Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The immunobiology and clinical use of genetically engineered porcine hearts for cardiac xenotransplantation

Abstract

A summary of the scientific rationale of the advancements that led to the first genetically modified pig-to-human cardiac xenotransplantation is lacking in a complex and rapidly evolving field. Here, we aim to aid the general readership in the understanding of the gradual progression of cardiac (xeno)transplantation research, the immunobiology of cardiac xenotransplantation (including the latest immunosuppression, cardiac preservation and genetic engineering required for successful transplantation) and the regulatory landscape related to the clinical application of cardiac xenotransplantation for people with end-stage heart failure. Finally, we provide an overview of the outcomes and lessons learned from the first genetically modified pig-to-human cardiac heart xenotransplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of rejection in xenotransplantation.
Fig. 2: Mechanisms of action of immunomodulatory drugs and therapeutics in xenotransplantation.
Fig. 3: The immunobiology of cardiac xenotransplantation.

Similar content being viewed by others

References

  1. Rabin, R. C. In a first, man receives a heart from a genetically altered pig. The New York Times (10 January 2022).

  2. Griffith, B. P. et al. Modified pig-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022). This sentinel paper highlights the results of an FDA-approved implantation of a genetically modified pig heart into a patient under compassionate use authorization.

    Article  PubMed  Google Scholar 

  3. Taylor, C. J. et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: population based cohort study. Brit. Med. J. 364, l223 (2019).

  4. Bui, A. L., Horwich, T. B. & Fonarow, G. C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8, 30–41 (2011).

    Article  PubMed  Google Scholar 

  5. Hardy, J. D. et al. Heart transplantation in man. developmental studies and report of a case. J. Am. Med. Asosc. 188, 1132–1140 (1964). The report of the first heart transplantation, which highlights many modern-day issues in transplantation that ring true today, including cardiac preservation, and donor selection owing to supply limitations and ethics.

    CAS  Google Scholar 

  6. Barnard, C. N. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S. Afr. Med. J. 41, 1271–1274 (1967).

    CAS  PubMed  Google Scholar 

  7. Hoffman, J. R. H. et al. Early US experience with cardiac donation after circulatory death (DCD) using normothermic regional perfusion. J. Heart Lung Transplant. 40, 1408–1418 (2021).

    Article  PubMed  Google Scholar 

  8. Nilsson, J. et al. A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat. Commun. 11, 2976 (2020). This is the clinical trial for non-ischemic cardiac preservation that is currently used to overcome primary graft dysfunction in allotransplantation and that seems to uniquely suite cardiac xenotransplantation as well.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ethics Committee, American College of Critical Care Medicine & Society of Critical Care Medicine. Recommendations for nonheartbeating organ donation. A position paper by the Ethics Committee, American College of Critical Care Medicine, Society of Critical Care Medicine. Crit. Care Med. 29, 1826–1831 (2001).

    Google Scholar 

  10. Bailey, L. L. Baboon-to-human cardiac xenotransplantation in a neonate. J. Am. Med. Assoc. 254, 3321 (1985).

    Article  CAS  Google Scholar 

  11. Platt, J. L., West, L. J., Chinnock, R. E. & Cascalho, M. Toward a solution for cardiac failure in the newborn. Xenotransplantation 25, e12479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cooper, D. K. C., Hara, H., Banks, C. A., Cleveland, D. & Iwase, H. The “Baby Fae” baboon heart transplant—potential cause of rejection. Xenotransplantation 26, e12511 (2019).

  13. Mudur, G. Indian surgeon challenges banon xenotransplantation. Brit. Med. J. 318, 79–79 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shroff, S. Legal and ethical aspects of organ donation and transplantation. Indian J. Urol. 25, 348–355 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baruah, D. R. Why the US pig heart transplant was different from the 1997 Assam doc’s surgery. The Wire (13 January 2022).

