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The pathogenesis of
diabetic retinopathy:
old concepts and new
questions

Abstract

Hyperglycaemia appears to be a critical
factor in the aetiology of diabetic retinopathy
and initiates downstream events including:
basement membrane thickening, pericyte
drop out and retinal capillary non-perfusion.
More recently, focus has been directed to the
molecular basis of the disease process in
diabetic retinopathy. Of particular
importance in the development and
progression of diabetic retinopathy is the
role of growth factors (eg vascular
endothelial growth factor, placenta growth
factor and pigment epithelium-derived
factor) together with specific receptors and
obligate components of the signal
transduction pathway needed to support
them. Despite these advances there are still a
number of important questions that remain
to be answered before we can confidently
target pathological signals. How does
hyperglycaemia regulate retinal vessels?
Which growth factors are most important
and at what stage of retinopathy do they
operate? What is the preferred point in the
growth factor signalling cascade for
therapeutic intervention? Answers to these
questions will provide the basis for new
therapeutic interventions in a debilitating
ocular condition.
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Diabetic retinopathy, a major cause of
blindness in developed countries, is
characterised by hyperglycaemia, basement
membrane thickening, pericyte loss,

J Cai and M Boulton

microaneurysms, IRMA and preretinal
neovascularisation which can eventually lead
to blindness through haemorrhage and
tractional retinal detachment. Since it was first
described in 1977' there has been much debate
about the initiating factor(s) in diabetic
retinopathy with lack of glucose control
considered of major importance. This review
aims to consider the role of hyperglycaemia in
retinopathy and how this contributes to a
change in the balance of regulators of the
retinal vasculature.

Can glucose control in patients with
diabetes prevent the onset of retinopathy?

The answer appears to be ‘yes’ from three
hallmark trials undertaken on different
continents: the Diabetes Control and
Complications Trial (DCCT) undertaken in the
USA in 19932 the United Kingdom
Prospective Diabetes Study (UKPDS) in 1998°
and a Japanese trial.* DCCT highlighted that
intensive glycaemic control can prevent or
delay the development or progress of diabetic
retinopathy by 76% in patients with type 1
diabetes within a primary prevention group
over an average of 6.5 years. The UKPDS
came to a similar conclusion when assessing
glucose control and disease progression in
patients with type 2 diabetes which supported
the observations from the Japanese study.*
These trials demonstrated that blood glucose
levels of diabetic patients at the first doctors
visit indicated the outcome of their
retinopathy and that glucose control early in
the condition is probably vital to prevent or
delay the onset of retinopathy.

How does hyperglycaemia regulate the
progression of retinopathy?

Hyperglycaemia is associated with a variety of
biological events identified in the progression



of diabetic retinopathy (eg glucose transport, basement
membrane thickening, pericyte loss, blood
characteristics). Animal models such as the
streptozotocin rat suggest that long-term
hyperglycaemia is necessary to elicit changes to the
retinal vasculature.® Hyperglycaemia does not result in
pathological changes in the retinal vasculature within
the first 6 weeks. However, after this period
proliferation of endothelial cells and swollen retinal
vessels are observed. Interestingly, the retinal vessel
lesions persisted even after the blood glucose levels
have returned to normal. These abnormalities extended
to include loss of pericytes and endothelial cells from
the capillary beds and the appearance of
microaneurysms. It is clear that there is a time point
after which the progress of diabetic retinopathy is
inevitable and reinforces that it is crucial to elicit
preventative measures such as intensive blood glucose
control at the very early stages of diabetes to prevent
or slow progression of retinopathies. As will be
discussed below, glucose can have a detrimental effect
on a variety of biological processes.

Retinal endothelial cell glucose transport

To date, several possible mechanisms, including the
polyol pathway,® non-enzymatic glycation,” oxidative
stress® and activation of protein kinase C (PKC)’ have
been implicated in the development of retinopathy.
These mechanisms are mostly dependent on excessive
transport of glucose into retinal cells resulting in
increased intracellular glucose levels. GLUT1, one of a
family of glucose transporters, is exclusively
responsible for glucose crossing the inner retinal-blood
barrier.'®!! Surprisingly, the early stage of diabetic
retinopathy exhibits a decrease in expression of GLUT1
in retinal endothelial cells, inferring that GLUT1 is not
strongly linked with the development of retinopathy.
Since expression of GLUT1 in the retinal pigment
epithelium (RPE) is not affected by diabetes, it is likely
that glucose entering the retina is greater across the
RPE than across retinal endothelial cells.!® However, it
has been proposed that an increase in density of
relocalized GLUT1 in the inner blood-retinal barrier is
enhanced by vascular endothelial growth factor
(VEGEF),"* a factor upregulated in retinopathy.

