Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

To promote healthy aging, focus on the environment

Abstract

To build health equity for an aging world marked by dramatic disparities in healthy lifespan between countries, regions and population groups, research at the intersections of biology, toxicology and the social and behavioral sciences points the way: to promote healthy aging, focus on the environment. In this Perspective, we suggest that ideas and tools from the emerging field of geroscience offer opportunities to advance the environmental science of aging. Specifically, the capacity to measure the pace and progress of biological processes of aging within individuals from relatively young ages makes it possible to study how changing environments can change aging trajectories from early in life, in time to prevent or delay aging-related disease and disability and build aging health equity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The environment and aging.
Fig. 2: Structural inequalities in environmental drivers of aging.
Fig. 3: Direct and indirect pathways of environmental impacts on aging.
Fig. 4: Epigenetic clock measures of biological aging.

Similar content being viewed by others

References

  1. Le Couteur, D. G. & Thillainadesan, J. What is an aging-related disease? An epidemiological perspective. J. Gerontol. A Biol. Sci. Med. Sci. 77, 2168–2174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franceschi, C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. 5, 61 (2018).

    Article  Google Scholar 

  3. Permanyer, I., Spijker, J. & Blanes, A. On the measurement of healthy lifespan inequality. Popul. Health Metr. 20, 1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noren Hooten, N., Pacheco, N. L., Smith, J. T. & Evans, M. K. The accelerated aging phenotype: the role of race and social determinants of health on aging. Ageing Res. Rev. 73, 101536 (2022).

    Article  PubMed  Google Scholar 

  5. Lakhani, C. M. et al. Repurposing large health insurance claims data to estimate genetic and environmental contributions in 560 phenotypes. Nat. Genet. 51, 327–334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ruby, J. G. et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics 210, 1109–1124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Murray, C. J. L. et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  8. Wang, M. et al. Association of estimated long-term exposure to air pollution and traffic proximity with a marker for coronary atherosclerosis in a nationwide study in China. JAMA Netw. Open 2, e196553 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cacciottolo, M. et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl. Psychiatry 7, e1022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, W. et al. Personal airborne chemical exposure and epigenetic ageing biomarkers in healthy Chinese elderly individuals: evidence from mixture approaches. Environ. Int. 170, 107614 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Kioumourtzoglou, M.-A. et al. Long-term PM2.5 exposure and neurological hospital admissions in the Northeastern United States. Environ. Health Perspect. 124, 23–29 (2016).

    Article  PubMed  Google Scholar 

  12. Oudin, A. et al. Traffic-related air pollution and dementia incidence in Northern Sweden: a longitudinal study. Environ. Health Perspect. 124, 306–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Carey, I. M. et al. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 8, e022404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li, J. et al. Long-term effects of PM2.5 components on incident dementia in the Northeastern United States. Innovation 3, 100208 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tessum, C. W. et al. Inequity in consumption of goods and services adds to racial–ethnic disparities in air pollution exposure. Proc. Natl Acad. Sci. USA 116, 6001–6006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bakulski, K. M. et al. Heavy metals exposure and Alzheimer’s disease and related dementias. J. Alzheimer’s Dis. 76, 1215–1242 (2020).

    Article  CAS  Google Scholar 

  17. Shih, R. A. et al. Environmental lead exposure and cognitive function in community-dwelling older adults. Neurology 67, 1556–1562 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Li, H. et al. Associations between blood cadmium levels and cognitive function in a cross-sectional study of US adults aged 60 years or older. BMJ Open 8, e020533 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ciesielski, T., Bellinger, D. C., Schwartz, J., Hauser, R. & Wright, R. O. Associations between cadmium exposure and neurocognitive test scores in a cross-sectional study of US adults. Environ. Health 12, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mergler, D. et al. Manganese neurotoxicity, a continuum of dysfunction: results from a community based study. Neurotoxicology 20, 327–342 (1999).

    CAS  PubMed  Google Scholar 

  21. Farooqui, Z. et al. Associations of cumulative Pb exposure and longitudinal changes in Mini-Mental Status Exam scores, global cognition and domains of cognition: the VA Normative Aging Study. Environ. Res. 152, 102–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Chyn, E. & Katz, L. F. Neighborhoods matter: assessing the evidence for place effects. J. Econ. Perspect. 35, 197–222 (2021).