  16. Kuwaki, K. et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 11, 29–31 (2005). This demonstrated that knockout of the predominant carbohydrate xenoantigen combined with CD40 blockade-based immunosuppression improves rejection-free survival.

    Article  CAS  PubMed  Google Scholar 

  17. Byrne, G. W., Stalboerger, P. G., Du, Z., Davis, T. R. & McGregor, C. G. A. Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation 91, 287–292 (2011). This sentinel paper, along with ref. 18, identified additional predominant carbohydrate xenoantigens other than galactose-α-1,3-galactose.

    Article  CAS  PubMed  Google Scholar 

  18. Good, A. H. et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant. Proc. 24, 559–562 (1992). This sentinel paper, along with ref. 17, identified additional predominant carbohydrate xenoantigens other than galactose-α-1,3-galactose.

    CAS  PubMed  Google Scholar 

  19. Dalmasso, A. P., Platt, J. L. & Bach, F. H. Reaction of complement with endothelial cells in a model of xenotransplantation. Clin. Exp. Immunol. 86, 31–35 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rose, A. G., Cooper, D. K., Human, P. A., Reichenspurner, H. & Reichart, B. Histopathology of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts. J. Heart Lung Transplant. 10, 223–234 (1991).

    CAS  PubMed  Google Scholar 

  21. Buhler, L. et al. High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 69, 2296–2304 (2000). The sentinel study that demonstrated the importance of CD40–CD40L co-stimulation blockade in cross-species transplantation from swine.

    Article  CAS  PubMed  Google Scholar 

  22. Ezzelarab, M. B. et al. Increased soluble CD154 (CD40 ligand) levels in xenograft recipients correlate with the development of de novo anti-pig IgG antibodies. Transplantation 97, 502–508 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Moses, R. D., Pierson, R. N., Winn, H. J. & Auchincloss, H. Xenogeneic proliferation and lymphokine production are dependent on CD4+ helper T cells and self antigen-presenting cells in the mouse. J. Exp. Med. 172, 567–575 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Martens, G. R. et al. Humoral reactivity of renal transplant-waitlisted patients to cells from GGTA1/CMAH/B4GalNT2, and SLA class I knockout pigs. Transplantation 101, e86–e92 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Estrada, J. L. et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation 22, 194–202 (2015). This paper first demonstrated a potential paradoxical effect of carbohydrate knockouts in preclinical models in Old World monkey recipients of porcine-derived xenografts that is distinct from human recipients.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dorling, A., Lombardi, G., Binns, R. & Lechler, R. I. Detection of primary direct and indirect human anti-porcine T cell responses using a porcine dendritic cell population. Eur. J. Immunol. 26, 1378–1387 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Yamada, K., Sachs, D. H. & DerSimonian, H. Human anti-porcine xenogeneic T cell response. Evidence for allelic specificity of mixed leukocyte reaction and for both direct and indirect pathways of recognition. J. Immunol. 155, 5249–5256 (1995). This paper demonstrates the ability for human T cells to recognize porcine antigens via both direct and indirect means, laying to rest a previously controversial topic.

    CAS  PubMed  Google Scholar 

  29. Murray, A. G., Khodadoust, M. M., Pober, J. S. & Bothwell, A. L. Porcine aortic endothelial cells activate human T cells: direct presentation of MHC antigens and costimulation by ligands for human CD2 and CD28. Immunity 1, 57–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Tomasi, R. et al. T-cell response in a cardiac xenotransplant model. Exp. Clin. Transplant. 19, 708–716 (2021).

