Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A cathepsin-cleavage site between the adenovirus capsid protein IX and a tumor-targeting ligand improves targeted transduction

Abstract

Human adenoviruses have a great potential as anticancer agents. One strategy to improve their tumor-cell specificity and anti-tumor efficacy is to include tumor-specific targeting ligands in the viral capsid. This can be achieved by fusion of polypeptide-targeting ligands with the minor capsid protein IX. Previous research suggested that protein IX-mediated targeting is limited by inefficient release of protein IX-fused ligands from their cognate receptors in the endosome. This thwarts endosomal escape of the virus particles. Here we describe that the targeted transduction of tumor cells is augmented by a cathepsin-cleavage site between the protein IX anchor and the HER2/neu-binding ZH Affibody molecule as ligand. The cathepsin-cleavage site did not interfere with virus production and incorporation of the Affibody molecules in the virus capsid. Virus particles harboring the cleavable protein IX–ligand fusion in their capsid transduced the HER2/neu-positive SKOV-3 ovarian carcinoma cells with increased efficiency in monolayer cultures, three-dimensional spheroid cultures and in SKOV-3 tumors grown on the chorioallantoic membrane of embryonated chicken eggs. These data show that inclusion of a cathepsin-cleavage sequence between protein IX and a high-affinity targeting ligand enhances targeted transduction. This modification further augments the applicability of protein IX as an anchor for coupling tumor-targeting ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de Vrij J, Willemsen RA, Lindholm L, Hoeben RC, Bangma CH, Barber C et al. Adenovirus-derived vectors for prostate cancer gene therapy. Hum Gene Ther 2010; 21: 795–805.

    Article  CAS  PubMed  Google Scholar 

  2. Li D, Duan L, Freimuth P, O’Malley Jr BW . Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res 1999; 5: 4175–4181.

    CAS  PubMed  Google Scholar 

  3. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R . The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–2373.

    Article  CAS  PubMed  Google Scholar 

  4. Bachtarzi H, Stevenson M, Fisher K . Cancer gene therapy with targeted adenoviruses. Expert Opin Drug Deliv 2008; 5: 1231–1240.

    Article  CAS  PubMed  Google Scholar 

  5. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vellinga J, Rabelink MJ, Cramer SJ, van den Wollenberg DJ, Van der Meulen H, Leppard KN et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004; 78: 3470–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vellinga J, van den Wollenberg DJ, van der Heijdt S, Rabelink MJ, Hoeben RC . The coiled-coil domain of the adenovirus type 5 protein IX is dispensable for capsid incorporation and thermostability. J Virol 2005; 79: 3206–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vellinga J, de Vrij J, Myhre S, Uil T, Martineau P, Lindholm L et al. Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid. Gene Therapy 2007; 14: 664–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Vrij J, Uil TG, van den Hengel SK, Cramer SJ, Koppers-Lalic D, Verweij MC et al. Adenovirus targeting to HLA-A1/MAGE-A1-positive tumor cells by fusing a single-chain T-cell receptor with minor capsid protein IX. Gene Therapy 2008; 15: 978–989.

    Article  CAS  PubMed  Google Scholar 

  10. Tang Y, Wu H, Ugai H, Matthews QL, Curiel DT . Derivation of a triple mosaic adenovirus for cancer gene therapy. PLoS One 2009; 4: e8526.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Campos SK, Barry MA . Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting. Virology 2006; 349: 453–462.

    Article  CAS  PubMed  Google Scholar 

  12. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  13. Nemerow GR, Stewart PL . Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 1999; 63: 725–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  15. Sussenbach JS . Early events in the infection process of adenovirus type 5 in HeLa cells. Virology 1967; 33: 567–574.

    Article  CAS  PubMed  Google Scholar 

  16. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  17. Kirschke H, Barrett AJ, Rawlings ND . Proteinases 1: lysosomal cysteine proteinases. Protein Profile 1995; 2: 1581–1643.

    CAS  PubMed  Google Scholar 

  18. Wikman M, Steffen AC, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J et al. Selection and characterization of HER2/neu-binding Affibody ligands. Protein Eng Des Sel 2004; 17: 455–462.

    Article  CAS  PubMed  Google Scholar 

  19. Wang SC, Hung MC . HER2 overexpression and cancer targeting. Semin Oncol 2001; 28: 115–124.

    Article  CAS  PubMed  Google Scholar 

  20. Magnusson MK, Henning P, Myhre S, Wikman M, Uil TG, Friedman M et al. Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther 2007; 14: 468–479.

    Article  CAS  PubMed  Google Scholar 

  21. Ono HA, Le LP, Davydova JG, Gavrikova T, Yamamoto M . Noninvasive visualization of adenovirus replication with a fluorescent reporter in the E3 region. Cancer Res 2005; 65: 10154–10158.

    Article  CAS  PubMed  Google Scholar 

  22. Corjon S, Wortmann A, Engler T, van Rooijen N, Kochanek S, Kreppel F . Targeting of adenovirus vectors to the LRP receptor family with the high-affinity ligand RAP via combined genetic and chemical modification of the pIX capsomere. Mol Ther 2008; 16: 1813–1824.

    Article  CAS  PubMed  Google Scholar 

  23. Ebert DH, Deussing J, Peters C, Dermody TS . Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J Biol Chem 2002; 277: 24609–24617.

    Article  CAS  PubMed  Google Scholar 

  24. Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J . Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 2006; 80: 4174–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diederich S, Moll M, Klenk HD, Maisner A . The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 2005; 280: 29899–29903.

