Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Theoretical and empirical advances in understanding musical rhythm, beat and metre

Abstract

The rhythmic elements of music are integral to experiences such as singing, musical emotions, the urge to dance and playing a musical instrument. Thus, studies of musical rhythm are an especially fertile ground for the development of innovative theories of complex naturalistic behaviour. In this Review, we first synthesize behavioural and neural studies of musical rhythm, beat and metre perception. Then, we describe key theories and models of these abilities, including nonlinear oscillator models and predictive-coding models, to clarify the extent to which they overlap in their mechanistic proposals and make distinct testable predictions. Next, we review studies of development and genetics to shed further light on the psychological and neural basis of rhythmic abilities and provide insight into the evolutionary and cultural origins of music. Last, we outline future research opportunities to integrate behavioural and genetics studies with computational modelling and neuroscience studies to better understand musical behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perception and production of rhythm, beat and metre.
Fig. 2: Two leading theories of beat and metre perception.
Fig. 3: Developmental trajectories for rhythm, beat and metre.

Similar content being viewed by others

References

  1. Hamilton, L. S. & Huth, A. G. The revolution will not be controlled: natural stimuli in speech neuroscience. Lang. Cogn. Neurosci. 35, 573–582 (2020).

    Article  PubMed  Google Scholar 

  2. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    Article  PubMed  Google Scholar 

  3. Zaki, J. & Ochsner, K. The need for a cognitive neuroscience of naturalistic social cognition. Ann. N. Y. Acad. Sci. 1167, 16–30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cooper, G. & Meyer, L. B. The Rhythmic Structure of Music (Univ. Chicago, 1960).

  5. Hasty, C. Meter as Rhythm (Oxford Univ. Press, 1997).

  6. Lerdahl, F. & Jackendoff, R. A Generative Theory of Tonal Music (MIT Press, 1983).

  7. London, J. Hearing in Time: Psychological Aspects of Musical Meter 2nd edn (Oxford Univ. Press, 2012).

  8. Kotz, S. A., Ravignani, A. & Fitch, W. T. The evolution of rhythm processing. Trends Cogn. Sci. 22, 896–910 (2018).

    Article  PubMed  Google Scholar 

  9. Mehr, S. A., Krasnow, M. M., Bryant, G. A. & Hagen, E. H. Origins of music in credible signaling. Behav. Brain Sci. 44, e60 (2021).

    Article  Google Scholar 

  10. Savage, P. E. et al. Toward inclusive theories of the evolution of musicality. Behav. Brain Sci. 44, e121 (2021).

    Article  PubMed  Google Scholar 

  11. Shamay-Tsoory, S. G., Saporta, N., Marton-Alper, I. Z. & Gvirts, H. Z. Herding brains: a core neural mechanism for social alignment. Trends Cognit. Sci. 23, 174–186 (2019).

    Article  Google Scholar 

  12. Bregman, A. S. Auditory Scene Analysis: The Perceptual Organization of Sound (MIT Press, 1990).

  13. Griffiths, T. D. & Warren, J. D. What is an auditory object? Nat. Rev. Neurosci. 5, 887–892 (2004).

    Article  PubMed  Google Scholar 

  14. Snyder, J. S., Gregg, M. K., Weintraub, D. M. & Alain, C. Attention, awareness, and the perception of auditory scenes. Front. Psychol. 3, 15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hannon, E. E., Snyder, J. S., Eerola, T. & Krumhansl, C. L. The role of melodic and temporal cues in perceiving musical meter. J. Exp. Psychol. Hum. Percept. Perform. 30, 956–974 (2004).

    Article  PubMed  Google Scholar 

  16. Essens, P. J. & Povel, D. J. Metrical and nonmetrical representations of temporal patterns. Percept. Psychophys. 37, 1–7 (1985).

    Article  PubMed  Google Scholar 

  17. Thomassen, J. M. Melodic accent: experiments and a tentative model. J. Acoust. Soc. Am. 71, 1596–1605 (1982).

    Article  Google Scholar 

  18. Brochard, R., Abecasis, D., Potter, D., Ragot, R. & Drake, C. The “ticktock” of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci. 14, 362–366 (2003).

    Article  PubMed  Google Scholar 

  19. Holzapfel, A. Relation between surface rhythm and rhythmic modes in Turkish makam music. J. N. Music Res. 44, 25–38 (2015).

    Article  Google Scholar 

  20. London, J., Polak, R. & Jacoby, N. Rhythm histograms and musical meter: a corpus study of Malian percussion music. Psychon. Bull. Rev. 24, 474–480 (2017).

    Article  PubMed  Google Scholar 

  21. Savage, P. E., Brown, S., Sakai, E. & Currie, T. E. Statistical universals reveal the structures and functions of human music. Proc. Natl Acad. Sci. USA 112, 8987–8992 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fraisse, P. in The Psychology of Music (ed. Deutsch, D.) 149–180 (Academic Press, 1982).

  23. Povel, D. J. Internal representation of simple temporal patterns. J. Exp. Psychol. Hum. Percept. Perform. 7, 3–18 (1981).

    Article  PubMed  Google Scholar 

  24. Repp, B. H., London, J. & Keller, P. E. Production and synchronization of uneven rhythms at fast tempi. Music Percept. 23, 61–78 (2005).

    Article  Google Scholar 

  25. Snyder, J. S., Hannon, E. E., Large, E. W. & Christiansen, M. H. Synchronization and continuation tapping to complex meters. Music Percept. 24, 135–145 (2006).

    Article  Google Scholar 

  26. Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol. 27, 359–370 (2017).

