Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A combinatorial approach for targeted delivery using small molecules and reversible masking to bypass nonspecific uptake in vivo

Abstract

We have developed a multi-disciplinary approach combining molecular biology, delivery technology, combinatorial chemistry and reversible masking to create improved systemic, targeted delivery of plasmid DNA while avoiding nonspecific uptake in vivo. We initially used a well-characterized model targeting the asialolglycoprotein receptor in the liver. Using our bilamellar invaginated vesicle (BIV) liposomal delivery system with reversible masking, we increased expression in the liver by 76-fold, nearly equaling expression in first-pass organs using non-targeted complexes, with no expression in other organs. The same technology was then applied to efficiently target delivery to a human tumor microenvironment model. We achieved efficient, targeted delivery by attachment of specific targeting ligands to the surface of our BIV complexes in conjunction with reversible masking to bypass nonspecific tissues and organs. We identified ligands that target a human tumor microenvironment created in vitro by co-culturing primary human endothelial cells with human lung or pancreatic cancer cells. The model was confirmed by increased expression of tumor endothelial phenotypes including CD31 and vascular endothelial growth factor-A, and prolonged survival of endothelial capillary-like structures. The co-cultures were used for high-throughput screening of a specialized small molecule library to identify ligands specific for human tumor-associated endothelial cells in vitro. We identified small molecules that enhanced the transfection efficiency of tumor-associated endothelial cells, but not normal human endothelial cells or cancer cells. Intravenous (i.v.) injection of our targeted, reversibly masked complexes into mice, bearing human pancreatic tumor and endothelial cells, specifically increased transfection to this tumor microenvironment approximately 200-fold. Efficacy studies using our optimized targeted delivery of a plasmid encoding thrombospondin-1 eliminated tumors completely after five i.v. injections administered once every week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Folkman J, Kalluri R . Cancer without disease. Nature 2004; 427: 787.

    Article  CAS  PubMed  Google Scholar 

  2. Tandle A, Blazer III DG, Libutti SK . Antiangiogenic gene therapy of cancer: recent developments. J Transl Med 2004; 2: 22.

    Article  PubMed  Google Scholar 

  3. Ferrara N, Hillan KJ, Gerber HP, Novotny W . Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391–400.

    Article  CAS  PubMed  Google Scholar 

  4. Faivre S, Demetri G, Sargent W, Raymond E . Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 2007; 6: 734–745.

    Article  CAS  PubMed  Google Scholar 

  5. Eskens FA, Verweij J . The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 2006; 42: 3127–3139.

    Article  CAS  PubMed  Google Scholar 

  6. Verheul HM, Pinedo HM . Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 2007; 7: 475–485.

    Article  CAS  Google Scholar 

  7. Kerbel RS . Tumor angiogenesis. N Engl J Med 2008; 358: 2039–2049.

    Article  CAS  PubMed  Google Scholar 

  8. Siemann DW, Chaplin DJ, Horsman MR . Vascular-targeting therapies for treatment of malignant disease. Cancer 2004; 100: 2491–2499.

    Article  CAS  Google Scholar 

  9. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 2007; 21: 1546–1558.

    Article  CAS  PubMed  Google Scholar 

  10. Templeton NS, (eds). Gene and Cell Therapy: Therapeutic Mechanisms and Strategies. 3rd edn. CRC Press, Taylor & Francis Group: Boca Raton, FL, 2008.

    Book  Google Scholar 

  11. Ramesh R, Saeki T, Templeton NS, Ji L, Stephens LC, Ito I et al. Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 2001; 3: 337–350.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Xu J, Lawler J, Terwilliger E, Parangi S . Adeno-associated virus-mediated antiangiogenic gene therapy with thrombospondin-1 type 1 repeats and endostatin. Clin Cancer Res 2007; 13: 3968–3976.