Retinal blood control

It is quite evident that there are numerous changes
taking place in the vasculature that are associated with
the early stages of diabetic retinopathy prior to the
appearance of pathological changes. Furthermore, a
duration of years or decades elapse before subtle
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changes lead to the observation of retinopathy. A
typical example is the functional changes in the retinal
vasculature'®'* resulting in a change of retinal tissue
blood flow pattern including an increase in retinal
blood flow and heterogeneity of distribution of retinal
blood flow." The retinal vasculature relies on local
mechanisms to regulate appropriate blood flow.'® To
date at least 10 regulating factors have been proposed
for control of blood flow.!” They fall into two main
classes: endothelium-derived relaxing factors (nitric
oxide, prostacyclin, endothelium-derived
hyperpolarizing factor) and endothelium-derived
contracting factors (endothelin, cycloxygenase
products) which inhibit or stimulate respectively the
underlying smooth muscle cells and pericytes.
Importantly, many of these factors are regulated by
local glucose levels.

Endothelium-derived relaxing factors

Nitric oxide Nitric oxide (NO) acts to maintain
appropriate arteriolar vasodilation as well as
stablilizing platelets.’®2> It is synthesized in cells from
L-arginine to L-citrulline via activation of a calcium-
dependent nitric oxide synthase. In response to
platelet-derived products, hormones and mechanical
changes such as transmural pressure,? endothelial cells
release NO into the surrounding milieu. NO enters
smooth muscle cells and activates soluble guanylate
cyclase. This results in increased cyclic guanosine 3',5'-
monophosphate (cGMP), which is responsible for
subsequent relaxation of the smooth muscle cells
through a decrease in Ca®* and dephosphorylation of
myosin light chains.?” In the retinal vascular bed there
is a constant basal release of NO which maintains the
retinal circulation in a constant state of vasodilation.

Evidence indicates that there are at least three
mechanisms for diminishing production and/or
increasing quenching of NO by hyperglycaemia. First,
hyperglycaemia causes de novo synthesis of
diacylglycerol (DAG), leading to activation of PKC.
The consequence of PKC activation is that PKC
reduces the capacity of a number of agonists to
increase intracellular Ca?* and stimulate NO
synthesis.?**° Furthermore, PKC may provoke
expression of superoxide in endothelial cells which
quenches NO.*' Second, hyperglycaemia activates the
polyol pathway by increasing substrate-glucose for
endothelial aldose reductase.® This enzyme converts
glucose to sorbitol by a reaction that oxidizes NADPH
and reduces its availability (NADPH is one of the
cofactors for NO synthesis).*® Third, hyperglycaemia
generates non-enzymatic glycated proteins® which lead
to subsequent superoxide generation resulting in

Eye



The pathogenesis of diabetic retinopathy
J Cai and M Boulton

244

inactivation of NO. Additionally, glycated proteins can
directly quench NO.*

Prostacyclin (PGI2) PGI2 is generated from the
metabolism of arachidonic acid via cyclooxygenase®
and is complementary to NO. PGI2 stimulates
enhanced production of cyclic adenosine 3’,5'-
monophspate (cAMP) through adenylcyclase in smooth
muscle cells and pericytes, leading to relaxation of
those cells.” In endothelial cells PG12 synthesis is
mediated by prostacylin-stimulating factor (PSF), which
is constitutively expressed in retinal pericytes.*®
However, early hyperglycaemia results in a transient
decrease in PSF production, causing a decrease in PGI2
synthesis.* In animal models it has been shown that
after the induction of diabetes an early decrease of PSF
in the retina is followed by an increase in PSF levels.
Hyperglycaemia also inhibits PGI2 synthesis through
generating lipid peroxide and arachidonic acid via
microsomal desaturase.®® Intriguingly, normal levels or
even increased of PGI2 in diabetes have been
reported.* This might be due to upregulation of
phospholipase A, (PLA,) providing increased substrate
for PGI2 synthesis.

Endothelium-derived hyperpolarizing factor

(EDHF) EDHFs are substances that are distinct from
nitric oxide (NO) or prostacyclin (PGI2). EDHFs are
thought to mediate endothelium-dependent
hyperpolarization of vascular smooth muscle cells or
pericytes. EDHF contributes greatly to vascular control
of small-diameter vessels and microvessels involved in
the local regulation of peripheral vascular resistance
and thus in the distribution of blood flow.** By
contrast, NO and PGI2 are more committed to
regulation of large-diameter vessels. A list of potential
agents/cellular events which could function as EDHF
include eoxyeicosatrienoic acid (EET),*'~*¢ hydrogen
peroxide,*” potassium efflux,*® and gap junction
communication between endothelial cells and smooth
muscle cells.* For example, EET is released from
endothelial cells in response to acetylcholine (ACh) and
hyperpolarizes smooth muscle cells by opening Ca**-
activated K* channels and causing vasodilatation.*” A
line of evidence for a role of EDHF in diabetic retinal
vascular dysfunction is inferred from data indicating
that in diabetes, endothelium-dependent
hyperpolarizations are diminished by hyperglycaemia
largely due to a defective vascular response to EDHF.®

Endothelium-derived contracting factors

Endothelin-1 (ET-1) ET-1 is a powerful vasoconstrictor
peptide. The circulation levels of ET-1 are low under
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normal conditions suggesting that ET-1 acts as a local
regulatory factor.”® ET-1 causes vasodilation at low
concentrations and a constrictive response at high
concentrations via the interaction with endothelin
receptors (ET,-, and ETg) on smooth muscle cells and
pericytes.>>* ET-1-induced activation of endothelin
receptors, linked to voltage-operated Ca** channels,
either opens the gates of the Ca®* channel leading to
influx of Ca?*,>® or induces activation of phospholipase
C (PLC) by the formation of diacylglycerol (DAG),
shifting Ca*"* from intracellular stores and increasing
intracellular Ca**.>**” Increased intracellular Ca®* in
smooth muscle cells in turn induces lasting contractile
effects. Hyperglycaemia is most likely to induce an
increase in ET-1 levels in retinal vascular cells.”® PKC
and mitogen-activated protein kinase (MAPK) are
activated in retinal microvascular cells by the elevation
of glucose levels.**° Thus, PKC and MAPK pathways
enhance the ET-1 transcription rate.

Cyclooxygenase products Cyclooxygenase products
induce vasoconstriction and include thromboxane
(TX),*! prostaglandin (PG)** and lipid peroxides
(LPO)*® which can be found in endothelial cells and
platelets. However, overproduction of these factors has
been detected in diabetic retinopathy. For instance,
PKC, enhanced by hyperglycaemia, activates
phospholipase A, (PLA,) which sequesters arachidonic
acid from membrane phospholipids.®* Arachidonic acid
is a substrate that is catalyzed by cyclooxygenase and
lipoxygenase promoting LPO generation.®

Retinal capillary cell death

Histological analyses of diabetic retina demonstrate
localised regions of non-perfused acellular ‘vessels’
consisting solely of basement membrane.®® The early
and progressive loss of retinal capillary cells, including
pericytes and endothelial cells, inevitably leads to
microaneurysms and vascular obstruction. Retinal
capillary cell death unquestionably has a major impact
on retinal vessels in diabetes and in the case of
pericyte loss occurs long before the onset of
proliferative diabetic retinopathy (PDR). However,
capillary cell death, specifically pericytes, has been
found to be rare or absent from capillaries of the optic
nerve and cerebrum.®” Perhaps this is evidence that
disappearance of retinal capillary cells may be due to a
local disorder rather than systemic abnormalities such
as hyperglycaemia? However, hyperglycaemia has
been shown to induce pericyte apoptosis both in vivo
and in vitro,*”°® with in vitro evidence that cell death is
exacerbated when glucose levels fluctuate between
hyper- and normoglycaemia as often occurs in poorly
controlled diabetes.®®



Polyol pathway There is limited evidence that
hyperglycaemia can, in tissues such as the retina that
do not require insulin for cellular glucose uptake,
induce polyol pathway hyperactivity and aldose
reductase expression.® In addition to its well-
documented glucose metabolism role, the polyol
pathway has been found to cause a loss of retinal
capillary cells and that this involves aldose reductase, a
rate-limiting enzyme of the polyol pathway that
reduces glucose to sorbitol.”>”! Aldose reductase
inhibitor has been reported to inhibit the high glucose-
induced death of retinal capillary cells.”>”® Sorbitol, a
common organic osmolyte in many cells, accumulates
in retinal capillary cells in response to hyperglycaemia
and causes hyperosmolality of the cells.”*”> Thus,
hyperosmolality induces an increase in intracellular
water and lactate production, and a decrease in oxygen
uptake. The other part of the polyol pathway involves
glutathione reductase reducing NADPH to NAD, in
which aldose reductase competes with NADPH.”*””
NADPH is required not only by glutathione reductase
for the reduction of oxidized glutathione (GSSG) to
glutathione (GSH), but also by aldose reductase for
conversion of glucose to sorbitol. Reduced NADPH
may also be responsible for dysfunction of endothelial
enzymes, for example eNOS.* In addition,
hyperactivity of the polyol pathway requires large
quantities of ATP”® and may consume the energy
required for production of endothelium-dependent
relaxation factors.

Glycation pathway During normal ageing, glucose
binds non-enzymatically to free amino groups in
proteins and forms Amadori adducts through a series
of oxidative and non-oxidative reactions.”
Hyperglycaemia and oxidative stress probably confer
on Amadori adducts the opportunity to continue to
rearrange and generate irreversible advanced glycation
end products (AGEs) in diabetes.® The impact of
AGEs on retinal capillary cells is related to their
capacity to accumulate in tissues over time, to form
cross-links and to generate oxygen-derived free
radicals.®"** Additionally, binding of AGEs with their
receptors may provoke sustained cell activation and
further oxidative stress.

Oxidative stress Oxidative stress is defined as an
increase in the steady-state levels of reactive oxygen
species. There are several endogenous enzyme systems
that protect the cell and tissue from oxidative stress,
for example superoxide dismutase (SOD),*> catalase,®
and glutathione peroxidase (GSH-Px).?” Although there
is controversy about the antioxidant status in diabetes,
several studies report decreased levels of SOD and
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GSH-Px in both clinical and experimental
diabetes,®*#*888% indicating an impaired defence system
for free radical scavenging. Sources of reactive oxygen
species in diabetes may include autoxidation of
glucose, AGE-formation and the binding of AGE to
AGE receptors, increased substrate flux through the
polyol pathway and stimulation of eicosanoid
metabolism. 8-epi-PGF(2alpha), one of the
prostaglandin-F(2)(PGF(2))-like compounds produced
during peroxidation of arachidonic acid (AA) by a
mechanism independent of the cyclo-oxygenase,” has
recently been detected in the retina during diabetes.
This provides direct evidence that oxygen-derived
radicals produced during prostanoid synthesis rather
than the prostanoids themselves are responsible for
endothelial dysfunction in diabetes mellitus.” Oxygen-
derived free radicals may impair endothelium-
dependent vasodilation through inactivation of NO.**
In addition, oxidative stress can cause an increase in
the conversion of deoxyguanosine to 8-oxo, 2'-
deoxyguanosine in DNA.? Both the altered gene
profile of scavenging enzymes® and overexpression of
the cell death protease gene® are believed to increase
apoptosis of retinal capillary cells in diabetic
retinopathy.

What causes retinal ischaemia?

Retinal ischaemia is generally believed to result from
structural and functional derangement of the retinal
microcirculation. The formation of acellular capillaries
is a major histological feature of the ischaemic
retina.®®®” The capillary basement membrane tubes
without endothelial cells and pericyte nuclei firstly
only occur singly or as small groups scattered about
the retinal. Later they are found in large clusters with
atrophic arterioles.”®%

Several possible mechanisms have been proposed for
the appearance of retinal ischaemia in diabetes. These
include thickened basement membranes, platelet
aggregation, leukocyte activation/adherence or a
combination thereof. Furthermore, hyperglycaemia is
likely to be a major risk factor.

Retinal basement membrane thickening

In diabetes, early hyperglycaemia is sufficient to
increase the synthesis of basement membrane
components in the retina'® which in turn may
contribute to the closure of capillaries. For example,
mRNA for fibronectin and collagen types I, III, IV(a1,
a2), and V are found to be upregulated in the retinal
basement membrane of diabetic retinopathy.
Furthermore, in the retina of diabetic patients increased
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immunostaining is observed compared to normals for
vitronectin in the arterioles,'”" collagen types I, 1I, III,
IV in the venules'** and laminin and fibronectin in
both arterioles and venules.'® Animal models also
show that retinal expression of collagen type IV and
fibronectin increases in hyperglycaemic rats.'%*-'%
Diabetic basement membrane thickening appears to
involve qualitative alterations of specific basement
membrane markers at an advanced disease stage, with
the appearance of diabetic retinopathy. For instance,
abnormal accumulation of several extracellular matrix
components in retinal basement membranes may
trigger the deposition of small tenascin-C isoforms in
the blood vessel walls.'® The expression of tenascin,'®
an extracellular matrix glycoprotein, originally found to
modulate organogenesis in tendinous and glial tissue,
suggests that this glycoprotein may promote retinal
basement membrane thickening.

Platelet aggregation

Diabetic retinopathy is associated with an increased
number and size of platelet-fibrin thrombi in the
retinal capillaries compared to normal.'” These
thrombi can contribute to capillary obliteration and
retinal ischemia. It has been reported that chronic
hyperglycemia causes an increase in diacylglycerol
(DAG) levels in the retina, which may activate PKC.'*°
Through increased intracellular Ca**, PKC stimulates
endothelial cells, leuckocytes and platelets to produce
platelet-activating factor (PAF).'"'"'3 PAF, confined to
membranes, stimulates PAF receptors''* on platelets,
inducing activation of these platelets. Activated
platelets produce a number of platelet-derived

115116 which contribute to thrombus

microparticles,
formation by providing and expanding a catalytic
surface for the coagulation cascade. Pathological levels
of fluid shear stress in abnormal retinal blood vessels
affected by hyperglycaemia may cause both further
platelet aggregation and shedding of more
microparticles from the platelet plasma membrane.
In addition, elevated sorbitol in the retina and
erythrocytes can reduce vascular prostacyclin
accompanied by an increased synthesis of thromboxane

117

via induction of adenosine diphosphate (ADP)'*® or
collagen'" in whole blood. The imbalance of
thromboxane and prostacylin enhances platelet
hyperactivity.'® Adhesion proteins'?' that are cofactors
in the aggregation of human platelets and mediating
the adenosine diphosphate (ADP)-induced response of
these cells are also increased significantly.
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Leukocyte activation and adherence

Although diabetic retinopathy generally is not
considered as an inflammatory disease, leukocytes
adhere to the retinal vascular endothelium early in
experimental diabetic retinopathy.'** Excess activation
of endothelial PKC promotes PAF synthesis in
diabetes.!'%12*12¢ PAF stimulates PAF receptors on
peripheral leukocytes rolling on the lumenal
endothelial membrane leading to their activation.'®
Activated leukocytes also synthesise PAF'*® and
leukotriene B4 (LTB4),'?”'?8 which further enhance
activation of leukocytes via autocrine action. 82
integrins'*'% on activated leukocytes enable the
leukocytes to adhere tightly to the endothelial cell via
binding intercellular adhesion molecule-1 (ICAM-1).'3!
ICAM-1 is upregulated by endothelial PKC which
normally acts to stabilize mRNA of B2 integrins.'?*!3
Physiologically, nitric oxide (NO) plays a role in
modulating leukocyte activation and adherence.
Presumably, NO deficiency can allow leuckocytes to
escape from NO control, leading to leukocyte
activation and adherence.'?*'* Furthermore, leukocytes
in diabetes have been reported to be less deformable
due to actin polymerization and increase in their
viscosity."?® Alteration in retinal blood flow could
reduce pressure gradients across retinal capillaries
owing to stenotic or constricted arterioles resulting in
activated leukocytes becoming wedged in capillaries
and postcapillaries and obstructing retinal

microvessels.!37/138

What is the importance of retinal hypoxia?

The retinal vasculature is relatively sparse in order to
minimise optical interference in the light path. This
results in a large oxygen tension difference between
retinal arteries and veins which can easily be
compromised if damage occurs to the vascular bed.
Capillary nonperfusion, loss of retinal capillaries, AGEs
and/or oxidative stress can lead to progressive retinal
hypoxia"l39—143

Acute hypoxia rapidly activates retinal vascular
endothelial cells to release inflammatory cytokines.'**
These inflammatory mediators are able to recruit and
promote the activation and adherence of leukocytes,'*
which contribute to the obstruction of retinal
capillaries, leading to further hypoxia. Chronic hypoxia
is, at least in the retina, sufficient to induce the
expression of angiogenic growth factors,'4¢147
in the characteristic retinal neovascularization
associated with proliferative diabetic retinopathy
(PDR). The observation that retinal neovascularization
occurs adjacent to the nonperfused area'*®'* supports

resulting



the hypothesis that angiogenic factors are released
from hypoxic tissue. In the majority of instances
regression of preretinal new vessels can be achieved
through the use of scatter laser photocoagulation.'*15!
While the mechanism of action of scatter laser
photocoagulation remains elusive, there is support for
the hypothesis that destruction of retinal tissue makes
more oxygen available for the retina and returns it to
normoxia.'®?

The whole picture of how hypoxia induces and
increases the expression of angiogenic factors is not
clear, but parts of the puzzle are beginning to emerge.
A cytosolic flavoheme protein acts as an oxygen sensor
that detects decreased oxygen tension and activates
transcription factors through signal transduction
pathways.’>>>* Hypoxia inducible factor 1 (HIF-1) is a
major transcription factor.'>® The activation of HIF-1
depends upon signaling-dependent rescue of its alpha-
subunit from oxygen-dependent degradation in the
proteasome and formation of a heterodimer with HIF-
1beta, which then translocates to the nucleus and
impacts on the transcription of genes that are
upregulated by hypoxia'>**® Activation of HIF-1 has
been shown to increase production of a variety of
factors implicated in the pathogenesis of diabetic
retinopathy (eg ischaemic retina'*).

How do growth factors play a pivotal role in
diabetic retinopathy?

It is now quite evident that there is a plethora of
growth factors which regulate the retinal vasculature
and are involved in the development and progression
of diabetic retinopathy. However, identifying the role
of each growth factor is difficult since growth factors
can act alone or, as appears to be more often the case,
interact with each other. Examples include: one growth
factor inducing the synthesis of a more potent growth
factor, synergy between growth factors and
commonality in the downstream transduction cascade.
In addition, knockout studies have shown that if the
action of a growth factor is negated other growth
factors are synthesised to overcome this deficit.

The last three decades have seen the discovery of a
large number of growth factors, most of which have
been implicated to a greater or lesser extent in diabetic
retinopathy. Of these vascular endothelial growth
factor has received considerable attention of late due to
its potent angiogenic activity.'*

Vascular endothelial growth factor (VEGF)

VEGEF is a potent angiogenic factor capable of
stimulating endothelial cells to degrade extracellular
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matrix, migrate, proliferate and form tubes.'¢-1%3
Recently, it also has been found to act as a survival
factor for newly formed vessels.'® VEGF exerts its
functions on endothelial cells via interaction with
cellular receptors Flt-1 (VEGFR-1) and Flk-1/KDR
(VEGFR-2),'%>"'7! both receptor tyrosine kinases.
Interaction between VEGF and its receptors initiates a
signal transduction pathway, and thus induces
phosphorylation of proteins downstream in endothelial
cells, including phospholipase Cy (PLCy),7*17
phosphatidylinositol 3-kinase (PI3-Kinase)'”*!”> and
guanine 5’ triphosphate (GTP)ase-activating protein.
Phosphorylation of PLCy may be more important for
retinal endothelial cells. Phosphorylated PLCy converts
inositol phosphate into diacylglycerol (DAG), causing
activation and translocation of PKC that engages

176

subsequent changes in endothelial cells.'””'7® It is
generally considered that activation of the Flt-1
receptor regulates the metabolism of a range of
vascular and non-vascular cells while KDR which is
relatively specific for vascular endothelial cells
promotes migration and proliferation.

Increased levels of VEGF have been identified in the
vitreous and the retina of patients with diabetes.'®>'7%~
81 This increase is likely to be hypoxia-induced since
elevated levels of VEGF protein and mRNA are
present in the ischaemic retina adjacent to the areas of
neovascularization in diabetic animals and human
pathology specimens.'®*7'#* Moreover, in vitro hypoxia
also induces expression of VEGF mRNA in retinal
cells.’® Hypoxia is also reported to induce expression
of VEGF receptors in endothelial cells indicating that
sensitivity to VEGF is enhanced in the ischaemic
retina.'8618”

VEGEF also appears to play an early role in the
development of diabetic retinopathy. VEGF is clearly
elevated in diabetic retinal tissue without overt
retinopathy and is likely to initiate the increased
permeability associated with the retinal vasculature in
diabetes.'®1851%0 Animal experiments have
convincingly produced clinical features of
nonproliferative diabetic retinopathy by repeated
intravitreal injections of VEGF."! VEGF has long been
known to increase the permeability of vascular
endothelium, which may involve rearrangement of
interendothelial junctional proteins,’*>'** including VE-
cadherin, tight junction proteins (eg occludin and
zonula occluden 1) in retinal endothelium. Such effects
presumably underlie the increasd risks of vessel
leakage and macular edema in diabetic retinopathy.
Clinical experience suggests that there is fluctuation of
retinal blood flow in patients with diabetes, who have
a decrease in retinal blood flow at the early stage of
retinopathy, with a progressive increase in retinal
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blood flow in more advanced stages.'**'** Similar
changes in retinal blood flow are observed in diabetic
animals following intravitreal injections of VEGF.""
Such observations support the concept that VEGF not
only contributes to retinal neovasculariztion, but also
produces earlier changes in diabetic retinopathy.
Interestingly, inhibition of VEGF activity by specific
antisense oligonucleotides,'”™ VEGF-neutralizing
antibodies'® or soluble receptors'®” is insufficient to
completely prevent neovascularization. The incomplete
inhibition of neovascularization indicates that retinal
neovascularization may be driven at least in part by
alternative angiogenic factors.

Alternative angiogenic factors

A plethora of other angiogenic factors including
insulin-like growth factor-I (IGF-I), basic fibroblast
growth factors (bFGF or FGF2), platelet-derived growth
factor (PDGF), hepatocyte growth factor/scatter factor
(HGF/SF), placenta growth factor (PIGF) and
angiopoietin2 (Ang?2) have been implicated in retinal
neovascularization.

IGF-I A role for a pituitary associated factor was
hypothesised over 40 years ago when retinal
neovascularisation was found to regress after pituitary
infarction.'”® Subsequently the pituitary factor has been
identified as growth hormone and the mitogenic
mediator of growth hormone action is Insulin-like
growth factor-I (IGF-1)."? IGF-I was one of the first
growth factors to be directly linked with diabetic
retinopathy.>® Initial reports demonstrated an acute
increase in serum levels of IGF-I preceded the onset of
proliferative diabetic retinopathy (PDR) in animal
models.?'?? Subsequently, increased IGF-I levels were
measured in the vitreous of patients with PDR,>®
indicating that IGF-I may play a role in retinal
neovascularization and that the localised effect of IGF-I
may be more important than its systemic role in the
development of neovascularization. It has been
proposed that leakage across the blood-retina barrier
and high serum levels of IGF might be the major
source for vitreous IGF levels. Confirmation has come
from in vitro studies***2% showing that IGF-I can
induce almost all steps of the angiogenesis process
including endothelial cell proliferation, migration and
basement membrane degradation. In vivo, retinal
angiogenesis has been confirmed following application
of IGF-I to the retina of rabbits.?”” IGF-I exerts its effect
on endothelial cells via coupling with the IGF-I
receptor (IGF-IR). Two pathways are prominent in IGF-
I signalling, the Ras/Raf/MAPK cascade®® and the PI
3-kinase system,*® both of which promote cell survival
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and proliferation.?'*2"* IGF-I is regulated by a family of
insulin-like growth factor binding proteins (IGFBPs)?'?
which can inhibit or potentiate IGF-I activity
depending on a number of parameters such as their
affinity for IGF-I, the biological system in question and
post-translational modifications.?** IGFBPs 1, 2 and 3
have been reported to be significantly increased in
vitreous from patients with PDR but not in non-
ischaemic eye disease.?'*2'® The contribution of leakage
of the blood retinal barrier and local synthesis to
vitreous levels of these proteins is unclear, however,
local synthesis will certainly contribute. Comparison of
cultured retinal endothelial cells from normal and
diabetic donors demonstrates a decrease in IGF-1 and
an increase in the IGFBP 1, 2 and 5 message for
diabetic cultures compared to normals.?'” An important
link between IGF-1 and IGFBP expression and diabetic
retinopathy is hypoxia. Several studies in vitro have
shown that IGF-I and IGFBPs are subject to regulation
by hypoxia.?'#22

bFGF Whether basic fibroblast growth factor (bFGF)
participates in the stimulation of retinal
neovascularization has been a matter of considerable
controversy. bFGF is stored at high concentration
within the extracellular matrix (ECM) as an inactive
complex, and released when endothelial cells dissolve
ECM via the release of proteases.”?'** bFGF and
hypoxia act synergistically to not only induce
mitogenesis in endothelial cells, but also to upregulate
VEGEF in smooth muscle cells and endothelial cells,
resulting in retinal angiogenesis.??* However, the fact
that bFGF-deficient animal models develop the same
degree of retinal neovascularization as wild-type
animals argues against a major angiogenic role for
bFGF in diabetic retinopathy.??®> Although bFGF may
not directly induce retinal neovascularization, it can
regulate VEGF expression in retinal vascular cells.??

PDGF The platelet-derived growth factor (PDGF)
family comprises three isoforms, PDGF AA, BB and
AB, which act via PDGF receptor subunits (a- and (-).
PDGEF is widely expressed upon tissue injury and
repair*?’?? and the PDGF BB isoform is induced by
hypoxia.?***° Additionally, significantly elevated
concentrations of PDGF AB are found in the vitreous
and preretinal membranes of patients with proliferative
diabetic retinopathy (PDR).*' PDGF may act directly
on endothelial cells**? that are engaged in angiogenesis
or that express PDGF receptor beta-subunits.?*323*
However, it is reported that PDGF AB is also elevated
in ischemic non-diabetic retinopathy, indicating that
ischemia rather than diabetes per se might be a strong
stimulator of PDGF production in the retina.?*' Since



PDGEF is known to induce the generation of a
vascularized connective tissue stroma in many
angiogenic and proliferative processes,®” retinal
neovascularization in response to PDGF-BB may be
partially due to its direct effects on the formation of
fibrovascular retinal membranes.

HGF/SF Hepatocyte growth factor/scatter factor
(HGF/SF)*** is a most potent mitogenic factor for a
number of cell types, including hepatocytes,?”
precursor cells,® and various epithelial®® and
endothelial cells.>** HGF/SF also promotes epithelial
and endothelial cell motility in addition to regulating
tube morphogenesis and tube branching.**!2*> HGF/SF

binds to the c-Met receptor**® and initiates signaling
)244

myeloid

via activation of both protein kinase C (PKC)*** and
phosphatidylinositol 3-kinase (PI3-Kinase),>*>*
inducing MAPK phosphorylation that is critical for
migration and growth. HGF/SF and its receptor levels
have been shown to significantly increase in the
vitreous of diabetic patients compared to normal
control groups.**” HGF/SF can also induce VEGF
production by a variety of cells and tissues.***2*° Since
VEGF does not appear to mediate these initial HGF
effects it suggests that HGF/SF acts as a co-factor
promoting retinal neovascularization.

PIGF PIGF is a member of the VEGF family and
shares 35% primary sequence homology with VEGF.?*!
However, unlike VEGF which binds to both VEGFR-1
and VEGFR-2, PIGF binds only to VEGFR-1.2>?
Furthermore, PIGF can form a heterodimer with VEGF
presumably regulating VEGF-receptor binding through
both VEGFR-1 and VEGFR-2. The different affinity for
VEGEFRs has been shown to influence endothelial cell
behaviour. Generally, the ligand-receptor interaction is
reflected in the different signal transduction pathways
that involve different signal components. For example,
as a marker for DNA synthesis, mitogen-activated
protein kinase (MAP kinase) is activated in endothelial
cells stimulated both by VEGF and PIGF,>* whereas
phospholipase C-y (PLC-y) which plays a role in cell
migration is only tyrosine phosphorylated by VEGF
stimulated cells.”>* In vitro studies indicate that VEGF
essentially has no effect on Flt-1 expressing cells while
PIGF can induce DNA synthesis in Flt-1 expressing
cells, leading to mitogenesis but not migration.
However, PIGF appears to be different in vivo and not
only stimulates proliferation of endothelial cells, but
also induces angiogenesis.®®® Furthermore, the
PIGF/VEGF heterodimer induces angiogenesis more
effectively than the PIGF homodimer alone.*®

There is considerable evidence to support a role for
PIGF in diabetic retinopathy. PIGF levels are
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upregulated in the vitreous of patients with PDR>7>#
and PIGF protein localises to areas of active retinal
neovascularisation.”® Interestingly PIGF was found to
induce secretion of VEGF and was co-expressed with
VEGF.*” The PIGF gene has also been shown to be
elevated in PDR retinas®’ and in retinas in a mouse
model for retinopathy of prematurity.>®® While the
origin of PIGF in vivo remains to be determined, cell
culture studies demonstrate that both endothelial cells
and pericytes express PIGF mRNA.?*! PIGF was more
highly expressed in endothelial cells compared to
pericytes. It is likely that in PDR PIGF potentiates the
effect of VEGF either via enhancing expression of
VEGEF or the formation of a heterodimer with VEGF.?®

Angiopoietin  Another family of tyrosine kinase
receptors which play an important role in angiogenesis
are the Tie (tyrosine kinase with immunoglobulin and
epidermal growth factor homology domains)
receptors.”®> To date two receptors have been
identified, Tiel and Tie2. No ligand has been identified
for Tiel while the best characterized ligands for Tie2
are angiopoietinl (Ang1)*** and angiopoietin2
(Ang2),2** both sharing 60% amino acid homology.
Angl and Ang2 appear to have different effects on
endothelial cells. Angl induces tyrosine
phosphorylation of Tie2 and activates the downstream
signalling pathway to promote vascular maturation,*°
whereas Ang?2 acts as a naturally occurring antagonist
of Angl by competing for binding to Tie2 and blocking
Angl induced Tie2 phosphorylation.*** Angl has been
reported to induce sprouting and chemotaxis in
endothelial cells in vitro,****” whereas Ang2 appears to
play a critical role in vascular remodelling.?*®2%° It has
been shown that Ang?2 is upregulated during
angiogenesis in retinal development*° and in mouse
models of ischaemia-induced retinal
neovascularisation.?”%*" A recent study has determined
the spatial and temporal expression of Angl, Ang2 and
the Tie2 receptor during the pathogenesis of diabetic
retinopathy (Smith, personal communication).
Interestingly, Angl protein was upregulated in PDR
while Ang2 was downregulated suggesting that while
angiopoietins play a key role in the pathogenesis of
diabetic retinopathy their action may differ depending
on the development stage of the vasculature and the
type of disease.

Pigment epithelium-derived factor

Pigment epithelium-derived factor (PEDF) is a 50-kDa
glycoprotein originally identified in RPE cells.?”2
Subsequently, PEDF mRNA has been found in most
cell types and appears to have a wide variety of
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functions, eg neural development, neuronal protection
and as a regulator of neovascularisation.?”**”

PEDF is seen to be downregulated in eyes with
active PDR** suggesting that PEDF is a negative
regulator of angiogenesis. Support for this comes from
studies which have shown that: (a) PEDF regulates the
development of the retinal vasculature;*”> (b) is
downregulated by hypoxia; and (c) PEDF inhibits
retinal and choroidal neovascularisation in a number of
animal models.?’®#” That the latter was achieved by
adenoviral transfection opens the possibility for gene
therapy to upregulate PEDF and inhibit abherrant
angiogenesis. It is unclear how PEDF exerts its effect
but in vitro experiments show that PEDF may inhibit
neovascularisation by promoting apoptosis of
endothelial cells.?”” The mode of action of PEDF will be
clarified once its receptor(s) and downstream
transduction pathway(s) have been identified.

Concluding comments

Research over the past few decades has provided
ample evidence that hyperglycaemia is one of the main
forces driving the onset and progression of diabetic
retinopathy. Several mechanisms, by which
hyperglyaemia causes retinal capillary damage include
increased polyol pathway, activation of protein kinase
C, increased non-enzymatic glycation and generation of
reactive oxygen species (Figure 1). Furthermore,
hyperglycaemia-induced events regulate the synthesis
of a variety of growth factors implicated in
retinopathy. A number of key growth factors have
emerged of which the VEGF and PEDF families are
critically important. The question we now ask is can
the therapeutic modulation of growth factor pathways
prove efficacious in the intervention in diabetic
retinopathy at clinic level?
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