    Article  PubMed  Google Scholar 

  27. Polak, R. et al. Rhythmic prototypes across cultures: a comparative study of tapping synchronization. Music Percept. 36, 1–23 (2018).

    Article  Google Scholar 

  28. Jacoby, N. et al. Commonality and variation in mental representations of music revealed by a cross-cultural comparison of rhythm priors in 15 countries. Nat. Hum. Behav. https://doi.org/10.1038/s41562-023-01800-9 (2024).

  29. Cook, P., Rouse, A., Wilson, M. & Reichmuth, C. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic. J. Comp. Psychol. 127, 412–427 (2013).

    Article  PubMed  Google Scholar 

  30. Schachner, A., Brady, T. F., Pepperberg, I. M. & Hauser, M. D. Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 19, 831–836 (2009).

    Article  PubMed  Google Scholar 

  31. Roeske, T. C., Tchernichovski, O., Poeppel, D. & Jacoby, N. Categorical rhythms are shared between songbirds and humans. Curr. Biol. 30, 3544–3555.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bouwer, F. L., Nityananda, V., Rouse, A. A. & ten Cate, C. Rhythmic abilities in humans and non-human animals: a review and recommendations from a methodological perspective. Phil. Trans. R. Soc. B 376, 20200335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Gregorio, C. et al. Categorical rhythms in a singing primate. Curr. Biol. 31, R1379–R1380 (2021).

    Article  PubMed  Google Scholar 

  34. Lenc, T. et al. Mapping between sound, brain and behaviour: four-level framework for understanding rhythm processing in humans and non-human primates. Phil. Trans. R. Soc. B 376, 20200325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burger, B., London, J., Thompson, M. R. & Toiviainen, P. Synchronization to metrical levels in music depends on low-frequency spectral components and tempo. Psychol. Res. 82, 1195–1211 (2018).

    Article  PubMed  Google Scholar 

  36. Burger, B., Thompson, M. R., Luck, G., Saarikallio, S. & Toiviainen, P. Influences of rhythm- and timbre-related musical features on characteristics of music-induced movement. Front. Psychol. 4, 183 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cameron, D. J. et al. Undetectable very-low frequency sound increases dancing at a live concert. Curr. Biol. 32, R1222–R1223 (2022).

    Article  PubMed  Google Scholar 

  38. Ross, J. M., Warlaumont, A. S., Abney, D. H., Rigoli, L. M. & Balasubramaniam, R. Influence of musical groove on postural sway. J. Exp. Psychol. Hum. Percept. Perform. 42, 308–319 (2016).

    Article  PubMed  Google Scholar 

  39. Demos, A. P., Layeghi, H., Wanderley, M. M. & Palmer, C. Staying together: a bidirectional delay-coupled approach to joint action. Cogn. Sci. 43, e12766 (2019).

    Article  PubMed  Google Scholar 

  40. Repp, B. H. Probing the cognitive representation of musical time: structural constraints on the perception of timing perturbations. Cognition 44, 241–281 (1992).

    Article  PubMed  Google Scholar 

  41. Repp, B. H. & Su, Y.-H. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon. Bull. Rev. 20, 403–452 (2013).

    Article  PubMed  Google Scholar 

  42. Keller, P. E., Novembre, G. & Hove, M. J. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination. Phil. Trans. R. Soc. B 369, 20130394 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Drake, C., Penel, A. & Bigand, E. Tapping in time with mechanically and expressively performed music. Music Percept. 18, 1–23 (2000).

    Article  Google Scholar 

  44. Van Noorden, L. P. A. S. & Moelants, D. Resonance in the perception of musical pulse. J. N. Music Res. 28, 43–66 (1999).

    Article  Google Scholar 

  45. McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M. & Miller, N. S. The time of our lives: life span development of timing and event tracking. J. Exp. Psychol. Gen. 135, 348–367 (2006).

    Article  PubMed  Google Scholar 

  46. Ullal-Gupta, S., Hannon, E. E. & Snyder, J. S. Tapping to a slow tempo in the presence of simple and complex meters reveals experience-specific biases for processing music. PLoS ONE 9, e102962 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Snyder, J. & Krumhansl, C. L. Tapping to ragtime: cues to pulse finding. Music Percept. 18, 455–489 (2001).

    Article  Google Scholar 

  48. Toiviainen, P. & Snyder, J. S. Tapping to Bach: resonance-based modeling of pulse. Music Percept. 21, 43–80 (2003).

    Article  Google Scholar 

  49. Witek, M. A., Clarke, E. F., Wallentin, M., Kringelbach, M. L. & Vuust, P. Syncopation, body-movement and pleasure in groove music. PLoS ONE 9, e94446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Polak, R., London, J. & Jacoby, N. Both isochronous and non-isochronous metrical subdivision afford precise and stable ensemble entrainment: a corpus study of Malian jembe drumming. Front. Neurosci. 10, 285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pressing, J. Black Atlantic rhythm: its computational and transcultural foundations. Music Percept. 19, 285–310 (2002).

    Article  Google Scholar 

  52. Jakubowski, K., Polak, R., Rocamora, M., Jure, L. & Jacoby, N. Aesthetics of musical timing: culture and expertise affect preferences for isochrony but not synchrony. Cognition 227, 105205 (2022).

    Article  PubMed  Google Scholar 

  53. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci. 19, 893–906 (2007).

    Article  PubMed  Google Scholar 

  54. Grahn, J. A. See what I hear? Beat perception in auditory and visual rhythms. Exp. Brain Res. 220, 51–61 (2012).

    Article  PubMed  Google Scholar 

  55. Patel, A. D., Iversen, J. R., Chen, Y. Q. & Repp, B. H. The influence of metricality and modality on synchronization with a beat. Exp. Brain Res. 163, 226–238 (2005).