    Article  PubMed  Google Scholar 

  31. Scalea, J., Hanecamp, I., Robson, S. C. & Yamada, K. T-cell-mediated immunological barriers to xenotransplantation: T-cell-mediated immunological barriers. Xenotransplantation 19, 23–30 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Higgins, R. et al. To induce or not to induce: do patients at greatest risk for fatal rejection benefit from cytolytic induction therapy? J. Heart Lung Transplant. 24, 392–400 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Cantarovich, M., Giannetti, N., Barkun, J. & Cecere, R. Antithymocyte globulin induction allows a prolonged delay in the initiation of cyclosporine in heart transplant patients with postoperative renal dysfunction. Transplantation 78, 779–781 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Rosenberg, P. B. et al. Induction therapy with basiliximab allows delayed initiation of cyclosporine and preserves renal function after cardiac transplantation. J. Heart Lung Transplant. 24, 1327–1331 (2005).

    Article  PubMed  Google Scholar 

  35. Costanzo, M. R. et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 29, 914–956 (2010).

    Article  PubMed  Google Scholar 

  36. Yamamoto, T. et al. Life-supporting kidney xenotransplantation from genetically engineered pigs in baboons: a comparison of two immunosuppressive regimens. Transplantation 103, 2090–2104 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Mohiuddin, M. M. et al. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. Am. J. Transplant. 12, 763–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. McGregor, C. G. A. et al. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival. J. Thorac. Cardiovasc. Surg. 130, 844.e1–844.e9 (2005).

    Article  Google Scholar 

  39. Lowe, M. et al. A novel monoclonal antibody to CD40 prolongs islet allograft survival. Am. J. Transplant. 12, 2079–2087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohiuddin, M. M. et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat. Commun. 7, 11138 (2016). This study demonstrated proof-of-principle rejection-free survival in cardiac xenotransplantation using genetically modified pig donors with co-stimulation blockade, measured in years.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noelle, R. J. et al. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc. Natl Acad. Sci. USA 89, 6550–6554 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, E. J. et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. Am. J. Transplant. 14, 59–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vincenti, F. et al. Costimulation blockade with belatacept in renal transplantation. N. Engl. J. Med. 353, 770–781 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Durrbach, A. et al. A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am. J. Transplant. 10, 547–557 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Rostaing, L. et al. Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am. J. Transplant. 13, 2875–2883 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Vincenti, F. et al. Belatacept and long-term outcomes in kidney transplantation. N. Engl. J. Med. 374, 333–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Cordoba, F. et al. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion. Am. J. Transplant. 15, 2825–2836 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Novartis announces discontinuation of CIRRUS-1 study of CFZ533 (iscalimab) in kidney transplant patients. Novartis https://www.novartis.com/news/novartis-announces-discontinuation-cirrus-1-study-cfz533-iscalimab-kidney-transplant-patients (2021).

  51. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Kawai, T., Andrews, D., Colvin, R. B., Sachs, D. H. & Cosimi, A. B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med. 6, 114–114 (2000). This paper describes complications related to CD154 (CD40L)-based immunotherapy, which dissuaded the field from using this target for co-stimulation blockade.

    Article  CAS  PubMed  Google Scholar 

  53. Knosalla, C., Gollackner, B. & Cooper, D. K. Anti-CD154 monoclonal antibody and thromboembolism revisted. Transplantation 74, 416–417 (2002).

    Article  PubMed  Google Scholar 

  54. Iwase, H. et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation 22, 302–309 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim, J. et al. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates. Xenotransplantation https://doi.org/10.1111/xen.12298 (2017).

  56. Kozlowski, T. et al. Depletion of anti-Gal(α)1-3 Gal antibody in baboons by specific alpha-Gal immunoaffinity columns. Xenotransplantation 5, 122–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Brandl, U. et al. Administration of GAS914 in an orthotopic pig-to-baboon heart transplantation model. Xenotransplantation 12, 134–141 (2005).

    Article  PubMed  Google Scholar 

  58. Brenner, P. et al. IG-therasorb immunoapheresis in orthotopic xenotransplantation of baboons with landrace pig hearts. Transplantation 69, 208–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Azimzadeh, A. et al. Removal of primate xenoreactive natural antibodies by extracorporeal perfusion of pig kidneys and livers. Transpl. Immunol. 6, 13–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Längin, M. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564, 430–433 (2018). This sentinel paper demonstrated successful life-supporting cardiac xenotransplantation function using non-ischemic continuous preservation and adjuncts to reduce post-transplantation xenograft growth.

    Article  PubMed  CAS  Google Scholar 

  61. Mohiuddin, M. et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation https://doi.org/10.1111/xen.12744 (2022). This paper demonstrated the longest survival to date in preclinical models of life-supporting cardiac xenotransplantation.

  62. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science 357, 1303–1307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eyestone, W. et al. in Clinical Xenotransplantation: Pathways and Progress in the Transplantation of Organs and Tissues Between Species (eds. Cooper, D. K. C. & Byrne, G.) 121–140 (Springer International Publishing, 2020). An in-depth description of how multigene pig donors are developed, cloned and bred for solid-organ xenotransplantation.

  64. Phelps, C. J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Gorsuch, W. B., Chrysanthou, E., Schwaeble, W. J. & Stahl, G. L. The complement system in ischemia–reperfusion injuries. Immunobiology 217, 1026–1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menger, M. D. Microcirculatory disturbances secondary to ischemia-reperfusion. Transplant. Proc. 27, 2863–2865 (1995).

    CAS  PubMed  Google Scholar 

  67. Yang, Q., He, G.-W., Underwood, M. J. & Yu, C.-M. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. Am. J. Transl. Res. 8, 765–777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Janeway, C. A. et al. Immunobiology: the Immune System in Health and Disease (Garland Science, 2001).

  69. Dalmasso, A. P. et al. Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am. J. Pathol. 140, 1157–1166 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun, X. et al. Role of decay-accelerating factor in regulating complement activation on the erythrocyte surface as revealed by gene targeting. Proc. Natl Acad. Sci. USA 96, 628–633 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Persson, B. D. et al. Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens. PLoS Pathog. 6, e1001122 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hänsch, G. M., Hammer, C. H., Vanguri, P. & Shin, M. L. Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc. Natl Acad. Sci. USA 78, 5118–5121 (1981).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Diamond, L. E. et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71, 132–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Loveland, B. E. et al. Characterization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons. Xenotransplantation 11, 171–183 (2004).

    Article  PubMed  Google Scholar 

  75. Byrne, G. W. et al. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation 63, 149–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Platt, J. L. et al. Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J. Exp. Med. 171, 1363–1368 (1990). One of the sentinel papers describing incompatibilities between porcine and human-derived coagulation factors.

    Article  CAS  PubMed  Google Scholar 

  77. Roussel, J. C. et al. Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am. J. Transplant. 8, 1101–1112 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Petersen, B. et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 16, 486–495 (2009).

    Article  PubMed  Google Scholar 

  79. Singh, A. K. et al. Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. Xenotransplantation 26, e12465 (2019).

    Article  PubMed  Google Scholar 

  80. Azimzadeh, A. M. et al. Early graft failure of GalTKO pig organs in baboons is reduced by expression of a human complement pathway-regulatory protein. Xenotransplantation 22, 310–316 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Iwase, H. et al. Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation 21, 72–83 (2014).

    Article  PubMed  Google Scholar 

  82. Bongoni, A. K. et al. Transgenic expression of human thrombomodulin inhibits HMGB1-induced porcine aortic endothelial cell activation. Transplantation 100, 1871–1879 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Chan, J. L. et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 24, e12330 (2017).

  84. Goerlich, C. E. et al. Heterotopic porcine cardiac xenotransplantation in the intra-abdominal position in a non-human primate model. Nat. Sci. Rep. 10, 10709 (2020).

    CAS  Google Scholar 

  85. DiChiacchio, L. et al. Early experience with preclinical perioperative cardiac xenograft dysfunction in a single program. Ann. Thorac. Surg. 109, 1357–1361 (2020).

