317–322.

    Article  CAS  Google Scholar 

  47. Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU et al. Database resources of the National Center for Biotechnology. Nucleic Acids Res 2003; 31: 28–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Dr D Strossberg for providing the PAZ6 cell line and Professor Dr P Möller for providing the LiSa-2 cell line. The research reported in this paper was supported by the ZonMW program Diet and Chronic diseases (VCZ 980-10-012) and by the Ministry of Agriculture, Nature Management and Food Quality (803-71-54701)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Keijer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beek, E., Bakker, A., Kruyt, P. et al. Comparative expression analysis of isolated human adipocytes and the human adipose cell lines LiSa-2 and PAZ6. Int J Obes 32, 912–921 (2008). https://doi.org/10.1038/ijo.2008.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.10

Keywords

This article is cited by

Search

Quick links