    Article  PubMed  Google Scholar 

  56. Grahn, J. A. & McAuley, J. D. Neural bases of individual differences in beat perception. Neuroimage https://doi.org/10.1016/j.neuroimage.2009.04.039 (2009).

  57. McAuley, J. D., Frater, D., Janke, K. & Miller, N. S. Detecting changes in timing: evidence for two modes of listening. In Proceedings of the 9th International Conference on Music Perception and Cognition, 188–189 (2006).

  58. Snyder, J. S., Pasinski, A. C. & McAuley, J. D. Listening strategy for auditory rhythms modulates neural correlates of expectancy and cognitive processing. Psychophysiology 48, 198–207 (2011).

    Article  PubMed  Google Scholar 

  59. McPherson, T., Berger, D., Alagapan, S. & Fröhlich, F. Intrinsic rhythmicity predicts synchronization-continuation entrainment performance. Sci. Rep. 8, 11782 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Phillips-Silver, J. et al. Born to dance but beat deaf: a new form of congenital amusia. Neuropsychologia 49, 961–969 (2011).

    Article  PubMed  Google Scholar 

  61. Sowiński, J. & Dalla Bella, S. Poor synchronization to the beat may result from deficient auditory-motor mapping. Neuropsychologia 51, 1952–1963 (2013).

    Article  PubMed  Google Scholar 

  62. Cinelyte, U., Cannon, J., Patel, A. D. & Müllensiefen, D. Testing beat perception without sensory cues to the beat: the Beat-Drop Alignment Test (BDAT). Atten. Percept. Psychophys. 84, 2702–2714 (2022).

    PubMed  PubMed Central  Google Scholar 

  63. Iversen, J. R. & Patel, A. D. The Beat Alignment Test (BAT): surveying beat processing abilities in the general population. In Proceedings of the 10th International Conference on Music Perception and Cognition, 465–468 (2008).

  64. Palmer, C. & Krumhansl, C. L. Mental representations for musical meter. J. Exp. Psychol. Hum. Percept. Perform. 16, 728–741 (1990).

    Article  PubMed  Google Scholar 

  65. Nave-Blodgett, J. E., Snyder, J. S. & Hannon, E. E. Auditory superiority for perceiving the beat level but not measure level in music. J. Exp. Psychol. Hum. Percept. Perform. 47, 1516–1542 (2021).

    Article  PubMed  Google Scholar 

  66. Nave-Blodgett, J. E., Snyder, J. S. & Hannon, E. E. Hierarchical beat perception develops throughout childhood and adolescence and is enhanced in those with musical training. J. Exp. Psychol. Gen. 150, 314–339 (2021).

    Article  PubMed  Google Scholar 

  67. Fujii, S. & Schlaug, G. The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation. Front. Hum. Neurosci. 7, 771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Law, L. N. & Zentner, M. Assessing musical abilities objectively: construction and validation of the profile of music perception skills. PLoS ONE 7, e52508 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C. & Vuust, P. The musical ear test, a new reliable test for measuring musical competence. Learn. Individ. Differ. 20, 188–196 (2010).

    Article  Google Scholar 

  70. Mullensiefen, D., Gingras, B., Musil, J. & Stewart, L. The musicality of non-musicians: an index for assessing musical sophistication in the general population. PLoS ONE 9, e89642 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bonacina, S., Krizman, J., White-Schwoch, T., Nicol, T. & Kraus, N. How rhythmic skills relate and develop in school-age children. Glob. Pediatr. Health 6, 2333794X19852045 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Fiveash, A., Bella, S. D., Bigand, E., Gordon, R. L. & Tillmann, B. You got rhythm, or more: the multidimensionality of rhythmic abilities. Atten. Percept. Psychophys. 84, 1370–1392 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Draheim, C., Tsukahara, J. S., Martin, J. D., Mashburn, C. A. & Engle, R. W. A toolbox approach to improving the measurement of attention control. J. Exp. Psychol. Gen. 150, 242–275 (2021).

    Article  PubMed  Google Scholar 

  74. Vazire, S., Schiavone, S. R. & Bottesini, J. G. Credibility beyond replicability: improving the four validities in psychological science. Curr. Dir. Psychol. Sci. 31, 162–168 (2022).

    Article  Google Scholar 

  75. Janata, P., Tomic, S. T. & Haberman, J. M. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol. Gen. 141, 54–75 (2012).

    Article  PubMed  Google Scholar 

  76. Senn, O. et al. An SEM approach to validating the psychological model of musical groove. J. Exp. Psychol. Hum. Percept. Perform. 49, 290–305 (2023).

    Article  PubMed  Google Scholar 

  77. Madison, G. Experiencing groove induced by music: consistency and phenomenology. Music Percept. 24, 201–208 (2006).

    Article  Google Scholar 

  78. O’Connell, S. R., Nave-Blodgett, J. E., Wilson, G. E., Hannon, E. E. & Snyder, J. S. Elements of musical and dance sophistication predict musical groove perception. Front. Psychol. 13, 998321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Witek, M. A. G. et al. Syncopation affects free body-movement in musical groove. Exp. Brain Res. 235, 995–1005 (2017).

    Article  PubMed  Google Scholar 

  80. Dotov, D., Bosnyak, D. & Trainor, L. J. Collective music listening: movement energy is enhanced by groove and visual social cues. Q. J. Exp. Psychol. 74, 1037–1053 (2021).