    Article  PubMed  Google Scholar 

  86. Byrne, G. W., Du, Z., Sun, Z., Asmann, Y. W. & McGregor, C. G. A. Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 18, 14–27 (2011).

    Article  PubMed  Google Scholar 

  87. Goerlich, C. E. et al. Blood cardioplegia induction, perfusion storage and graft dysfunction in cardiac xenotransplantation. Front. Immunol. 12, 667093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Längin, M. et al. Cold non‐ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig‐to‐baboon xenotransplantation. Xenotransplantation 28, e12636 (2021).

  89. Bell, J. A study of rates of growth of Yorkshire, Lacombe, Landrace, and crossbred pigs from birth to 200 lb. Can. J. Anim. Sci. 44, 315–319 (1964).

    Article  Google Scholar 

  90. Gipp, W. F., Pond, W. G., Van Vleck, L. D. & Miller, P. D. Growth of Yorkshire suckling pigs. J. Anim. Sci. 29, 330–331 (1969).

    Article  CAS  PubMed  Google Scholar 

  91. Iwase, H. et al. Growth hormone receptor knockout: relevance to xenotransplantation. Xenotransplantation 28, e12652 (2020).

  92. Messerli, F. H. & Rimoldi, S. F. & Bangalore, S. The transition from hypertension to heart failure: contemporary update. JACC Heart Fail. 5, 543–551 (2017).

    Article  PubMed  Google Scholar 

  93. Längin, M. et al. Hemodynamic evaluation of anesthetized baboons and piglets by transpulmonary thermodilution: normal values and interspecies differences with respect to xenotransplantation. Xenotransplantation 27, e12576 (2019). A paper that describes the physiological mismatch between pigs and non-human primates.

    PubMed  Google Scholar 

  94. Goerlich, C. E. et al. An intrinsic link to an extrinsic cause of cardiac xenograft growth after xenotransplantation. Xenotransplantation 29, e12724 (2022).

  95. Fishman, J. A. Infectious disease risks in xenotransplantation. Am. J. Transplant. 18, 1857–1864 (2018).

    Article  PubMed  Google Scholar 

  96. Fishman, J. A., Scobie, L. & Takeuchi, Y. Xenotransplantation-associated infectious risk: a WHO consultation. Xenotransplantation 19, 72–81 (2012). An authoritative publication on the zoonotic risks of cross-species transplantation from swine.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Denner, J. Infectious risk in xenotransplantation—what post-transplant screening for the human recipient? Xenotransplantation 18, 151–157 (2011).

    Article  PubMed  Google Scholar 

  98. Valdes-Gonzalez, R., Dorantes, L. M., Bracho-Blanchet, E., Rodríguez-Ventura, A. & Djg, W. No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation. J. Med. Virol. 82, 331–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Elliott, R. B. et al. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant. 9, 895–901 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Porrett, P. M. et al. First clinical‐grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 22, 1037–1053 (2022).

  101. Switzer, W. M. et al. Lack of cross-species transmission of porcine endogenous retrovirus infection to nonhuman primate recipients of porcine cells, tissues, or organs. Transplantation 71, 959–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Denner, J. et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci. Rep. 10, 17531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yamada, K. et al. Porcine cytomegalovirus infection is associated with early rejection of kidney grafts in a pig to baboon xenotransplantation model. Transplantation 98, 411–418 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fishman, J. A., Sachs, D. H., Yamada, K. & Wilkinson, R. A. Absence of interaction between porcine endogenous retrovirus and porcine cytomegalovirus in pig-to-baboon renal xenotransplantation in vivo. Xenotransplantation 25, e12395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nellore, A. & Fishman, J. A. Donor-derived infections and infectious risk in xenotransplantation and allotransplantation. Xenotransplantation 25, e12423 (2018).

    Article  PubMed  Google Scholar 

  106. Fishman, J. A. Prevention of infection in xenotransplantation: Designated pathogen-free swine in the safety equation. Xenotransplantation 27, e12595 (2020). The use of pathogen-free facility herds for source animals in solid-organ xenotransplantation to reduce the risk of xenozoonosis.

