Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of a microsatellite in FASL to type II diabetes and of the FAS-670G>A genotype to insulin resistance

Abstract

Type II diabetes is caused by a failure of the pancreatic β-cells to compensate for insulin resistance leading to hyperglycaemia. There is evidence for an essential role of an increased β-cell apoptosis in type II diabetes. High glucose concentrations induce IL-1β production in human β-cells, Fas expression and concomitant apoptosis owing to a constitutive expression of FasL. FASL and FAS map to loci linked to type II diabetes and estimates of insulin resistance, respectively. We have tested two functional promoter polymorphisms, FAS-670 G>A and FASL-844C>T as well as a microsatellite in the 3′ UTR of FASL for association to type II diabetes in 549 type II diabetic patients and 525 normal-glucose-tolerant (NGT) control subjects. Furthermore, we have tested these polymorphisms for association to estimates of β-cell function and insulin resistance in NGT subjects. We found significant association to type II diabetes for the allele distribution of the FASL microsatellite (P-value 0.02, Bonferroni corrected). The FAS-670G>A was associated with homeostasis model assessment insulin resistance index and body mass index (P-values 0.02 and 0.02). We conclude that polymorphisms of FASL and FAS associate with type II diabetes and estimates of insulin resistance in Danish white subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

AP-1:

activation protein-1

ASK-1:

apoptosis signal-regulating kinase 1

BMI:

body mass index

DISC:

death-inducing signalling complex

EBPβ:

enhancer-binding protein beta element

FLIP:

FLICE (caspase-8) inhibitory protein

HOMA:

homeostasis model assessment

IR1:

fasting-insulin/fasting-glucose ratio

IRS-1:

insulin receptor substrate 1

JNK:

c-Jun N-terminal kinase

MAPK:

mitogen-activated protein kinase

NGT:

normal-glucose-tolerant

OGTT:

oral glucose tolerance test

STAT:

signal transducer and activator of transcription

References

  1. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU . Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Syn Pathol Res 1985; 4 (2): 110–125.

    CAS  Google Scholar 

  2. Rich SS . Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 1990; 39 (11): 1315–1319.

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh S, Hauser ER, Magnuson VL, Valle T, Ally DS, Karanjawala ZE et al. A large sample of Finnish diabetic sib-pairs reveals no evidence for a non-insulin-dependent diabetes mellitus susceptibility locus at 2qter. J Clin Invest 1998; 102 (4): 704–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Poulsen P, Ohm Kyvik K, Vaag A, Beck-Nielsen H . Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia 1999; 42 (2): 139–145.

    Article  CAS  PubMed  Google Scholar 

  5. Andersen G, Hansen T, Pedersen O . Genetics of common forms of glycaemia with pathological impact on vascular biology: are we on the right tract? Curr Mol Med 2005; 5 (3): 261–274.

    Article  CAS  PubMed  Google Scholar 

  6. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC . Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52 (1): 102–110.

    Article  CAS  PubMed  Google Scholar 

  7. Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S . Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia 2002; 45 (1): 85–96.

    Article  CAS  PubMed  Google Scholar 

  8. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003; 52 (3): 812–817.

    Article  CAS  PubMed  Google Scholar 

  9. Maedler K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A et al. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 2001; 50 (8): 1683–1690.

    Article  CAS  PubMed  Google Scholar 

  10. Loweth AC, Williams GT, James RFL, Scarpello JHB, Morgan NG . Human islets of Langerhans express fas ligand and undergo apoptosis in response to interleukin-1β and fas ligation. Diabetes 1998; 47 (5): 727–732.

    Article  CAS  PubMed  Google Scholar 

  11. Wiltshire S, Hattersley AT, Hitman GA, Walker M, Levy JC, Sampson M et al. A genomewide scan for loci predisposing to type 2 diabetes in a UK population (The diabetes UK Warren 2 repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet 2001; 69 (3): 553–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghosh S, Watanabe RM, Valle TT, Hauser ER, Magnuson VL, Langefeld CD et al. The Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet 2000; 67 (5): 1174–1185.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X . Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999; 15: 269–290.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen GM . Caspases: the executioners of apoptosis. Biochem J 1997; 326 (Part 1): 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maedler K, Fontana A, Ris F, Sergeev P, Toso C, Oberholzer J et al. FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA 2002; 99 (12): 8236–8241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nolsoe RL, Kristiansen OP, Sangthongpitag K, Larsen ZM, Johannesen J, Karlsen AE et al. Complete molecular scanning of the human Fas gene: mutational analysis and linkage studies in families with type I diabetes mellitus. Diabetologia 2000; 43 (6): 800–808.