    Article  Google Scholar 

  81. Spiech, C., Sioros, G., Endestad, T., Danielsen, A. & Laeng, B. Pupil drift rate indexes groove ratings. Sci. Rep. 12, 11620 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Matthews, T. E., Witek, M. A., Heggli, O. A., Penhune, V. B. & Vuust, P. The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS ONE 14, e0204539 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Senn, O., Kilchenmann, L., Bechtold, T. & Hoesl, F. Groove in drum patterns as a function of both rhythmic properties and listeners’ attitudes. PLoS ONE 13, e0199604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sioros, G., Madison, G., Cocharro, D., Danielsen, A. & Gouyon, F. Syncopation and groove in polyphonic music: patterns matter. Music Percept. 39, 503–531 (2022).

    Article  Google Scholar 

  85. Stupacher, J., Wrede, M. & Vuust, P. A brief and efficient stimulus set to create the inverted U-shaped relationship between rhythmic complexity and the sensation of groove. PLoS ONE 17, e0266902 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Witek, M. A. G. et al. A critical cross-cultural study of sensorimotor and groove responses to syncopation among Ghanaian and American university students and staff. Music Percept. 37, 278–297 (2020).

    Article  Google Scholar 

  87. Huron, D. B. Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, 2006).

  88. Meyer, L. B. Emotion and Meaning in Music (Univ. Chicago Press, 1956).

  89. Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

    Article  PubMed  Google Scholar 

  90. Shany, O. et al. Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Soc. Cogn. Affect. Neurosci. 14, 459–470 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dalla Bella, S. in Music and the Aging Brain (eds Cuddy, L. L., Belleville, S. & Moussard, A.) 383–406 (Academic Press, 2020).

  92. Ghai, S., Ghai, I., Schmitz, G. & Effenberg, A. O. Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci. Rep. 8, 506 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nombela, C., Hughes, L. E., Owen, A. M. & Grahn, J. A. Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37, 2564–2570 (2013).

    Article  PubMed  Google Scholar 

  94. Schaefer, R. S., Vlek, R. J. & Desain, P. Decomposing rhythm processing: electroencephalography of perceived and self-imposed rhythmic patterns. Psychol. Res. 75, 95–106 (2011).

    Article  PubMed  Google Scholar 

  95. Tierney, A., White-Schwoch, T., MacLean, J. & Kraus, N. Individual differences in rhythm skills: links with neural consistency and linguistic ability. J. Cogn. Neurosci. 29, 855–868 (2017).

    Article  PubMed  Google Scholar 

  96. Nave, K. M., Hannon, E. E. & Snyder, J. S. Steady state-evoked potentials of subjective beat perception in musical rhythms. Psychophysiology 59, e13963 (2022).

    Article  PubMed  Google Scholar 

  97. Nozaradan, S., Peretz, I., Missal, M. & Mouraux, A. Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31, 10234–10240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Winkler, I., Haden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA 106, 2468–2471 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pasinski, A. C., McAuley, J. D. & Snyder, J. S. How modality specific is processing of auditory and visual rhythms? Psychophysiology 53, 198–208 (2016).

    Article  PubMed  Google Scholar 

  100. Pfeuty, M., Ragot, R. & Pouthas, V. Processes involved in tempo perception: a CNV analysis. Psychophysiology 40, 69–76 (2003).

    Article  PubMed  Google Scholar 

  101. Fujioka, T., Trainor, L. J., Large, E. W. & Ross, B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 32, 1791–1802 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Iversen, J. R., Repp, B. H. & Patel, A. D. Top-down control of rhythm perception modulates early auditory responses. Ann. N. Y. Acad. Sci. 1169, 58–73 (2009).

    Article  PubMed  Google Scholar 

  103. Snyder, J. S. & Large, E. W. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn. Brain Res. 24, 117–126 (2005).

    Article  Google Scholar 

  104. Desain, P. & Honing, H. Computational models of beat induction: the rule-based approach. J. N. Music Res. 28, 29–42 (1999).

    Article  Google Scholar 

  105. Longuet-Higgins, H. C. & Lee, C. S. The perception of musical rhythms. Perception 11, 115–128 (1982).

    Article  PubMed  Google Scholar 

  106. Scheirer, E. D. Tempo and beat analysis of acoustic musical signals. J. Acoust. Soc. Am. 103, 588–601 (1998).

    Article  PubMed  Google Scholar 

  107. Tomic, S. T. & Janata, P. Beyond the beat: modeling metric structure in music and performance. J. Acoust. Soc. Am. 124, 4024–4041 (2008).

    Article  PubMed  Google Scholar 

  108. Todd, N. & Lee, C. The sensory–motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Front. Hum. Neurosci. 9, 444 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Eck, D. Identifying metrical and temporal structure with an autocorrelation phase matrix. Music Percept. 24, 167–176 (2006).

    Article  Google Scholar 

  110. Toiviainen, P. & Eerola, T. Autocorrelation in meter induction: the role of accent structure. J. Acoust. Soc. Am. 119, 1164–1170 (2006).

    Article  PubMed  Google Scholar 

  111. Giraud, A.-L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558 (2007).

    Article  PubMed  Google Scholar 

  113. Proksch, S., Comstock, D. C., Mede, B., Pabst, A. & Balasubramaniam, R. Motor and predictive processes in auditory beat and rhythm perception. Front. Hum. Neurosci. 14, 13 (2020).

    Article  Google Scholar 

  114. Harms, M. P. & Melcher, J. R. Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. J. Neurophysiol. 88, 1433–1450 (2002).

    Article  PubMed  Google Scholar 

  115. Giraud, A. L. et al. Representation of the temporal envelope of sounds in the human brain. J. Neurophysiol. 84, 1588–1598 (2000).