    Article  PubMed  Google Scholar 

  107. US Public Health Service & Food and Drug Administration. PHS Guideline on Infectious Disease Issues in Xenotransplantation OMB Control No. 0910-0456 (Center for Biologics Evaluation and Research, 2001).

  108. Steen, S., Paskevicius, A., Liao, Q. & Sjöberg, T. Safe orthotopic transplantation of hearts harvested 24 hours after brain death and preserved for 24 hours. Scand. Cardiovasc. J. 50, 193–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hoyer, A. et al. Custodiol versus cold Calafiore for elective cardiac arrest in isolated aortic valve replacement: a propensity-matched analysis of 7263 patients. Eur. J. Cardiothorac. Surg. 52, 303–309 (2017).

    Article  PubMed  Google Scholar 

  110. Kim, K., Ball, C., Grady, P. & Mick, S. Use of del Nido cardioplegia for adult cardiac surgery at the Cleveland Clinic: perfusion implications. J. Extra. Corpor. Technol. 46, 317–323 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Hinrichs, A. et al. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 28, e12664 (2020).

  112. Tanabe, T. et al. Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation. Am. J. Transplant. 17, 1778–1790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goerlich, C. E. et al. The growth of xenotransplanted hearts can be reduced with growth hormone receptor knockout pig donors. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2021.07.051 (2021). This paper demonstrated improved survival with the use of growth-hormone-receptor-knockout xenografts as an alternative strategy to blood pressure and heart rate control, rapid weaning of steroids or mTOR inhibition in preventing post-transplantation xenograft growth.

  114. First WHO Global Consultation on Regulatory Requirements for Xenotransplantation Clinical Trials Changsha, China, 19-21 November 2008. Xenotransplantation 16, 61–63 (2009).

  115. Hawthorne, W. J. et al. Third WHO Global Consultation on Regulatory Requirements for Xenotransplantation Clinical Trials, Changsha, Hunan, China December 12–14, 2018: ‘The 2018 Changsha Communiqué’ the 10-year anniversary of the international consultation on xenotransplantation. Xenotransplantation 26, e12513 (2019).

    Article  PubMed  Google Scholar 

  116. Cooper, D. K. C. et al. Report of the xenotransplantation advisory committee of the international society for heart and lung transplantation. J. Heart Lung Transplant. 19, 1125–1165 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. US Food and Drug Administration. Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans Docket No. 00D-1662 (Center for Biologics Evaluation and Research, 2016). An authoritative guideline on the use and clinical translation of pigs for human transplantation.

  118. Matsumoto, S. et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant. Proc. 46, 1992–1995 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Dolgin, E. First GM pigs for allergies. Could xenotransplants be next? Nat. Biotechnol. 39, 397–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Rabin, R. C. In a first, surgeons attached a pig kidney to a human, and it worked. The New York Times (19 October 2021).

  121. Bailey, L. L. Origins of neonatal heart transplantation: an historical perspective. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 14, 98–100 (2011).

    Article  PubMed  Google Scholar 

  122. Barnard, C. N. et al. The present status of heterotopic cardiac transplantation. J. Thorac. Cardiovasc. Surg. 81, 433–439 (1981).

    Article  CAS  PubMed  Google Scholar 

  123. Barnard, C. N., Wolpowitz, A. & Losman, J. G. Heterotopic cardiac transplantation with a xenograft for assistance of the left heart in cardiogenic shock after cardiopulmonary bypass. South Afr. Med. J. 52, 1035–1038 (1977).

    CAS  Google Scholar 

  124. Jonasson, O. The case of Baby Fae. J. Am. Med. Assoc. 254, 3358 (1985).

    Article  CAS  Google Scholar 

  125. Calne, R. Y., Alexandre, G. P. & Murray, J. E. A study of the effects of drugs in prolonging survival of homologous renal transplants in dogs. Ann. NY Acad. Sci. 99, 743–761 (1962).

