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Networks are a powerful abstraction with applicability to a variety of scientific fields. Models explaining
their morphology and growth processes permit a wide range of phenomena to be more systematically
analysed and understood. At the same time, creating such models is often challenging and requires insights
that may be counter-intuitive. Yet there currently exists no general method to arrive at better models. We
have developed an approach to automatically detect realistic decentralised network growth models from
empirical data, employing a machine learning technique inspired by natural selection and defining a unified
formalism to describe such models as computer programs. As the proposed method is completely general
and does not assume any pre-existing models, it can be applied ‘‘out of the box’’ to any given network. To
validate our approach empirically, we systematically rediscover pre-defined growth laws underlying several
canonical network generation models and credible laws for diverse real-world networks. We were able to
find programs that are simple enough to lead to an actual understanding of the mechanisms proposed,
namely for a simple brain and a social network.

I
ncreasingly many scientific domains rely on the concept of networks to represent an observable state of a
system, where networks are usually seen as the outcome of a generative process. For systems without cen-
tralised control, these generative processes consist of local interactions between entities, be they proteins,

neurons, organisms, people or organisations.
While current technological advances have been making it increasingly easy to collect datasets for large net-

works, it is difficult to extract models from this data. This difficulty can be attributed both to the sheer size of the
datasets and to the non-linear dynamics of many of these decentralised systems, which resist reductionist
methodologies. Another difficulty is posed by the mapping between generative models and observable networks
since there is a many-to-many correspondence between generative models and observable networks. A network
may be explained by different models and a model – provided it is stochastic in nature – may be capable of
generating different classes of networks due to the amplification of initial random fluctuations.

Following conventional scientific methodology, researchers devise models that can account for a network and
then test the quality of the model against a number of metrics. Much-cited examples include preferential
attachment1, competition between nodes2,3, team assembly mechanisms4, random networks with constraints5–7,
inter alia. Models are typically based on intuition or prior evidence that such and such process appears to be
particularly important in the formation of interactions. A problem here is that of human bias in looking for good
models. There is always the possibility that high-quality models are counter-intuitive, and thus unlikely to be
proposed by researchers.

The work we report in this paper work is aligned with the idea of creating artificial scientists. Parts of the
scientific method are automated, namely the generation and refinement of hypothesis, as well as their testing
against observables. For example, in a work with some parallels to the ideas presented in this paper, scientific laws
are extracted from experimental data using genetic programming8.

There have been some preliminary attempts at using genetic programming to search for network models21–23,
and to structural analysis and community detection24. However, to the best of our knowledge, we provide the first
proof-of-concept application of symbolic regression to discover and select plausible morphogenetic processes for
real-world networks. The method we propose can be applied to both synthetic networks and on real-world
networks. In the case of synthetic networks, it makes it possible to discover the exact generative rule used to
construct the particular type of network in question, while in the case of real-world networks, it proposes a
generative rule that robustly reproduces the original topological features. Furthermore, in contrast with previous
works, our approach relies only on local information and uses a parameter-free fitness function without any ad-
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hoc assumptions. It eventually provides a straightforward mapping
to mathematical expressions. A more detailed comparison to22,23 is
provided in the supplemental materials.

Results
Generator search. Machine learning techniques can be used to help
researchers generate alternative models that are capable of
reproducing networks with certain topological features. The
approach we propose employes genetic programming13,14, a form of
evolutionary computation. Genetic programming is a type of search
inspired by natural selection where evolutionary pressure is created
to guide a population of solutions to increasingly higher quality. In
this case the individuals in the population are network generative
models, and the quality measure is how much a synthetic network
generated by a model approximates the real observable network.

Two fundamental issues have to be addressed in implementing
this technique. Firstly, the models need to have a representation that
is uniform and permits recombination. Secondly, an appropriate
measure of similarity needs to be defined so that synthetic and
real-world networks can be compared.

The first issue touches on a shortcoming in the current literature
on ‘‘network science’’: there is no unified and elegant way of formally
representing network generative processes. To address this we intro-
duce the concept of network generator as a computer program which,
for the purposes of this article, we refer to simply as generators. We
define a network generative process as a sequence of discrete steps
where a new arc is created at each step. The process can be straight-
forwardly applied to both directed and undirected networks. At any
given moment, there is a set of possible arcs that could be created. A
generator becomes fully defined if it provides a way to prefer some
arc over the others. Instead of attempting to define a deterministic
selection process we create a stochastic one — recognising that many
of the generative processes that produce networks have some degree
of intrinsic randomness.

The generator is thus a function w(i, j) that assigns a weight wi j to
all arcs (i, j) from a random sample S (see Methods). At each network
construction step, a new arc is then stochastically selected with a
probability Pi j proportional to wi j such that:

Pi j~
w’i jP

i’,j’ð Þ[S
w’i’ j’

ð1Þ

where w’i j~wi j if wi j . 0, 0 otherwise. If all the weights for a sample
are zero, they are all set to 1 to avoid division by zero in the above
probability expression.

The core of our approach then consists in designing a process able
to automatically discover weight computation functions w which
produce realistic networks. Generators are represented as tree-based
computer programs, which are equivalent to mathematical expres-
sions. Tree leaves are variables and constants, and its other nodes are
operators. These are the building blocks of our generators (see fig-
ure 1). The set of available operators includes simple arithmetic
operators: {1, 2, *, /}, general-purpose mathematical functions:
{xy, ex, log, abs, min, max}, conditional expressions: {., ,, 5, 50}
and an affinity function (y). Variables contain information specific
to the two vertices participating in the arc: in- and out-degrees (k and
k9), undirected, directed and reverse distances between the two ver-
tices (d, dD and dR) and their sequential identifiers (i and j). In the
case of undirected networks only k, d, i and j are used. Sequential
identifiers and the related affinity function will be discussed later on.

We rely on a random walk-based heuristic distance: not only
would the explicit computation of all exact pairwise distances during
the generative process be too computationally expensive, but perhaps
more importantly, new connections are also likely to be accurately
construed as a hop-by-hop navigation mechanism instead of a selec-
tion process based on an omniscient distance value (see Supp. Info.).

This simple arrangement configures a uniform language to
describe generators capable of expressing entity-level behaviours that
produce non-linear, non-centralised network growth processes.

The second issue of measuring network similarity is addressed by
comparing a set of conventional features of both networks. We com-
bine distributions that describe simple aspects of the network, such as
in- and out- degree, direct and reverse PageRank9 centralities (con-
sidering actual and, respectively, inverted arcs), with distributions
describing finer and more mesolevel aspects of the structure, such as
directed/undirected distances and triadic profiles10.

These features are reduced to metrics by computing dissimilarities
between the respective distributions. We rely on two notions of
distribution dissimilarities. For degree and PageRank centralities
we apply the Earth mover’s distance (EMD)11, for the more sophist-
icated distance distributions and triadic profiles we rely on a simpler
ratio-based dissimilarity metrics (see Supp. Material for a longer
discussion). These dissimilarity metrics allow us to determine
whether we are converging towards the original distributions at a
small computational cost (other dissimilarity metrics may well be
used, but we found these to work well in our case).

We are interested in minimising all of the dissimilarity measures
to get as close as possible to the target (real) network. This configures
a multi-objective optimisation problem with possible trade-offs since
some dissimilarities might need to be minimised at the expense of
others. Our objective is to find a balanced solution and employ the
following simple strategy: we decide to place all metrics on the same
scale and configure their meaning as the improvement with respect
to a random network. In practice, each dissimilarity between the
target network and a candidate network is divided by the mean
dissimilarity between the target network and 30 Erdős-Rényi (ER)
random networks with the same number of vertices and arcs as the
target. For a given metric, this means that if the dissimilarity between
the target network and the ER average is, say, 5 and the distance from
the target network to the candidate network is 3, the ratio is 3/5. A
ratio of 1 thus corresponds to no improvement. The evolutionary
algorithm then tries to improve models by minimising the highest of
these ratios, which thereby defines a fitness function.

While ER is assuredly a basic null model, opting for a more soph-
isticated model may induce undesired bias: for instance, using the
configuration model would precisely incorporate the degree distri-
butions of the target network, making it impossible to directly
approximate it using the fitness function.

A further feature of our framework is to not assume homogeneity
between nodes, irrespective of their structural position. A heterogen-
eous model is one that starts with the assumption that not all entities
in the system behave the same. For example, in a social network,
some agents might be intrinsically more likely to form ties. Or they
might be more likely to interact within a specific class of agents. We
introduce heterogeneity by way of the sequential identifier input
variable i g {1, … n}. These indices, considered as identifiers, can
then be passed by variable to the generator programs, and used to
introduce a priori distinctions in behaviours. Let us consider a simple
example:

w i,jð Þ~ 1
i

ð2Þ

This equation describes a generator where the probability of an arc is
completely determined by the identifier of the origin vertex. It
describes a situation where nodes have different a priori propensities
to originate connections. Furthermore, it tells us that these propen-
sities are distributed following a hyperbolic curve. Even though inte-
ger identifiers may appear to be a highly simplistic means of
introducing heterogeneity, we need to remember that they can be
combined with the other building blocks in an infinity of ways. In the
below results from real-world networks we can see that some of the
generators that were found make use of the indices in various ways.

www.nature.com/scientificreports
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Indeed, the simplicity of building blocks can be leveraged and used
to facilitate the definition of generators where certain vertices have
natural affinity for each other. This is the affinity function y, which
uses the modulo operation (remainder of the division of one number
by another) to divide the sequence identifier space into a number of g
groups, returns a if target and origin nodes i and j belong to the same
group (i.e. in case of ‘‘affinity’’), and b otherwise:

y i,j,g,a,bð Þ~
a, if i mod gð Þ: j mod gð Þ
b, otherwise,

�
ð3Þ

From now on, we will consider i and j to be implicit parameters and
write the function simply as: y(g, a, b).

We now have a methodological framework that we can use to
generate plausible models for network generators. Several runs on
the same target network may generate different models — although
we will show experimental evidence that they tend to converge on the
same behaviors. It is now up to the researcher to select amongst them,
possibly using his domain knowledge. A more objective considera-
tion is the trade-off between simplicity and precision. Our repres-

entation of generators allows for a very straight-forward measure of
model complexity: the program length. Trivially, the program length
is an upper bound on the Kolmogorov complexity15 of the model. This
allows us to apply a quantified version of Occam’s Razor: all other
things being equal, choose the model with the lowest program length.
In practice, depending on the variations in precision, the researcher
might wish to sacrifice some parsimony for some precision, or vice-
versa.

Application to real and synthetic networks
To assess our method we start by testing if we can discover generators
for networks that were produced by generators we defined ourselves.
According to our generator semantics, two classical network types
can be defined in a very succinct fashion.

For an ER random network,

wER i,jð Þ~c ð4Þ

where c is any constant value; for a generator based on Preferential
Attachment (PA) as in the Barabási-Albert model,

Figure 1 | Automatic discovery of models. Evolutionary loop including the synthetic network generation process. The top part of this figure describes

evolution at the generator population level, while the bottom (framed) part describes the evolution of a network for a given generator.

www.nature.com/scientificreports
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wPA i,jð Þ~k jð Þ ð5Þ

We used these two generators to produce networks of five different
sizes, from 100 vertices and 1000 arcs to 500 vertices and 5000 arcs.
We generated 30 networks for each size/generator combination and
performed an evolutionary search runs on each one of them. We
found a correct results rate of 97.3% for preferential attachment and
94% for random. In the preferential attachment case, the precise
solution with no bloat (w 5 wPA) was found 92.7% of the time. In
the random network case, the precise solution with no bloat (w 5

wER) was found 76.7% of the time. Interestingly, this result on a series
of stochastic realisations of the ER and PA models is a strong indica-
tion that a real network which does not lead to the discovery of wER or
wPA obeys a more sophisticated morphogenesis process (see Supp.
Info. for detailed results).

We then proceeded to experiment with seven datasets from a
diverse selection of real-world contexts: the neural network of a C.
Elegans roundworm16,17, a network of political blogs18, a software
collaboration network (http://cpan-explorer.org/category/authors/,
date of access: 10/03/2014), the power grid of the Western States of
the USA17, a social network extracted from the neighbourhood of a
single Facebook user19, a network of protein interactions in Homo
Sapiens20 and a word adjacencies network27. The first three are direc-
ted while the latter four are undirected.

Figure 2 shows an overview of the results we obtained, featuring
the expression of the best program found after the 30 evolutionary
runs, as well as a comparison between the corresponding synthetic
network and original (target) network. Figure 3 focuses on C. Elegans
and shows a comparison of the various distributions we use in our
fitness function for the real network, a sample of 30 random net-
works with the same number of nodes and arcs, and a sample of 30
synthetic networks produced by the best generator we found for that
network. Given the stochastic nature of the generative process, mul-
tiple runs of the same generator can produce different results. The
figure shows that, in practice, variance is very small. Similar approx-
imations were obtained for the other networks.

We provide an interpretation of each one of these generators in the
Supplemental Materials.

While these are high quality solutions according to the set of
metrics we defined, another question is whether high-quality solu-
tions generated by our method are similar to each other or represent
completely different models. To investigate this issue we defined a
process to quantify the similarity between two generators – let us call
them generators w and w9. We produce a network using generator w
and, at each arc creation step, for each sample of candidate arcs, we
also compute the probability of each candidate using generator w9.
We then compute the mean distance between the probabilities
assigned by generators w and w9 to all the candidate arcs during
the entire generative process. We thus get a dissimilarity measure
between generators which we denote dww9. Conversely, we produce a
network with generator w9 and compare the probabilities with the
ones assigned by generator w, obtaining dw9w. Finally, we consider the
(generator) dissimilarity between w and w9 to be d 5 (dww9 1 dw9w)/2.

In the left panel of figure 4 we compare the (generator) dissim-
ilarity between the optimal generator we found (p27) and all other
generators obtained for C. Elegans with the fitness of these genera-
tors, i.e. max (network) dissimilarity on all metrics. The Pearson
correlation indicates a strong relationship between fitness and sim-
ilarity to the optimal generator. Furthermore, there is a significant
probability that such a correlation exists (p , 0.005). On the right
panel we also compare the distance with the mean dissimilarity in
order to observe generators over all metrics, obtaining the same
conclusions. The results we obtain provide compelling evidence that
the closer the generators are to the best program in terms of fitness (at
the network level), the closer they are in terms of the qualitative

behaviour defined by their programs (at the link level), implying that
this correlation further strengthens the plausibility of this generator.

Another point to note is that as program distance to the best
solution increases, there is an increase in fitness variance. This is
not surprising given that an increase in program distance corre-
sponds to a decrease on the constraints on the space of possible
programs. All the runs are subject to the same evolutionary pressure
to decrease fitness, so it is likely that some become stuck in local
minima – a common phenomena in heuristic search strategies. In
fact, it is not possible to ever be sure that some result is not a local
minima, but this is also a limitation of the scientific method in
general. However, we show that independent runs of our algorithm
form a cluster of high quality results with respect to generator sim-
ilarity. There is a degree of convergence on a consensus that facilitates
the task of choosing between competing theories.

Discussion
We proposed a methodology to describe network generators and
automatically manipulate them in order to assist in the discovery
of plausible morphogenetic processes. We presented a number of
reasons to be optimistic about this approach. The generator semant-
ics proved to be expressive enough to represent growth processes that
lead to structurally diverse networks and the evolutionary algorithm
was able to find plausible generators for these different cases. The
plausibility of the solutions is based on a comprehensive set of con-
ventional metrics that reflect different aspects of a network’s struc-
ture. The generators found are sufficiently succinct to have high
explanatory power. Multiple runs of evolutionary search on the same
network were shown to converge on similar solutions. Similarly, runs
on stochastic realisations of canonical ER- and PA-based generators
essentially led to the discovery of the correct original laws. More
broadly, we believe our approach has a wide range of application
domains where it could fruitfully guide scientists towards credible
processes underlying the formation of the empirical networks they
are trying to model.

There are many possible avenues to improve upon the method we
propose. The vast array of techniques from the evolutionary com-
putation and genetic programming bibliography could be employed.
Larger populations and recombination operators may lead to higher
quality results at the expense of computational tractability. Pareto
optimisation may be used to explicitly select trade-offs between pre-
cision and solution complexity. Variables and operators for specific
domains (e.g. spacial restrictions) can be introduced. In this work we
strived for simplicity and generality, and to provide the scientific
community with a tool that can be immediately useful but also serve
as a baseline for further refinements.