    Article  PubMed  Google Scholar 

  116. Eck, D. Finding downbeats with a relaxation oscillator. Psychol. Res. 66, 18–25 (2002).

    Article  PubMed  Google Scholar 

  117. Large, E. W. & Kolen, J. F. Resonance and the perception of musical meter. Connect. Sci. 6, 177–208 (1994).

    Article  Google Scholar 

  118. Toiviainen, P. An interactive MIDI accompanist. Comput. Music J. 22, 63–75 (1998).

    Article  Google Scholar 

  119. Jones, M. R. & Boltz, M. Dynamic attending and responses to time. Psychol. Rev. 96, 459–491 (1989).

    Article  PubMed  Google Scholar 

  120. Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Article  Google Scholar 

  121. Bartolo, R., Prado, L. & Merchant, H. Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. J. Neurosci. 34, 3910–3923 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fujioka, T., Ross, B. & Trainor, L. J. Beta-band oscillations represent auditory beat and its metrical hierarchy in perception and imagery. J. Neurosci. 35, 15187–15198 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Large, E. W., Herrera, J. A. & Velasco, M. J. Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci. 9, 159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Tal, I. et al. Neural entrainment to the beat: the “missing-pulse” phenomenon. J. Neurosci. 37, 6331–6341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tichko, P., Kim, J. C. & Large, E. W. Bouncing the network: a dynamical systems model of auditory–vestibular interactions underlying infants’ perception of musical rhythm. Dev. Sci. 24, e13103 (2021).

    Article  PubMed  Google Scholar 

  126. Tichko, P. & Large, E. W. Modeling infants’ perceptual narrowing to musical rhythms: neural oscillation and Hebbian plasticity. Ann. N. Y. Acad. Sci. 1453, 125–139 (2019).

    Article  PubMed  Google Scholar 

  127. Friston, K. Hierarchical models in the brain. PLoS Comput. Biol. 4, e1000211 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  PubMed  Google Scholar 

  129. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  PubMed  Google Scholar 

  130. Koelsch, S., Vuust, P. & Friston, K. Predictive processes and the peculiar case of music. Trends Cogn. Sci. 23, 63–77 (2019).

    Article  PubMed  Google Scholar 

  131. Denham, S. L. & Winkler, I. Predictive coding in auditory perception: challenges and unresolved questions. Eur. J. Neurosci. 51, 1151–1160 (2020).

    Article  PubMed  Google Scholar 

  132. Heilbron, M. & Chait, M. Great expectations: is there evidence for predictive coding in auditory cortex? Neuroscience https://doi.org/10.1016/j.neuroscience.2017.07.061 (2017).

  133. Palmer, C. & Demos, A. P. Are we in time? how predictive coding and dynamical systems explain musical synchrony. Curr. Dir. Psychol. Sci. 31, 147–153 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cannon, J. Expectancy-based rhythmic entrainment as continuous Bayesian inference. PLoS Comput. Biol. 17, e1009025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cannon, J. J. & Patel, A. D. How beat perception co-opts motor neurophysiology. Trends Cogn. Sci. 25, 137–150 (2021).

    Article  PubMed  Google Scholar 

  136. Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36, 337–359 (2013).

    Article  PubMed  Google Scholar 

  137. Bengtsson, S. L. et al. Listening to rhythms activates motor and premotor cortices. Cortex 45, 62–71 (2009).

    Article  PubMed  Google Scholar 

  138. Chen, J. L., Zatorre, R. J. & Penhune, V. B. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 32, 1771–1781 (2006).

    Article  PubMed  Google Scholar 

  139. Cheng, T. H. Z., Creel, S. C. & Iversen, J. R. How do you feel the rhythm: dynamic motor–auditory interactions are involved in the imagination of hierarchical timing. J. Neurosci. 42, 500–512 (2022).

    Article  PubMed  Google Scholar 

  140. Grahn, J. A. & Brett, M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex 45, 54–61 (2009).

    Article  PubMed  Google Scholar 

  141. Kasdan, A. V. et al. Identifying a brain network for musical rhythm: a functional neuroimaging meta-analysis and systematic review. Neurosci. Biobehav. Rev. 136, 104588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schubotz, R. I. & von Cramon, D. Y. Interval and ordinal properties of sequences are associated with distinct premotor areas. Cereb. Cortex 11, 210–222 (2001).

    Article  PubMed  Google Scholar 

  143. Ross, J. M., Iversen, J. R. & Balasubramaniam, R. The role of posterior parietal cortex in beat-based timing perception: a continuous theta burst stimulation study. J. Cogn. Neurosci. 30, 634–643 (2018).

    Article  PubMed  Google Scholar 

  144. Phillips-Silver, J. & Trainor, L. J. Feeling the beat: movement influences infant rhythm perception. Science 308, 1430 (2005).

    Article  PubMed  Google Scholar 

  145. Hannon, E. E. & Trehub, S. E. Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–55 (2005).

    Article  PubMed  Google Scholar 

  146. Hannon, E. E. & Trehub, S. E. Tuning in to musical rhythms: infants learn more readily than adults. Proc. Natl Acad. Sci. USA 102, 12289–12290 (2005).

    Article  Google Scholar 

  147. Lenc, T., Keller, P. E., Varlet, M. & Nozaradan, S. Neural and behavioral evidence for frequency-selective context effects in rhythm processing in humans. Cereb. Cortex Commun. 1, tgaa037 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Vanden Bosch der Nederlanden, C. M., Joanisse, M. F. & Grahn, J. A. Music as a scaffold for listening to speech: better neural phase-locking to song than speech. Neuroimage 214, 116767 (2020).