    Article  CAS  PubMed  Google Scholar 

  13. Xu M, Kumar D, Stass SA, Mixson AJ . Gene therapy with p53 and a fragment of thrombospondin I inhibits human breast cancer in vivo. Mol Genet Metab 1998; 63: 103–109.

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Ballian N, Belaguli NS, Patel S, Li M, Templeton NS et al. PDX-1 acts as a potential molecular target for treatment of human pancreatic cancer. Pancreas 2008; 37: 210–220.

    Article  PubMed  Google Scholar 

  15. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN . Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 1997; 15: 647–652.

    Article  CAS  PubMed  Google Scholar 

  16. Tirone TA, Fagan SP, Templeton NS, Wang X, Brunicardi FC . Insulinoma-induced hypoglycemic death in mice is prevented with beta cell-specific gene therapy. Ann Surg 2001; 233: 603–611.

    Article  CAS  PubMed  Google Scholar 

  17. Shi HY, Liang R, Templeton NS, Zhang M . Inhibition of breast tumor progression by systemic delivery of the maspin gene in a syngeneic tumor model. Mol Ther 2002; 5: 755–761.

    Article  CAS  PubMed  Google Scholar 

  18. Yotnda P, Davis AR, Hicks MJ, Templeton NS, Brenner MK . Liposomal enhancement of the antitumor activity of conditionally replication-competent adenoviral plasmids. Mol Ther 2004; 9: 489–495.

    Article  CAS  PubMed  Google Scholar 

  19. Park C, Burgess K . Facile macrocyclizations to beta-turn mimics with diverse structural, physical, and conformational properties. J Comb Chem 2001; 3: 257–266.

    Article  CAS  PubMed  Google Scholar 

  20. Reyes S, Pattarawarapan M, Roy S, Burgess K . Preferred secondary structures as a possible driving force for macrocyclization. Tetrahedron 2000; 56: 9809–9818.

    Article  CAS  Google Scholar 

  21. Burgess K . Solid-phase syntheses of beta-turn analogues to mimic or disrupt protein-protein interactions. Acc Chem Res 2001; 34: 826–835.

    Article  CAS  PubMed  Google Scholar 

  22. Bruno MA, Clarke PB, Seltzer A, Quirion R, Burgess K, Cuello AC et al. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J Neurosci 2004; 24: 8009–8018.

    Article  CAS  PubMed  Google Scholar 

  23. Schroeder U, Graff A, Buchmeier S, Rigler P, Silvan U, Tropel D et al. Peptide nanoparticles serve as a powerful platform for the immunogenic display of poorly antigenic actin determinants. J Mol Biol 2009; 386: 1368–1381.

    Article  CAS  PubMed  Google Scholar 

  24. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E et al. Genes expressed in human tumor endothelium. Science 2000; 289: 1197–1202.

    Article  CAS  PubMed  Google Scholar 

  25. Folberg R, Maniotis AJ . Vasculogenic mimicry. APMIS 2004; 112: 508–525.

    Article  PubMed  Google Scholar 

  26. Hendrix MJ, Seftor EA, Kirschmann DA, Quaranta V, Seftor RE . Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann NY Acad Sci 2003; 995: 151–161.

    Article  CAS  PubMed  Google Scholar 

  27. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS . Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res 1994; 54: 6504–6511.

    CAS  PubMed  Google Scholar 

  28. Isenberg JS, Hyodo F, Ridnour LA, Shannon CS, Wink DA, Krishna MC et al. Thrombospondin 1 and vasoactive agents indirectly alter tumor blood flow. Neoplasia 2008; 10: 886–896.

    Article  CAS  PubMed  Google Scholar 

  29. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD . Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 2009; 9: 182–194.

    Article  CAS  PubMed  Google Scholar 

  30. Lee CH, Wu CL, Shiau AL . Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model. Cancer Gene Ther 2005; 12: 175–184.

    Article  CAS  PubMed  Google Scholar 

  31. Xu M, Chen QR, Kumar D, Stass SA, Mixson AJ . In vivo gene therapy with a cationic polymer markedly enhances the antitumor activity of antiangiogenic genes. Mol Genet Metab 1998; 64: 193–197.

    Article  CAS  PubMed  Google Scholar 

  32. Liu P, Wang Y, Li YH, Yang C, Zhou YL, Li B et al. Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leuk Res 2003; 27: 701–708.

    Article  CAS  PubMed  Google Scholar 

  33. Allport JR, Weissleder R . Murine Lewis lung carcinoma-derived endothelium expresses markers of endothelial activation and requires tumor-specific extracellular matrix in vitro. Neoplasia 2003; 5: 205–217.

    Article  PubMed  Google Scholar 

  34. Ria R, Vacca A, Russo F, Cirulli T, Massaia M, Tosi P et al. A VEGF-dependent autocrine loop mediates proliferation and capillarogenesis in bone marrow endothelial cells of patients with multiple myeloma. Thromb Haemost 2004; 92: 1438–1445.

    Article  CAS  PubMed  Google Scholar 

  35. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  Google Scholar 

  36. Cai J, Ahmad S, Jiang WG, Huang J, Kontos CD, Boulton M et al. Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes 2003; 52: 2959–2968.

    Article  CAS  PubMed  Google Scholar 

  37. Angell Y, Chen D, Brahimi F, Saragovi HU, Burgess K . A combinatorial method for solution-phase synthesis of labeled bivalent beta-turn mimics. J Am Chem Soc 2008; 130: 556–565.

    Article  CAS  PubMed  Google Scholar 

  38. Maliartchouk S, Feng Y, Ivanisevic L, Debeir T, Cuello AC, Burgess K et al. A designed peptidomimetic agonistic ligand of TrkA nerve growth factor receptors. Mol Pharmacol 2000; 57: 385–391.

    CAS  PubMed  Google Scholar 

  39. Yotnda P, Chen DH, Chiu W, Piedra PA, Davis A, Templeton NS et al. Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther 2002; 5: 233–241.

    Article  CAS  PubMed  Google Scholar 

  40. Nanda A, St Croix B . Tumor endothelial markers: new targets for cancer therapy. Curr Opin Oncol 2004; 16: 44–49.

    Article  CAS  PubMed  Google Scholar 

  41. Madden SL, Cook BP, Nacht M, Weber WD, Callahan MR, Jiang Y et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 2004; 165: 601–608.

    Article  CAS  PubMed  Google Scholar 

  42. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B . Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 2001; 61: 6649–6655.

    CAS  PubMed  Google Scholar 

  43. Neri D, Bicknell R . Tumour vascular targeting. Nat Rev Cancer 2005; 5: 436–446.

    Article  CAS  PubMed  Google Scholar 

  44. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004; 429: 629–635.

    Article  CAS  PubMed  Google Scholar 

  45. Thorpe PE . Vascular targeting agents as cancer therapeutics. Clin Cancer Res 2004; 10: 415–427.

    Article  PubMed  Google Scholar 

  46. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–380.

    Article  CAS  PubMed  Google Scholar 

  47. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000; 60: 722–727.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol 2002; 12: 105–112.

    Article  CAS  PubMed  Google Scholar 

  49. Repits J, Sterjovski J, Badia-Martinez D, Mild M, Gray L, Churchill MJ et al. Primary HIV-1 R5 isolates from end-stage disease display enhanced viral fitness in parallel with increased gp120 net charge. Virology 2008; 379: 125–134.

    Article  CAS  PubMed  Google Scholar 

  50. Cilliers T, Nhlapo J, Coetzer M, Orlovic D, Ketas T, Olson WC et al. The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C. J Virol 2003; 77: 4449–4456.

    Article  CAS  PubMed  Google Scholar 

  51. Lee E, Hall RA, Lobigs M . Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol 2004; 78: 8271–8280.

    Article  CAS  PubMed  Google Scholar 

  52. Markoff L, Falgout B, Chang A . A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 1997; 233: 105–117.

    Article  CAS  PubMed  Google Scholar 

  53. Reeves JD, Schulz TF . The CD4-independent tropism of human immunodeficiency virus type 2 involves several regions of the envelope protein and correlates with a reduced activation threshold for envelope-mediated fusion. J Virol 1997; 71: 1453–1465.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Andeweg AC, Boers PH, Osterhaus AD, Bosch ML . Impact of natural sequence variation in the V2 region of the envelope protein of human immunodeficiency virus type 1 on syncytium induction: a mutational analysis. J Gen Virol 1995; 76 (Part 8): 1901–1907.

    Article  CAS  PubMed  Google Scholar 

  55. Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K et al. Spheroid-based engineering of a human vasculature in mice. Nat Methods 2008; 5: 439–445.

    Article  CAS  PubMed  Google Scholar 

  56. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998; 101: 1401–1413.

    Article  CAS  PubMed  Google Scholar 

  57. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R et al. Tumor regression by targeted gene delivery to the neovasculature. Science 2002; 296: 2404–2407.

    Article  CAS  PubMed  Google Scholar 

  58. Tseng JC, Granot T, Digiacomo V, Levin B, Meruelo D . Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther 2010; 17: 244–255.

    Article  CAS  PubMed  Google Scholar 

  59. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D et al. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc Natl Acad Sci USA 2009; 106: 44–49.

    Article  CAS  PubMed  Google Scholar 

  60. Nicol CG, Denby L, Lopez-Franco O, Masson R, Halliday CA, Nicklin SA et al. Use of in vivo phage display to engineer novel adenoviruses for targeted delivery to the cardiac vasculature. FEBS Lett 2009; 583: 2100–2107.

    Article  CAS  Google Scholar 

  61. Popkov M, Jendreyko N, McGavern DB, Rader C, Barbas CF . Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res 2005; 65: 972–981.

    CAS  Google Scholar 

  62. Hesse A, Kosmides D, Kontermann RE, Nettelbeck DM . Tropism modification of adenovirus vectors by peptide ligand insertion into various positions of the adenovirus serotype 41 short-fiber knob domain. J Virol 2007; 81: 2688–2699.

    Article  CAS  Google Scholar 

  63. Tan PH, Manunta M, Ardjomand N, Xue SA, Larkin DF, Haskard DO et al. Antibody targeted gene transfer to endothelium. J Gene Med 2003; 5: 311–323.

    Article  CAS  Google Scholar 

  64. Driessen WH, Fujii N, Tamamura H, Sullivan SM . Development of peptide-targeted lipoplexes to CXCR4-expressing rat glioma cells and rat proliferating endothelial cells. Mol Ther 2008; 16: 516–524.

    Article  CAS  Google Scholar 

  65. Hida K, Hida Y, Shindoh M . Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci 2008; 99: 459–466.

    Article  CAS  PubMed  Google Scholar 

  66. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335–2342.

    Article  CAS  Google Scholar 

  67. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004; 64: 8249–8255.

    Article  CAS  PubMed  Google Scholar 

  68. Ma X, Ottino P, Bazan HE, Bazan NG . Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells. Invest Ophthalmol Vis Sci 2004; 45: 2915–2921.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank GeneExcel, Inc. (now part of Gradalis, Inc.), the National Institutes of Health (MH070040, GM076261), the Intramural Research Program of the NIH, NCI, Center for Cancer Research, and the Robert A Welch Foundation for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Templeton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Q., Nguyen, A., Angell, Y. et al. A combinatorial approach for targeted delivery using small molecules and reversible masking to bypass nonspecific uptake in vivo. Gene Ther 17, 1085–1097 (2010). https://doi.org/10.1038/gt.2010.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.55

Keywords

This article is cited by

Search

Quick links