Methods
The evolutionary algorithm maintains one or two generators at each time: wo is the
generator that produced the networks with the lowest dissimilarity to the target
network so far. ws is the generator with the shortest program that produced a network
with a dissimilarity not more than 10% worse than wo. We refer to this dissimilarity
ratio as anti-bloat tolerance. At any moment, it is possible that wo 5 ws. This pro-
cedure is meant to fight bloat — the accumulation of needless complexity in generator
programs12. The algorithm is initialised with a randomly created generator wr (see
Supp. Info. for details). In the initial state wr 5 wo 5 ws. For every evolutionary search
generation, a parent generator is randomly selected from {wo, ws}. This parent gen-
erator is then cloned and mutated to produce the child generator wc. Mutation
consists of randomly selecting a sub-tree, removing it and replacing it with another
randomly selected sub-tree extracted from another randomly created tree. wc is used
to produce a synthetic network and the dissimilarity of this network to the target is
computed. The dissimilarity and program length of wc is compared against wo and ws,
and wc will replace one or both if appropriate. The search will terminate once wo and
ws remain unchanged for a certain number of generations, we choose this number to
be 1000. ws will be taken as the final result.

Given the significant computational effort needed to generate a network, we pro-
pose a strategy that limits the amount of such generation steps. While it is common in
evolutionary algorithms to use large populations to prevent local minima, this is not
the only possible strategy25, nor is it guaranteed to work26.

www.nature.com/scientificreports
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Figure 2 | Overview of results for five datasets (one per row). The columns, in order, represent: the generator expression, a visualisation of the synthetic

and real networks and a radar graph showing each of the metrics – the outer circle indicates the value of 1, lower is better, best generator shown in blue, all

others in grey. The symbols on the radars represent the various distribution distance measures employed in the fitness function: k, kin and kout for degree,

in-degree and out-degree; PRd and PRu for directed and undirected PageRank; dd and du for directed and undirected distance and t for the triadic profile.
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There are two parameters that introduce trade-offs in the search process: sample
ratio and anti-bloat tolerance.

Sample ratio is a trade-off between generator accuracy (lower samples leading to
more randomness against the linking preference defined by the generator) and
computational effort (higher samples require more generator evaluations per link
generation step).

Being V the set of vertices, sr a predefined sampling ratio, A the set of all possible
arcs (jAj5 jVj2) and A9 the set of all arcs that do not currently exist in the network (A9

5 {a g Ajwa 5 0}, wa being the weight of arc a), we define a sample S with jSj5 n 5 sr

? jAj such that S 5 {s1, …, sn} with si g A9.
In the experiments presented in this article, we do not allow duplicate or self-links.

These restrictions could trivially be lifted if appropriate.
The value we propose was set sufficiently high to work with the smaller networks in

our data set – at some point, the sample becomes too small and the generators operate
too randomly to lead to evolutionary improvement. Conversely, the sample size could
be made smaller to reduce the computational effort for very large networks.

Anti-bloat tolerance is a trade-off between result quality and conciseness. Here we
adjusted once and for all the value against our initial experiment, C. Elegans, and
found 15% to stall evolution and 5% to lead to hard to interpret, bloated solutions.
Without any further parameters adjustment, we then tested the algorithm against real
and synthetic datasets, having found that this leads to perfect solution on the synthetic
cases and robust results on the other 6 real-world networks. It is possible that these

parameters can be further optimised for specific cases or if more computational effort
can be tolerated. However, in this work we strived to demonstrate the general
applicability of the method.

The stop condition (1000 stable generations) and random tree generation para-
meters (detailed in Supp. Info.) are conventional genetic programming parameters
and were set within ranges that are very common in the literature. Given the heuristic
nature of genetic programming, it is impossible to avoid such parameters. Quoting ‘‘A
Field Guide to Genetic Programming’’14:

‘‘It is impossible to make general recommendations for setting optimal parameter
values, as these depend too much on the details of the application. However, genetic
programming is in practice robust, and it is likely that many different parameter
values will work.’’

The quality and meaning of the results presented are not contingent on these
parameters, as these only affect the search process itself. Further efforts on parame-
trisation may lead to higher quality results being found. We avoided such efforts to
prevent a bias for our dataset. We propose that this increases credence on the general
applicability of the method.

Ultimately, while we believe to have demonstrated the effectiveness of a heuristic
search algorithm, this, of course, does not preclude refinements by further research.
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