    Article  PubMed  Google Scholar 

  149. Zhao, T. C. & Kuhl, P. K. Neural and physiological relations observed in musical beat and meter processing. Brain Behav. 10, e01836 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nozaradan, S., Peretz, I. & Keller, P. E. Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Sci. Rep. 6, 20612 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Carver, F. W., Fuchs, A., Jantzen, K. J. & Kelso, J. A. S. Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition. Clin. Neurophysiol. 113, 1921–1931 (2002).

    Article  PubMed  Google Scholar 

  152. Gutschalk, A. et al. Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin. Neurophysiol. 110, 856–868 (1999).

    Article  PubMed  Google Scholar 

  153. Rajendran, V. G., Harper, N. S., Garcia-Lazaro, J. A., Lesica, N. A. & Schnupp, J. W. H. Midbrain adaptation may set the stage for the perception of musical beat. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.1455 (2017).

  154. Rajendran, V. G. & Schnupp, J. W. H. Frequency tagging cannot measure neural tracking of beat or meter. Proc. Natl Acad. Sci. USA 116, 2779–2780 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Kaplan, T., Cannon, J., Jamone, L. & Pearce, M. Modeling enculturated bias in entrainment to rhythmic patterns. PLoS Comput. Biol. 18, e1010579 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. van der Weij, B., Pearce, M. T. & Honing, H. A probabilistic model of meter perception: simulating enculturation. Front. Psychol. 8, 824 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Vuust, P. & Witek, M. A. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Front. Psychol. 5, 1111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Vuust, P., Dietz, M. J., Witek, M. & Kringelbach, M. L. Now you hear it: a predictive coding model for understanding rhythmic incongruity. Ann. N. Y. Acad. Sci. 1423, 19–29 (2018).

    Article  Google Scholar 

  159. Lumaca, M., Trusbak Haumann, N., Brattico, E., Grube, M. & Vuust, P. Weighting of neural prediction error by rhythmic complexity: a predictive coding account using mismatch negativity. Eur. J. Neurosci. 49, 1597–1609 (2019).

    Article  PubMed  Google Scholar 

  160. Zalta, A., Large, E. W., Schön, D. & Morillon, B. Neural dynamics of predictive timing and motor engagement in music listening. Sci. Adv. 10, eadi2525 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Stupacher, J., Hove, M. J., Novembre, G., Schutz-Bosbach, S. & Keller, P. E. Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82, 127–136 (2013).

    Article  PubMed  Google Scholar 

  162. Ross, J. M., Comstock, D. C., Iversen, J. R., Makeig, S. & Balasubramaniam, R. Cortical mu rhythms during action and passive music listening. J. Neurophysiol. 127, 213–224 (2022).

    Article  PubMed  Google Scholar 

  163. Matthews, T. E., Witek, M. A. G., Lund, T., Vuust, P. & Penhune, V. B. The sensation of groove engages motor and reward networks. Neuroimage 214, 116768 (2020).

    Article  PubMed  Google Scholar 

  164. Cameron, D. J. et al. Neural entrainment is associated with subjective groove and complexity for performed but not mechanical musical rhythms. Exp. Brain Res. 237, 1981–1991 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Honing, H. & Ploeger, A. Cognition and the evolution of music: pitfalls and prospects. Top. Cogn. Sci. 4, 513–524 (2012).

    Article  PubMed  Google Scholar 

  166. Demany, L., McKenzie, B. & Vurpillot, E. Rhythm perception in early infancy. Nature 266, 718–719 (1977).

    Article  PubMed  Google Scholar 

  167. Chang, H. W. & Trehub, S. E. Infants’ perception of temporal grouping in auditory patterns. Child Dev. 48, 1666–1670 (1977).

    Article  PubMed  Google Scholar 

  168. Trehub, S. E. & Thorpe, L. A. Infants’ perception of rhythm: categorization of auditory sequences by temporal structure. Can. J. Psychol. 43, 217–229 (1989).

    Article  PubMed  Google Scholar 

  169. Hannon, E. E. & Johnson, S. P. Infants use meter to categorize rhythms and melodies: implications for musical structure learning. Cogn. Psychol. 50, 354–377 (2005).

    Article  PubMed  Google Scholar 

  170. Soley, G. & Hannon, E. E. Infants prefer the musical meter of their own culture: a cross-cultural comparison. Dev. Psychol. 46, 286–292 (2010).

    Article  PubMed  Google Scholar 

  171. Hannon, E. E., Soley, G. & Levine, R. S. Constraints on infants’ musical rhythm perception: effects of interval ratio complexity and enculturation. Dev. Sci. 14, 865–872 (2011).

    Article  PubMed  Google Scholar 

  172. Trehub, S. E. & Hannon, E. E. Conventional rhythms enhance infants’ and adults’ perception of musical patterns. Cortex 45, 110–118 (2009).

    Article  PubMed  Google Scholar 

  173. Flaten, E., Marshall, S. A., Dittrich, A. & Trainor, L. J. Evidence for top-down metre perception in infancy as shown by primed neural responses to an ambiguous rhythm. Eur. J. Neurosci. 55, 2003–2023 (2022).

    Article  PubMed  Google Scholar 

  174. Cirelli, L. K., Spinelli, C., Nozaradan, S. & Trainor, L. J. Measuring neural entrainment to beat and meter in infants: effects of music background. Front. Neurosci. 10, 11 (2016).

    Article  Google Scholar 

  175. Edalati, M. et al. Rhythm in the premature neonate brain: very early processing of auditory beat and meter. J. Neurosci. 43, 2794–2802 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lenc, T. et al. Infants show enhanced neural responses to musical meter frequencies beyond low-level features. Dev. Sci. 26, e13353 (2023).

    Article  PubMed  Google Scholar 

  177. Ilari, B. Rhythmic engagement with music in early childhood: a replication and extension. J. Res. Music Educ. 62, 332–343 (2015).

    Article  Google Scholar 

  178. Fujii, S. et al. Precursors of dancing and singing to music in three- to four-months-old infants. PLoS ONE 9, e97680 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kim, M. & Schachner, A. The origins of dance: characterizing the development of infants’ earliest dance behavior. Dev. Psychol. 59, 691–706 (2023).

    Article  PubMed  Google Scholar 

  180. Zentner, M. & Eerola, T. Rhythmic engagement with music in infancy. Proc. Natl Acad. Sci. USA 107, 5768–5773 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lense, M. D., Shultz, S., Astesano, C. & Jones, W. Music of infant-directed singing entrains infants’ social visual behavior. Proc. Natl Acad. Sci. USA 119, e2116967119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Schmuckler, M. A. & Paolozza, A. Auditory influences on walking: children’s walking to the beat. Dev. Psychol. 59, 1236–1248 (2023).

    Article  PubMed  Google Scholar 

  183. Kirschner, S. & Tomasello, M. Joint drumming: social context facilitates synchronization in preschool children. J. Exp. Child Psychol. 102, 299–314 (2009).

    Article  PubMed  Google Scholar 

  184. Cirelli, L. K., Einarson, K. M. & Trainor, L. J. Interpersonal synchrony increases prosocial behavior in infants. Dev. Sci. 17, 1003–1011 (2014).

    Article  PubMed  Google Scholar 

  185. Kirschner, S. & Tomasello, M. Joint music making promotes prosocial behavior in 4-year-old children. Evol. Hum. Behav. 31, 354–364 (2010).

    Article  Google Scholar 

  186. Cirelli, L. K. & Trehub, S. E. Dancing to Metallica and Dora: case study of a 19-month-old. Front. Psychol. 10, 1073 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Cameron, D. J., Caldarone, N., Psaris, M., Carrillo, C. & Trainor, L. J. The complexity-aesthetics relationship for musical rhythm is more fixed than flexible: evidence from children and expert dancers. Dev. Sci. 26, e13360 (2022).

    Article  Google Scholar 

  188. Kragness, H. E., Anderson, L., Chow, E., Schmuckler, M. & Cirelli, L. K. Musical groove shapes children’s free dancing. Dev. Sci. 26, e13249 (2022).

    Article  PubMed  Google Scholar 

  189. Rocha, S. & Mareschal, D. Getting into the groove: the development of tempo-flexibility between 10 and 18 months of age. Infancy 22, 540–551 (2017).

    Article  Google Scholar 

  190. Woodruff Carr, K., White-Schwoch, T., Tierney, A. T., Strait, D. L. & Kraus, N. Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proc. Natl Acad. Sci. USA 111, 14559–14564 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Braun Janzen, T., Thompson, W. F. & Ranvaud, R. A developmental study of the effect of music training on timed movements. Front. Hum. Neurosci. 8, 801 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Drake, C., Jones, M. R. & Baruch, C. The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition 77, 251–288 (2000).

    Article  PubMed  Google Scholar 

  193. Thompson, E. C., White-Schwoch, T., Tierney, A. & Kraus, N. Beat synchronization across the lifespan: intersection of development and musical experience. PLoS ONE 10, e0128839 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Nave, K., Carrillo, C., Jacoby, N., Trainor, L. & Hannon, E. The development of rhythmic categories as revealed through an iterative production task. Cognition 242, 105634 (2024).

    Article  PubMed  Google Scholar 

  195. Hoff, E. Language Development (Wadsworth Cengage Learning, 2009).

  196. Einarson, K. M. & Trainor, L. J. Hearing the beat: young children’s perceptual sensitivity to beat alignment varies according to metric structure. Music Percept. 34, 56–70 (2016).

    Article  Google Scholar 

  197. Nave, K. M., Snyder, J. S. & Hannon, E. Sustained musical beat perception develops into late childhood and predicts phonological abilities. Dev. Psychol. 59, 829–844 (2023).

    Article  PubMed  Google Scholar 

  198. Gerry, D. W., Faux, A. L. & Trainor, L. J. Effects of Kindermusik training on infants’ rhythmic enculturation. Dev. Sci. 13, 545–551 (2010).

    Article  PubMed  Google Scholar 

  199. Hannon, E. E., Vanden Bosch der Nederlanden, C. M. & Tichko, P. Effects of perceptual experience on children’s and adults’ perception of unfamiliar rhythms. Ann. N. Y. Acad. Sci. 1252, 92–99 (2012).

    Article  PubMed  Google Scholar 

  200. Hannon, E. E., Soley, G. & Ullal, S. Familiarity overrides complexity in rhythm perception: a cross-cultural comparison of American and Turkish listeners. J. Exp. Psychol. Hum. Percept. Perform. 38, 543–548 (2012).

    Article  PubMed  Google Scholar 

  201. Kalender, B., Trehub, S. E. & Schellenberg, E. G. Cross-cultural differences in meter perception. Psychol. Res. 77, 196–203 (2013).

    Article  PubMed  Google Scholar 

  202. Rocha, S., Southgate, V. & Mareschal, D. Infant spontaneous motor tempo. Dev. Sci. 24, e13032 (2021).

    Article  PubMed  Google Scholar 

  203. Nazzi, T., Bertoncini, J. & Mehler, J. Language discrimination by newborns: toward an understanding of the role of rhythm. J. Exp. Psychol. Hum. Percept. Perform. 24, 756–766 (1998).

    Article  PubMed  Google Scholar 

  204. Hart, S. A., Little, C. & van Bergen, E. Nurture might be nature: cautionary tales and proposed solutions. NPJ Sci. Learn. 6, 2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Bouchard, T. J. The Wilson effect: the increase in heritability of IQ with age. Twin Res. Hum. Genet. 16, 923–930 (2013).

    Article  PubMed  Google Scholar 

  206. Plomin, R. & Deary, I. J. Genetics and intelligence differences: five special findings. Mol. Psychiatry 20, 98–108 (2015).

    Article  PubMed  Google Scholar 

  207. Mosing, M. A., Verweij, K. J. H., Madison, G. & Ullén, F. The genetic architecture of correlations between perceptual timing, motor timing, and intelligence. Intelligence 57, 33–40 (2016).

    Article  Google Scholar 

  208. Ullén, F., Mosing, M. A., Holm, L., Eriksson, H. & Madison, G. Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Pers. Individ. Differ. 63, 87–93 (2014).

    Article  Google Scholar 

  209. Niarchou, M. et al. Genome-wide association study of musical beat synchronization demonstrates high polygenicity. Nat. Hum. Behav. 6, 1292–1309 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article  Google Scholar 

  211. Gordon, R. L. et al. Confronting ethical and social issues related to the genetics of musicality. Ann. N. Y. Acad. Sci. 1522, 5–14 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Gustavson, D. E. et al. Exploring the genetics of rhythmic perception and musical engagement in the Vanderbilt Online Musicality Study. Ann. N. Y. Acad. Sci. 1521, 140–154 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wesseldijk, L. W. et al. Using a polygenic score in a family design to understand genetic influences on musicality. Sci. Rep. 12, 14658 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Nayak, S. et al. The musical abilities, pleiotropy, language, and environment (MAPLE) framework for understanding musicality-language links across the lifespan. Neurobiol. Lang. 3, 615–664 (2022).

    Article  Google Scholar 

  216. Denny, J. C. & Collins, F. S. Precision medicine in 2030 — seven ways to transform healthcare. Cell 184, 1415–1419 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Melloni, L. et al. An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PLoS ONE 18, e0268577 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Nozaradan, S. et al. Intracerebral evidence of rhythm transform in the human auditory cortex. Brain Struct. Funct. 222, 2389–2404 (2017).

    Article  PubMed  Google Scholar 

  219. Celma-Miralles, A. & Toro, J. M. Discrimination of temporal regularity in rats (Rattus norvegicus) and humans (Homo sapiens). J. Comp. Psychol. 134, 3–10 (2020).

    Article  PubMed  Google Scholar 

  220. Rajendran, V. G., Harper, N. S. & Schnupp, J. W. H. Auditory cortical representation of music favours the perceived beat. R. Soc. Open Sci. 7, 191194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Spierings, M., Hubert, J. & ten Cate, C. Selective auditory grouping by zebra finches: testing the iambic–trochaic law. Anim. Cogn. 20, 665–675 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Patel, A. D. Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hear. Res. 308, 98–108 (2014).

    Article  PubMed  Google Scholar 

  223. Fiveash, A. et al. Can rhythm-mediated reward boost learning, memory, and social connection? Perspectives for future research. Neurosci. Biobehav. Rev. 149, 105153 (2023).

    Article  PubMed  Google Scholar 

  224. Ladanyi, E., Persici, V., Fiveash, A., Tillmann, B. & Gordon, R. L. Is atypical rhythm a risk factor for developmental speech and language disorders? Wiley Interdiscip. Rev. Cogn. Sci. 11, e1528 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Chang, A. et al. Inferior auditory time perception in children with motor difficulties. Child Dev. 92, E907–E923 (2021).

    Article  PubMed  Google Scholar 

  226. Lense, M. D., Ladanyi, E., Rabinowitch, T. C., Trainor, L. & Gordon, R. Rhythm and timing as vulnerabilities in neurodevelopmental disorders. Phil. Trans. R. Soc. B 376, 20200327 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Levi, D. M., Knill, D. C. & Bavelier, D. Stereopsis and amblyopia: a mini-review. Vis. Res. 114, 17–30 (2015).

    Article  PubMed  Google Scholar 

  228. Nallet, C. & Gervain, J. Neurodevelopmental preparedness for language in the neonatal brain. Annu. Rev. Dev. Psychol. 3, 41–58 (2021).

    Article  Google Scholar 

  229. Webb, A. R., Heller, H. T., Benson, C. B. & Lahav, A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl Acad. Sci. USA 112, 3152–3157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Choi, D., Batterink, L. J., Black, A. K., Paller, K. A. & Werker, J. F. Preverbal infants discover statistical word patterns at similar rates as adults: evidence from neural entrainment. Psychol. Sci. 31, 1161–1173 (2020).

    Article  PubMed  Google Scholar 

  231. Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2016).

    Article  PubMed  Google Scholar 

  232. Ghio, M., Cara, C. & Tettamanti, M. The prenatal brain readiness for speech processing: a review on foetal development of auditory and primordial language networks. Neurosci. Biobehav. Rev. 128, 709–719 (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Joel S. Snyder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Abdel Abdellaoui, Takako Fujioka, E. Glenn Schellenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, J.S., Gordon, R.L. & Hannon, E.E. Theoretical and empirical advances in understanding musical rhythm, beat and metre. Nat Rev Psychol (2024). https://doi.org/10.1038/s44159-024-00315-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44159-024-00315-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing