Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current and future perspectives of single-cell multi-omics technologies in cardiovascular research

Abstract

Single-cell technology has become an indispensable tool in cardiovascular research since its first introduction in 2009. Here, we highlight the recent remarkable progress in using single-cell technology to study transcriptomic and epigenetic heterogeneity in cardiac disease and development. We then introduce the key concepts in single-cell multi-omics modalities that apply to cardiovascular research. Lastly, we discuss some of the trending concepts in single-cell technology that are expected to propel cardiovascular research to the next phase of single-cell research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the single-cell sequencing technologies and the measured modalities.
Fig. 2: Single-cell isolation and library construction methods.
Fig. 3: Summary of the main cardiac cell types identified in human hearts.
Fig. 4: Illustration of computational analysis commonly applied to single cells.
Fig. 5: Creation of Cell Village to minimize cost and batch effect in single-cell profiling.

Similar content being viewed by others

References

  1. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  CAS  Google Scholar 

  2. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  Google Scholar 

  3. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  Google Scholar 

  4. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015).

    Article  CAS  Google Scholar 

  5. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

  6. Turner, A. W. et al. Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk. Nat. Genet. 54, 804–816 (2022).

    Article  CAS  Google Scholar 

  7. Örd, T. et al. Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.121.318971 (2021).

  8. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647–1660 (2019). Spatiotemporal single-cell analyses of human embryo hearts, identifying distinctive gene profiles that correspond to discrete anatomical areas in each developmental stage, and providing a web-based resource of the developing human heart.

    Article  CAS  Google Scholar 

  9. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019)

  10. Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  Google Scholar 

  11. Paik, D. T., Cho, S., Tian, L., Chang, H. Y. & Wu, J. C. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 17, 457–473 (2020).

  12. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020). Single-cell RNA-seq of an adult human heart reveals the distinct atrial and ventricular subsets of cells, highlighting the cellular heterogeneity of the human heart and providing an online human cardiac cell atlas for a valuable reference.

    Article  Google Scholar 

  13. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

    Article  CAS  Google Scholar 

  14. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  Google Scholar 

  15. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article  Google Scholar 

  16. Nicin, L. et al. A human cell atlas of the pressure-induced hypertrophic heart. Nat. Cardiovasc. Res. 1, 174–185 (2022).

    Article  Google Scholar 

  17. Nicin, L. et al. Single-nuclei sequencing reveals novel insights into the regulation of cellular signatures in children with dilated cardiomyopathy. Circulation https://doi.org/10.1161/CIRCULATIONAHA.120.051391 (2021).

  18. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022). Spatial multi-omics analyses of human myocardial infarction tissue produced an integrative map of cardiac cell-type compositions at high-resolution, revealing changes in the cardiac transcriptome and epigenome by identifying distinct cardiac tissue structures during injury, repair, and remodeling

    Article  CAS  Google Scholar 

  19. Reichart, D. et al. Pathogenic variants damage cell composition and single-cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).

    Article  CAS  Google Scholar 

  20. Hocker, J. D. et al. Cardiac cell-type-specific gene regulatory programs and disease risk association. Sci. Adv. 7, eabf1444 (2021).

  21. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

  22. Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Meth. 11, 41–46 (2014).

    Article  CAS  Google Scholar 

  23. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  Google Scholar 

  24. Lombardo, J. A., Aliaghaei, M., Nguyen, Q. H., Kessenbrock, K. & Haun, J. B. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nat. Commun. 12, 2858 (2021).

    Article  CAS  Google Scholar 

  25. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  Google Scholar 

  26. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 13, e209648 (2018).

    Article  Google Scholar 

  27. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  Google Scholar 

  28. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017). Sci-RNA-seq, a combinatorial indexing method for profiling the transcriptomes of single cells or nuclei, was developed and profiled over 50,000 cells from the L2 larval stage of Caenorhabditis elegans, resulting in >50-fold ‘shotgun’ coverage of its somatic cell composition.

    Article  CAS  Google Scholar 

  29. Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  Google Scholar 

  30. Li, H. & Humphreys, B. D. Single-cell technologies: beyond microfluidics. Kidney360 2, 1196–1204 (2021).

    Article  Google Scholar 

  31. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    Article  CAS  Google Scholar 

  32. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article  CAS  Google Scholar 

  33. Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    Article  CAS  Google Scholar 

  34. Moulik, M. et al. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J. Am. Coll. Cardiol. 54, 325–333 (2009).

    Article  CAS  Google Scholar 

  35. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagnostics 14, 22–29 (2012).

    Article  CAS  Google Scholar 

  36. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    Article  CAS  Google Scholar 

  37. Orchard, S. et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    Article  CAS  Google Scholar 

  38. Jin, S. et al. Inference and analysis of cell–cell communication using CellChat. Nat. Commun. 12, 1088 (2021). CellChat is a tool that can statistically predict and analyze intercellular communication networks using single-cell RNA-sequencing data and thereby assist in the discovery of novel intercellular communications in various tissues.

    Article  CAS  Google Scholar 

  39. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  Google Scholar 

  40. Cabello-Aguilar, S. et al. SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics. Nucleic Acids Res. 48, e55 (2021).

    Article  Google Scholar 

  41. Gerety, S. S. & Anderson, D. J. Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397–1410 (2002).

    Article  CAS  Google Scholar 

  42. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

    Article  CAS  Google Scholar 

  43. Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single-cell RNA-sequencing data. Bioinformatics 36, 1150–1158 (2020).

    Article  CAS  Google Scholar 

  44. DePasquale, E. A. K. et al. Doubletdecon: deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep. 29, 1718–1727 (2019).

    Article  CAS  Google Scholar 

  45. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA-sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article  CAS  Google Scholar 

  46. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA-sequencing data. Gigascience 9, giaa151 (2020).

    Article  Google Scholar 

  47. Yang, S. et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 21, 57 (2020).

    Article  Google Scholar 

  48. Wang, X., He, Y., Zhang, Q., Ren, X. & Zhang, Z. Direct comparative analyses of 10x genomics chromium and Smart-seq2. Genomics Proteomics Bioinformatics 19, 253–266 (2021).

    Article  CAS  Google Scholar 

  49. Osorio, D. & Cai, J. J. Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control. Bioinformatics 37, 963–967 (2021).

    Article  CAS  Google Scholar 

  50. Maniatis, T. Mechanisms of alternative pre-mRNA splicing. Science 251, 33–34 (1991).

    Article  CAS  Google Scholar 

  51. Khan, M. A. F. et al. RBM20 regulates circular RNA production from the titin gene. Circ. Res. 119, 996–1003 (2016).

    Article  CAS  Google Scholar 

  52. van den Hoogenhof, M. M. G. et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138, 1330–1342 (2018).

    Article  Google Scholar 

  53. Harvey, S. E. & Cheng, C. Methods for characterization of alternative RNA splicing. in Long Non-coding RNAs: Methods and Protocols Vol. 1402 (eds. Feng, Y. & Zhang, L.) 229–241 (Humana Press, NY, 2016).

  54. Volden, R. & Vollmers, C. Single-cell isoform analysis in human immune cells. Genome Biol. 23, 47 (2022).

    Article  CAS  Google Scholar 

  55. Wong, E. S. et al. Deep conservation of the enhancer regulatory code in animals. Science 370, eaax8137 (2020).

  56. Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article  CAS  Google Scholar 

  57. Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858–871 (2018).

  58. Tan, W. L. W. et al. Epigenomes of human hearts reveal new genetic variants relevant for cardiac disease and phenotype. Circ. Res. 761–777 https://doi.org/10.1161/CIRCRESAHA.120.317254 (2020).

  59. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  Google Scholar 

  60. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). This study used simultaneous assessment of various modalities to define cellular states based on multimodal data, which improves our ability to identify previously unreported subpopulations, such as lymphoid.

    Article  CAS  Google Scholar 

  61. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  Google Scholar 

  62. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    Article  CAS  Google Scholar 

  63. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  Google Scholar 

  64. Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Disco. 20, 64–81 (2021).

  65. Assarsson, E. et al. Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).

    Article  Google Scholar 

  66. Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 13, 269–275 (2016).

    Article  CAS  Google Scholar 

  67. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017). REAP-seq is a technique that uses DNA-labeled antibodies and droplet microfluidics to assess the levels of gene and protein expression in single cells to identify and describe an unidentified cell type.

    Article  CAS  Google Scholar 

  68. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  Google Scholar 

  69. Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 18, 1204–1212 (2021).

    Article  CAS  Google Scholar 

  70. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods https://doi.org/10.1038/s41592-022-01461-y (2022).

    Article  Google Scholar 

  71. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

  72. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    Article  CAS  Google Scholar 

  73. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

  74. Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA-seq FISH. Nature 568, 235–239 (2019).

    Article  CAS  Google Scholar 

  75. Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    Article  CAS  Google Scholar 

  76. Cho, C. S. et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559–3572 (2021). Seq-Scope, a spatial barcoding technology, outperforms existing methods by several orders of magnitude by enabling researchers to observe every gene expressed, as well as single cells and structures inside those cells, with an astonishingly high resolution of 0.6 μm.

    Article  CAS  Google Scholar 

  77. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

  78. Resolve Biosciences. Key Findings. https://resolvebiosciences.com/ (2023).

  79. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    Article  Google Scholar 

  80. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies cell-type-specific cis-eQTLs and coexpression QTLs. Nat. Genet. 50, 493–497 (2018). This study used single-cell eQTL analysis to uncover genetic variations that influence regulatory networks by producing expression profiles of 25,000 PBMCs from 45 donors and identifying previously described cis-eQTLs, as well as new cell-type-specific cis-eQTLs.

    Article  CAS  Google Scholar 

  81. Elorbany, R. et al. Single-cell sequencing reveals lineage-specific dynamic genetic regulation of gene expression during human cardiomyocyte differentiation. PLoS Genet. 18, e1009666 (2022).

    Article  CAS  Google Scholar 

  82. Neavin, D. et al. Single cell eQTL analysis identifies cell-type-specific genetic control of gene expression in fibroblasts and reprogrammed induced pluripotent stem cells. Genome Biol 22, 76 (2021).

    Article  CAS  Google Scholar 

  83. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    Article  CAS  Google Scholar 

  84. Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).

    Article  CAS  Google Scholar 

  85. Yazar, S. et al. Single-cell eQTL mapping identifies cell-type-specific genetic control of autoimmune disease. Science 376, eabf3041 (2022).

  86. Mandric, I. et al. Optimized design of single-cell RNA-sequencing experiments for cell-type-specific eQTL analysis. Nat. Commun. 11, 5504 (2020).

    Article  CAS  Google Scholar 

  87. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–47 (2019).

    Article  CAS  Google Scholar 

  88. Tran, D. et al. Fast and precise single-cell data analysis using a hierarchical autoencoder. Nat. Commun. 12, 1029 (2021).

    Article  CAS  Google Scholar 

  89. Svensson, V., Gayoso, A., Yosef, N. & Pachter, L. Interpretable factor models of single-cell RNA-seq via variational autoencoders. Bioinformatics 36, 3418–3421 (2020).

    Article  CAS  Google Scholar 

  90. Grønbech, C. H. et al. ScVAE: variational auto-encoders for single-cell gene expression data. Bioinformatics 36, 4415–4422 (2020).

    Article  Google Scholar 

  91. Dong, G., Liao, G., Liu, H. & Kuang, G. A review of the autoencoder and its variants: a comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geosci. Remote Sens. Mag. 6, 44–68 (2018)

  92. Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).

    Article  Google Scholar 

  93. Wang, D. & Gu, J. VASC: dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genomics Proteomics Bioinformatics 16, 320–331 (2018).

    Article  Google Scholar 

  94. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

    Article  CAS  Google Scholar 

  95. Amodio, M. et al. Exploring single-cell data with deep multitasking neural networks. Nat. Methods 16, 1139–1145 (2019).

    Article  CAS  Google Scholar 

  96. Wang, T. et al. BERMUDA: a novel deep transfer learning method for single-cell RNA-sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome Biol. 20, 165 (2019).

    Article  Google Scholar 

  97. Liu, J. et al. Jointly defining cell types from multiple single-cell datasets using LIGER. Nat. Protoc. 15, 3632–3662 (2020).

    Article  CAS  Google Scholar 

  98. Zeng, W. et al. DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data. Nat. Commun. 10, 4613 (2019).

    Article  Google Scholar 

  99. Demetci, P., Santorella, R., Sandstede, B., Stafford Noble, W. & Singh, R. SCOT: single-cell multi-omics alignment with optimal transport. J. Comput. Biol. 29, 3–18 (2020).

  100. Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928–943 (2019). This paper introduced Waddington-OT, a method for analyzing developmental time courses to model the regulatory systems that underpin them and deduce ancestor-descendant outcomes showing a broader variety of developmental programs than those previously documented, including cell adaptability in either a terminal stromal state or a mesenchymal-to-epithelial transition state.

    Article  CAS  Google Scholar 

  101. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Meth. Prim. 2, 8 (2022).

  102. VanDusen, N. J. et al. Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat. Commun. 12, 4442 (2021).

    Article  CAS  Google Scholar 

  103. Nishiga, M., Liu, C., Qi, L. S. & Wu, J. C. The use of new CRISPR tools in cardiovascular research and medicine. Nat. Rev. Cardiol. 19, 505–521 (2022)

  104. Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629–635 (2020).

    Article  CAS  Google Scholar 

  105. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    Article  CAS  Google Scholar 

  106. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  Google Scholar 

  107. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020). This study generated comprehensive atlases of early human development from two studies by Cao et al. and Domcke et al., using a pooled approach with three levels of combinatorial indexing, and examined the single-cell gene expression and chromatin landscapes of 15 organs in fetal samples.

    Article  CAS  Google Scholar 

  108. Wang, L. et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat. Cell Biol. 22, 108–119 (2020).

    Article  Google Scholar 

  109. Barruet, E. et al. Functionally heterogeneous human satellite cells identified by single-cell RNA sequencing. Elife 9, e51576 (2020).

    Article  CAS  Google Scholar 

  110. Paik, D. T. et al. Large-scale single-cell RNA-seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells. Circ. Res. 123, 443–450 (2018).

    Article  CAS  Google Scholar 

  111. Li, Y. et al. Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation https://doi.org/10.1161/CIRCULATIONAHA.120.046528 (2020).

  112. Pan, H. et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142, 2060–2075 (2020).

    Article  CAS  Google Scholar 

  113. Selewa, A. et al. Systematic comparison of high-throughput single-cell and single-nucleus transcriptomes during cardiomyocyte differentiation. Sci Rep. 10, 1535 (2020).

    Article  CAS  Google Scholar 

  114. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.120.316770 (2020).

  115. Cui, Y. et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 26, 1934–1950 (2019).

    Article  CAS  Google Scholar 

  116. Nomura, S. et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat. Commun. 9, 4435 (2018).

    Article  Google Scholar 

  117. Churko J. M. et al. Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat. Commun. 9. 4906 (2018).

  118. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from American Heart Association grant 20POST35210896 (to W.L.W.T.); F30 HL156478 (to A.Z.); National Institutes of Health (NIH) grants R01 HG010359 (to W.H.W.), and R01 HL145676, R01 HL146690, R01 HL130020, R01 HL145676, R01 HL141371 and R01HL126527 (to J.C.W.); and Chan Zuckerberg Initiative 2020-217708 and 2021-240451 (to J.C.W.). We thank B. C. Wu (Stanford University), D. T. Paik (Stanford University), S. S. Hye (Stanford University) and L. C. J. Mick (National University of Singapore) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.L.W.T. conceived and wrote the manuscript and created the figures. W.O.S., A.Z. and S.R. compiled the references and wrote the manuscript. W.H.W. and W.J.G. wrote the manuscript, with input from all authors. J.C.W. directed the manuscript and reviewed it for important intellectual content.

Corresponding author

Correspondence to Joseph C. Wu.

Ethics declarations

Competing interests

W.J.G. is an equity holder of 10x Genomics and a cofounder of Protillion Biosciences and J.C.W. is a cofounder and scientific advisory board member for Greenstone Biosciences, but the work presented here is completely independent. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Kory Lavine, Minna Kaikkonen and Nathan Salomonis for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W.L.W., Seow, W.Q., Zhang, A. et al. Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. Nat Cardiovasc Res 2, 20–34 (2023). https://doi.org/10.1038/s44161-022-00205-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00205-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research