    Article  Google Scholar 

  23. White, J. S. et al. Long-term effects of neighbourhood deprivation on diabetes risk: quasi-experimental evidence from a refugee dispersal policy in Sweden. Lancet Diabetes Endocrinol. 4, 517–524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choi, Y. J., Crimmins, E. M. & Ailshire, J. A. Food insecurity, food environments, and disparities in diet quality and obesity in a nationally representative sample of community-dwelling older Americans. Prev. Med. Rep. 29, 101912 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lagström, H. et al. Diet quality as a predictor of cardiometabolic disease–free life expectancy: the Whitehall II cohort study. Am. J. Clin. Nutr. 111, 787–794 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hengeveld, L. M. et al. Prospective associations of diet quality with incident frailty in older adults: the health, aging, and body composition study. J. Am. Geriatr. Soc. 67, 1835–1842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wright, R. S. et al. Diet quality and cognitive function in an urban sample: findings from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study. Public Health Nutr. 20, 92–101 (2017).

    Article  PubMed  Google Scholar 

  28. Bennett, G. G. et al. Safe to walk? Neighborhood safety and physical activity among public housing residents. PLoS Med. 4, e306 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rundle, A. G. et al. Using GPS data to study neighborhood walkability and physical activity. Am. J. Prev. Med. 50, e65–e72 (2016).

    Article  PubMed  Google Scholar 

  30. Peterson, M. J. et al. Physical activity as a preventative factor for frailty: the health, aging, and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 64, 61–68 (2009).

    Article  PubMed  Google Scholar 

  31. Cesari, M. et al. A physical activity intervention to treat the frailty syndrome in older persons—results from the LIFE-P Study. J. Gerontol. A Biol. Sci. Med. Sci. 70, 216–222 (2015).

    Article  PubMed  Google Scholar 

  32. Smith, M. G., Cordoza, M. & Basner, M. Environmental noise and effects on sleep: an update to the WHO systematic review and meta-analysis. Environ. Health Perspect. 130, 076001 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Patel, P. C. Light pollution and insufficient sleep: evidence from the United States. Am. J. Hum. Biol. 31, e23300 (2019).

    Article  PubMed  Google Scholar 

  34. Tobaldini, E. et al. Short sleep duration and cardiometabolic risk: from pathophysiology to clinical evidence. Nat. Rev. Cardiol. 16, 213–224 (2019).

    Article  PubMed  Google Scholar 

  35. Bubu, O. M. et al. Sleep, cognitive impairment, and Alzheimer’s disease: a systematic review and meta-analysis. Sleep 40, zsw032 (2017).

    Article  Google Scholar 

  36. Steptoe, A. & Feldman, P. J. Neighborhood problems as sources of chronic stress: development of a measure of neighborhood problems, and associations with socioeconomic status and health. Ann. Behav. Med. 23, 177–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Johns, L. E. et al. Neighborhood social cohesion and posttraumatic stress disorder in a community-based sample: findings from the Detroit Neighborhood Health Study. Soc. Psychiatry Psychiatr. Epidemiol. 47, 1899–1906 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. McEwen, B. S. & Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. McEWEN, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Prentice, J. C. Neighborhood effects on primary care access in Los Angeles. Soc. Sci. Med. 62, 1291–1303 (2006).

    Article  PubMed  Google Scholar 

  41. Starfield, B., Shi, L. Y. & Macinko, J. Contribution of primary care to health systems and health. Milbank Q. 83, 457–502 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  42. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  45. Fraser, H. C. et al. Biological mechanisms of aging predict age-related disease co-occurrence in patients. Aging Cell 21, e13524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Campisi, J. et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183–192 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kaeberlein, M. Translational geroscience: a new paradigm for 21st century medicine. Transl. Med. Aging 1, 1–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kalia, V., Belsky, D. W., Baccarelli, A. A. & Miller, G. W. An exposomic framework to uncover environmental drivers of aging. Exposome 2, osac002 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang, D. et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China. Chemosphere 250, 126289 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Xu, J. et al. DNA damage, serum metabolomic alteration and carcinogenic risk associated with low-level air pollution. Environ. Pollut. 297, 118763 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Calderón-Garcidueñas, L. et al. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ. Res. 183, 109226 (2020).