    Article  CAS  PubMed  Google Scholar 

  126. Hitchings, G. H. & Elion, G. B. The chemistry and biochemistry of purine analogs. Ann. NY Acad. Sci. 60, 195–199 (1954).

    Article  CAS  PubMed  Google Scholar 

  127. Terasaki, P. I. & McClelland, J. D. Microdroplet assay of human serum cytotoxins. Nature 204, 998–1000 (1964).

    Article  CAS  PubMed  Google Scholar 

  128. Terasaki, P., Marchioro, T. & Starzl, T. Sero-typing of human lymphocyte antigens: preliminary trials on long-term kidney homograft survivors. in Histocompatibility Testing (National Academy of Sciences, National Research Council, 1965).

  129. Iwasaki, Y. et al. The preparation and testing of horse antidog and antihuman antilymphoid plasma or serum and its protein fractions. Surg. Gynecol. Obstet. 124, 1–24 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Starzl, T. E., Marchioro, T. L., Porter, K. A., Iwasaki, Y. & Cerilli, G. J. The use of heterologous antilymphoid agents in canine renal and liver homotransplantation and in human renal homotransplantation. Surg. Gynecol. Obstet. 124, 301–308 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Borel, J. F., Feurer, C., Gubler, H. U. & Stähelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6, 468–475 (1976).

    Article  CAS  PubMed  Google Scholar 

  132. Calne, R. Y., White, D. J., Rolles, K., Smith, D. P. & Herbertson, B. M. Prolonged survival of pig orthotopic heart grafts treated with cyclosporin A. Lancet 1, 1183–1185 (1978).

    Article  CAS  PubMed  Google Scholar 

  133. Griffith, B. P., Hardesty, R. L., Deeb, G. M., Starzl, T. E. & Bahnson, H. T. Cardiac transplantation with cyclosporin A and prednisone. Ann. Surg. 196, 324–329 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 40, 1256–1265 (1987).

    Article  CAS  Google Scholar 

  135. Armitage, J. M., Kormos, R. L., Fung, J. & Starzl, T. E. The clinical trial of FK 506 as primary and rescue immunosuppression in adult cardiac transplantation. Transplant. Proc. 23, 3054–3057 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kobashigawa, J. et al. A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate mofetil investigators. Transplantation 66, 507–515 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Platt, J. L. et al. The role of natural antibodies in the activation of xenogenic endothelial cells. Transplantation 52, 1037–1043 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Kaplon, R. J. et al. Absence of hyperacute rejection in newborn pig-to-baboon cardiac xenografts. Transplantation 59, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Lexer, G. et al. Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model. J. Heart Transplant. 5, 411–418 (1986). Early description of hyperacute rejection in pig-to-baboon cardiac xenotransplantation, a preclinical model for human xenotransplantation from swine.

    CAS  PubMed  Google Scholar 

  140. White, D. J. G. et al. The control of hyperacute rejection by genetic engineering of the donor species. Eye 9, 185–189 (1995).

    Article  PubMed  Google Scholar 

  141. Waterworth, P. D. et al. Life-supporting pig-to-baboon heart xenotransplantation. J. Heart Lung Transplant. 17, 1201–1207 (1998).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. E. G., A. K. S, B. P. G. and M. M. M. wrote, critiqued and edited the manuscript. All authors approved the final draft prior to submission.

Corresponding author

Correspondence to Muhammad M. Mohiuddin.

Ethics declarations

Competing interests

There authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Kazuhiko Yamada and Paolo Brenner for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerlich, C.E., Singh, A.K., Griffith, B.P. et al. The immunobiology and clinical use of genetically engineered porcine hearts for cardiac xenotransplantation. Nat Cardiovasc Res 1, 715–726 (2022). https://doi.org/10.1038/s44161-022-00112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00112-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing