Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

Evaluation of ex vivo expansion and engraftment in NOD-SCID mice of umbilical cord blood CD34+ cells using the DIDECO ‘Pluricell System’

Summary:

The Dideco ‘Pluricell System’ is a commercially available closed device composed of an expansion chamber and a kit of certified reagents that allow haematopoietic stem cell expansion. We have expanded seven umbilical cord blood (UCB) samples following the manufacturer's instructions; two groups of irradiated NOD-SCID mice have been transplanted with expanded and nonexpanded cells from the same UCB, and bone marrow was analysed for the presence of human cells. Average UCB volume was 61.6±8.8 ml; mean nucleated cell content was 1090.5±189.9 × 106. Percentage and number of CD34+ cells were 0.37±0.13% and 3.9±1.2 × 106. After separation, CD34+ cell purity was 82±11%. Mean number of inoculated cells was 760 000; mean NC and CD34+ fold expansion at 12 days was 230.4±91.5 and 21.0±11.9. Both groups of mice showed successful engraftment: the percentage of human cells was higher in the group receiving expanded cells (3.4±2.01%) compared to the group receiving nonexpanded cells (1.5±0.66%) (P<0.00018, Mann–Whitney test). The cell population obtained after 12 days expansion consisted mainly of myeloid and megakaryocytic progenitors. The CD34+ antigen reached the maximum expression level at day 12 (7.5±2.0%). Analysis of lineage-markers for human myelomonocytic, megakaryocytic, B, T, CD34 and erythroid cells, gave evidence that all the lineages were represented in the marrow of transplanted mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Kurtzberg J, Laughlin M, Graham ML et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 1996; 335: 157–166.

    Article  CAS  PubMed  Google Scholar 

  2. Gluckman E, Rocha V, Arcese W et al. Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 2004; 32: 397–407.

    Article  CAS  PubMed  Google Scholar 

  3. Wagner JE, Verfaillie CM . Ex vivo expansion of umbilical cord blood hemopoietic stem and progenitor cells. Exp Hematol 2004; 32: 412–413.

    Article  PubMed  Google Scholar 

  4. Migliaccio AR, Adamson JW, Stevens CE et al. Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 2000; 96: 2717–2722.

    CAS  PubMed  Google Scholar 

  5. Rubinstein P, Carrier C, Scaradavou A et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998; 339: 1565–1577.

    Article  CAS  PubMed  Google Scholar 

  6. Gluckman E, Rocha V, Arcese W et al. Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 2004; 32: 397–407.

    Article  CAS  PubMed  Google Scholar 

  7. Locatelli F, Rocha V, Chastang C et al. Factors associated with outcome after cord blood transplantation in children with acute leukemia. Eurocord-Cord Blood Transplant Group. Blood 1999; 93: 3662–3671.

    CAS  PubMed  Google Scholar 

  8. Naparstek E, Hardan Y, Ben-Shahar M et al. Enhanced marrow recovery by short preincubation of marrow allografts with human recombinant interleukin-3 and granulocyte–macrophage colony-stimulating factor. Blood 1992; 80: 1673–1678.

    CAS  PubMed  Google Scholar 

  9. Brugger W, Heimfeld S, Berenson RJ et al. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N Engl J Med 1995; 333: 283–287.

    Article  CAS  PubMed  Google Scholar 

  10. Williams SF, Lee WJ, Bender JG et al. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 1996; 87: 1687–1691.

    CAS  PubMed  Google Scholar 

  11. Alcorn MJ, Holyoake TL, Richmond L et al. CD34-positive cells isolated from cryopreserved peripheral-blood progenitor cells can be expanded ex vivo and used for transplantation with little or no toxicity. J Clin Oncol 1996; 14: 1839–1847.

    Article  CAS  PubMed  Google Scholar 

  12. Reiffers J, Cailliot C, Dazey B et al. Abrogation of post-myeloablative chemotherapy neutropenia by ex-vivo expanded autologous CD34-positive cells. Lancet 1999; 354: 1092–1093.

    Article  CAS  PubMed  Google Scholar 

  13. Shpall EJ, Quinones R, Giller R et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2002; 8: 368–376.

    Article  PubMed  Google Scholar 

  14. McNiece I, Jones R, Bearman SI et al. Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer. Blood 2000; 96: 3001–3007.

    CAS  PubMed  Google Scholar 

  15. Paquette RL, Dergham ST, Karpf E et al. Culture conditions affect the ability of ex vivo expanded peripheral blood progenitor cells to accelerate hematopoietic recovery. Exp Hematol 2002; 30: 374–380.