    Article  CAS  PubMed  Google Scholar 

  17. Nolsoe RL, Kristiansen OP, Larsen ZM, Johannesen J, Pociot F, Mandrup-Poulsen T . Complete mutation scan of the human Fas ligand gene: linkage studies in type I diabetes mellitus families. Diabetologia 2002; 45 (1): 134–139.

    Article  CAS  PubMed  Google Scholar 

  18. Nolsoe RL, Kelly JA, Pociot F, Moser KL, Kristiansen OP, Mandrup-Poulsen T et al. Functional promoter haplotypes of the human FAS gene are associated with the phenotype of SLE characterized by thrombocytopenia. Genes Immun 2005; 6 (8): 699–706.

    Article  CAS  PubMed  Google Scholar 

  19. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110 (6): 851–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun T, Zhou Y, Li H, Han X, Shi Y, Wang L et al. FASL-844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer. J Exp Med 2005; 202 (7): 967–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC et al. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol 2003; 170 (1): 132–138.

    Article  CAS  PubMed  Google Scholar 

  22. Welsh N, Cnop M, Kharroubi I, Bugliani M, Lupi R, Marchetti P et al. Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes 2005; 54 (11): 3238–3244.

    Article  CAS  PubMed  Google Scholar 

  23. Wajant H, Pfizenmaier K, Scheurich P . Non-apoptotic Fas signaling. Cytokine Growth Factor Rev 2003; 14 (1): 53–66.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneto H . The JNK pathways as a therapeutic target for diabetes. Expert Opin Ther Targets 2005; 9 (3): 581–592.

    Article  CAS  PubMed  Google Scholar 

  25. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420 (6913): 333–336.

    Article  CAS  PubMed  Google Scholar 

  26. Lee YH, Giraud J, Davis RJ, White MF . c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 2003; 278 (5): 2896–2902.

    Article  CAS  PubMed  Google Scholar 

  27. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 2004; 10 (10): 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  28. Hanson RL, Ehm MG, Pettitt DJ, Prochazka M, Thompson DB, Timberlake D et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet 1998; 63 (4): 1130–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elbein SC, Hoffman MD, Teng K, Leppert MF, Hasstedt SJ . A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes 1999; 48 (5): 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  30. Vionnet N, Hani EH, Dupont S, Gallina S, Francke S, Dotte S et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am J Hum Genet 2000; 67 (6): 1470–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drivsholm T, Ibsen H, Schroll M, Davidsen M, Borch-Johnsen K . Increasing prevalence of diabetes mellitus and impaired glucose tolerance among 60-year-old Danes. Diabetic Med 2001; 18 (2): 126–132.

    Article  CAS  PubMed  Google Scholar 

  32. WHO Study Group. Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. World Health Organization: Geneva, 1999 Ref Type: Pamphlet.

  33. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28 (7): 412–419.

    Article  CAS  PubMed  Google Scholar 

  34. Kosaka K, Hagura R, Kuzuya T, Kuzuya N . Insulin secretory response of diabetics during the period of improvement of glucose tolerance to normal range. Diabetologia 1974; 10 (6): 775–782.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marja Deckert, Anette Hellgren, Annemette Forman, Lene Aabo, Marianne Stendal and Inge Lise Wantzin for dedicated and careful technical assistance and Karen Rahbek Kruse and Grete Lademann for secretarial support. The study was supported by grants from the Danish Medical Research Council, the Danish Diabetes Association and the European Union (EUGENE2, LSHM-CT-2004-512013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Mandrup-Poulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolsøe, R., Hamid, Y., Pociot, F. et al. Association of a microsatellite in FASL to type II diabetes and of the FAS-670G>A genotype to insulin resistance. Genes Immun 7, 316–321 (2006). https://doi.org/10.1038/sj.gene.6364300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364300

Keywords

This article is cited by

Search

Quick links