    Article  CAS  PubMed  Google Scholar 

  26. DeNardo GL, DeNardo SJ . Evaluation of a cathepsin-cleavable peptide linked radioimmunoconjugate of a panadenocarcinoma MAb, m170, in mice and patients. Cancer Biother Radiopharm 2004; 19: 85–92.

    Article  CAS  PubMed  Google Scholar 

  27. Barrett AJ, Kirschke H . Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol 1981; 80: 535–561.

    Article  CAS  PubMed  Google Scholar 

  28. Aronson Jr NN, Barrett AJ . The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase mechanism. Biochem J 1978; 171: 759–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maciewicz RA, Etherington DJ, Kos J, Turk V . Collagenolytic cathepsins of rabbit spleen: a kinetic analysis of collagen degradation and inhibition by chicken cystatin. Coll Relat Res 1987; 7: 295–304.

    Article  CAS  PubMed  Google Scholar 

  30. Mason RW . Interaction of lysosomal cysteine proteinases with alpha 2-macroglobulin: conclusive evidence for the endopeptidase activities of cathepsins B and H. Arch Biochem Biophys 1989; 273: 367–374.

    Article  CAS  PubMed  Google Scholar 

  31. Gocheva V, Joyce JA . Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007; 6: 60–64.

    Article  CAS  PubMed  Google Scholar 

  32. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10: R130.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 2004; 101: 6062–6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 2001; 61: 7388–7393.

    CAS  PubMed  Google Scholar 

  35. Pesonen S, Kangasniemi L, Hemminki A . Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharmacol 2011; 8: 12–28.

    Article  CAS  Google Scholar 

  36. Yan W, Kitzes G, Dormishian F, Hawkins L, Sampson-Johannes A, Watanabe J et al. Developing novel oncolytic adenoviruses through bioselection. J Virol 2003; 77: 2640–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gros A, Martinez-Quintanilla J, Puig C, Guedan S, Mollevi DG, Alemany R et al. Bioselection of a gain of function mutation that enhances adenovirus 5 release and improves its antitumoral potency. Cancer Res 2008; 68: 8928–8937.

    Article  CAS  PubMed  Google Scholar 

  38. Kuhn I, Harden P, Bauzon M, Chartier C, Nye J, Thorne S et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS One 2008; 3: e2409.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Uil TG, Vellinga J, de Vrij J, van den Hengel SK, Rabelink MJ, Cramer SJ et al. Directed adenovirus evolution using engineered mutator viral polymerases. Nucleic Acids Res 2010; 39: e30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996; 7: 215–222.

    Article  CAS  PubMed  Google Scholar 

  41. Vellinga J, Uil TG, de Vrij J, Rabelink MJ, Lindholm L, Hoeben RC . A system for efficient generation of adenovirus protein IX-producing helper cell lines. J Gene Med 2006; 8: 147–154.

    Article  CAS  PubMed  Google Scholar 

  42. de Vrij J, van den Hengel SK, Uil TG, Koppers-Lalic D, Dautzenberg IJ, Stassen OM et al. Enhanced transduction of CAR-negative cells by protein IX-gene deleted adenovirus 5 vectors. Virology 2010; 410: 192–200.

    Article  PubMed  Google Scholar 

  43. Murakami P, McCaman MT . Quantitation of adenovirus DNA and virus particles with the PicoGreen fluorescent dye. Anal Biochem 1999; 274: 283–288.

    Article  CAS  PubMed  Google Scholar 

  44. Caravokyri C, Leppard KN . Constitutive episomal expression of polypeptide IX (pIX) in a 293-based cell line complements the deficiency of pIX mutant adenovirus type 5. J Virol 1995; 69: 6627–6633.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. DeNardo GL, DeNardo SJ, Peterson JJ, Miers LA, Lam KS, Hartmann-Siantar C et al. Preclinical evaluation of cathepsin-degradable peptide linkers for radioimmunoconjugates. Clin Cancer Res 2003; 9: 3865S–3872S.

    CAS  PubMed  Google Scholar 

  46. Uil TG, de Vrij J, Vellinga J, Rabelink MJ, Cramer SJ, Chan OY et al. A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 2009; 11: 990–1004.

    Article  CAS  PubMed  Google Scholar 

  47. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT . Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996; 14: 1574–1578.

    Article  CAS  PubMed  Google Scholar 

  48. Durupt F, Koppers-Lalic D, Balme B, Budel L, Terrier O, Lina B et al. The chicken chorioallantoic membrane tumor assay as model for qualitative testing of oncolytic adenoviruses. Cancer Gene Ther 2011; doi:10.1038/cgt.2011.68.

Download references

Acknowledgements

We thank Masato Yamamoto (Department of Surgery, University of Minnesota, MN, USA) for providing us with the plasmid pShuttle-ΔE3-ADP-EGFP-F2. In addition, Ivo Que (Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands) is gratefully acknowledged for precious technical assistance in the biofluorescence experiments. This work was supported by the European Union through the 6th Framework Program GIANT (Contract No. 512087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C Hoeben.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vrij, J., Dautzenberg, I., van den Hengel, S. et al. A cathepsin-cleavage site between the adenovirus capsid protein IX and a tumor-targeting ligand improves targeted transduction. Gene Ther 19, 899–906 (2012). https://doi.org/10.1038/gt.2011.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.162

Keywords

Search

Quick links