    Article  CAS  PubMed  Google Scholar 

  16. Paquette RL, Dergham ST, Karpf E et al. Ex vivo expanded unselected peripheral blood: progenitor cells reduce posttransplantation neutropenia, thrombocytopenia, and anemia in patients with breast cancer. Blood 2000; 96: 2385–2390.

    CAS  PubMed  Google Scholar 

  17. Scheding S, Bergmannn M, Rathke G et al. Additional transplantation of ex vivo generated megakaryocytic cells after high-dose chemotherapy. Haematologica 2004; 89: 630–631.

    PubMed  Google Scholar 

  18. Pecora AL, Stiff P, LeMaistre CF et al. A phase II trial evaluating the safety and effectiveness of the AastromReplicell system for augmentation of low-dose blood stem cell transplantation. Bone Marrow Transplant 2001; 28: 295–303.

    Article  CAS  PubMed  Google Scholar 

  19. Astori G, Malangone W, Adami V et al. A novel protocol that allows short-term stem cell expansion of both committed and pluripotent hematopoietic progenitor cells suitable for clinical use. Blood Cells Mol Dis 2001; 27: 715–724.

    Article  CAS  PubMed  Google Scholar 

  20. Malangone W, Belvedere O, Feruglio C et al. Flow cytometric characterization of ex vivo expanded umbilical cord blood CD34(+) cells. Transplant Proc 2001; 33: 1764–1765.

    Article  CAS  PubMed  Google Scholar 

  21. Petzer AL, Zandstra PW, Piret JM, Eaves CJ . Differential cytokine effects on primitive (CD34+CD38−) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J Exp Med 1996; 183: 2551–2558.

    Article  CAS  PubMed  Google Scholar 

  22. Piacibello W, Sanavio F, Garetto L et al. Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood. Blood 1997; 89: 2644–2653.

    CAS  PubMed  Google Scholar 

  23. Piacibello W, Sanavio F, Garetto L et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia 1998; 12: 718–727.

    Article  CAS  PubMed  Google Scholar 

  24. Bhatia M, Bonnet D, Kapp U et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 1997; 186: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242: 1706–1709.

    Article  CAS  PubMed  Google Scholar 

  26. Hogan CJ, Shpall EJ, McNulty O et al. Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 1997; 90: 85–96.

    CAS  PubMed  Google Scholar 

  27. Dick JE . Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol 1996; 8: 197–206.

    Article  CAS  PubMed  Google Scholar 

  28. Conneally E, Cashman J, Petzer A, Eaves C . Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci USA 1997; 94: 9836–9841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Committee for Proprietary Medicinal Products. Points to consider on the manufacture and quality control of human somatic cell therapy medicinal products CPMB/BWP/41450/98. 2004.

  30. Qiu L, Meagher R, Welhausen S et al. Ex vivo expansion of CD34+ umbilical cord blood cells in a defined serum-free medium (QBSF-60) with early effect cytokines. J Hematother Stem Cell Res 1999; 8: 609–618.

    Article  CAS  PubMed  Google Scholar 

  31. Briddell RA, Kern BP, Zilm KL et al. Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J Hematother 1997; 6: 145–150.

    Article  CAS  PubMed  Google Scholar 

  32. Douay L . Experimental culture conditions are critical for ex vivo expansion of hematopoietic cells. J Hematother Stem Cell Res 2001; 10: 341–346.

    Article  CAS  PubMed  Google Scholar 

  33. Haylock DN, Horsfall MJ, Dowse TL et al. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of FLT3 ligand. Blood 1997; 90: 2260–2272.

    CAS  PubMed  Google Scholar 

  34. Hunnestad JA, Steen R, Tjonnfjord GE, Egeland T . Thrombopoietin combined with early-acting growth factors effectively expands human hematopoietic progenitor cells in vitro. Stem Cells 1999; 17: 31–38.

    Article  CAS  PubMed  Google Scholar 

  35. Rossmanith T, Schroder B, Bug G et al. Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the engraftment potential of scid repopulating cells. Stem Cells 2001; 19: 313–320.

    Article  CAS  PubMed  Google Scholar 

  36. Rubinstein P, Dobrila L, Rosenfield RE et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA 1995; 92: 10119–10122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sutherland DR, Anderson L, Keeney M et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 1996; 5: 213–226.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mambrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astori, G., Adami, V., Mambrini, G. et al. Evaluation of ex vivo expansion and engraftment in NOD-SCID mice of umbilical cord blood CD34+ cells using the DIDECO ‘Pluricell System’. Bone Marrow Transplant 35, 1101–1106 (2005). https://doi.org/10.1038/sj.bmt.1704964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704964

Keywords

This article is cited by

Search

Quick links