    Article  PubMed  Google Scholar 

  52. Bollati, V. et al. Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells. J. Appl. Toxicol. 35, 59–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Rider, C. F. & Carlsten, C. Air pollution and DNA methylation: effects of exposure in humans. Clin. Epigenetics 11, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Breton, C. V. et al. Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression. Mitochondrion 46, 22–29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, Q. et al. Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology 469, 153136 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T. & Christen, P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4, 252–267 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pomatto, L. C. D. et al. Aging attenuates redox adaptive homeostasis and proteostasis in female mice exposed to traffic-derived nanoparticles (‘vehicular smog’). Free Radic. Biol. Med. 121, 86–97 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schug, T. T., Janesick, A., Blumberg, B. & Heindel, J. J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol. 127, 204–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu, W. et al. Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol. Sci. 68, 429–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Sharma, R., Kumar, R., Sharma, A., Goel, A. & Padwad, Y. Long-term consumption of green tea EGCG enhances murine health span by mitigating multiple aspects of cellular senescence in mitotic and post-mitotic tissues, gut dysbiosis, and immunosenescence. J. Nutr. Biochem. 107, 109068 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Petrova, N. V., Velichko, A. K., Razin, S. V. & Kantidze, O. L. Small molecule compounds that induce cellular senescence. Aging Cell 15, 999–1017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Polsky, L. R., Rentscher, K. E. & Carroll, J. E. Stress-induced biological aging: a review and guide for research priorities. Brain Behav. Immun. 104, 97–109 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hara, M. R. et al. A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature 477, 349–353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Flaherty, R. L. et al. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Res. 19, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nishio, Y. et al. Social stress induces oxidative DNA damage in mouse peripheral blood cells. Genes Environ. 29, 17–22 (2007).

    Article  CAS  Google Scholar 

  66. Rentscher, K. E., Carroll, J. E., Polsky, L. R. & Lamkin, D. M. Chronic stress increases transcriptomic indicators of biological aging in mouse bone marrow leukocytes. Brain Behav. Immun. Health 22, 100461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Choi, J., Fauce, S. R. & Effros, R. B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22, 600–605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stevenson, J. R., McMahon, E. K., Boner, W. & Haussmann, M. F. Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology 103, 52–60 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Picard, M. et al. A mitochondrial health index sensitive to mood and caregiving stress. Biol. Psychiatry 84, 9–17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Madrigal, J. L. et al. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24, 420–429 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Razzoli, M. et al. Social stress shortens lifespan in mice. Aging Cell 17, e12778 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rentscher, K. E. et al. Chronic stress exposure and daily stress appraisals relate to biological aging marker p16INK4a. Psychoneuroendocrinology 102, 139–148 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Snyder-Mackler, N. et al. Social status alters immune regulation and response to infection in macaques. Science 354, 1041–1045 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Raffin, J. et al. Sedentary behavior and the biological hallmarks of aging. Ageing Res. Rev. 83, 101807 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S., de Cabo, R. & Simpson, S. J. Does diet influence aging? Evidence from animal studies. J. Intern Med. https://doi.org/10.1111/joim.13530 (2022).

    Article  PubMed  Google Scholar 

  77. Carroll, J. E. & Prather, A. A. Sleep and biological aging: a short review. Curr. Opin. Endocr. Metab. Res. 18, 159–164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gladyshev, V. N. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15, 594–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Finch, C. E. & Kirkwood, T. B. L. Chance, Development, and Aging (Oxford Univ. Press, 2000).

  80. Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 1096–1106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ceccatelli, S., Daré, E. & Moors, M. Methylmercury-induced neurotoxicity and apoptosis. Chem. Biol. Interact. 188, 301–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. LeBel, C. P., Ali, S. F., McKee, M. & Bondy, S. C. Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol. Appl. Pharmacol. 104, 17–24 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Atchison, W. D. & Hare, M. F. Mechanisms of methylmercury-induced neurotoxicity. FASEB J. 8, 622–629 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Sterling, P. & Eyer, J. in Handbook of Life Stress, Cognition and Health (eds S. Fisher & J. Reason) 629–649 (John Wiley & Sons, 1988).

  85. McEwen, B. S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 338, 171–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Bobba-Alves, N., Juster, R.-P. & Picard, M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 146, 105951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Snyder-Mackler, N. et al. Social determinants of health and survival in humans and other animals. Science 368, eaax9553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Razzoli, M., Nyuyki-Dufe, K., Chen, B. H. & Bartolomucci, A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc. Natl Acad. Sci. USA 120, e2211755120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gladyshev, V. N. The ground zero of organismal life and aging. Trends Mol. Med. 27, 11–19 (2021).

  91. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Belsky, D. W. et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. eLife 11, e73420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yousefi, P. D. et al. DNA methylation-based predictors of health: applications and statistical considerations. Nat. Rev. Genet. 23, 369–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Schmidt, C. W. Environmental factors in successful aging: the potential impact of air pollution. Environ. Health Perspect. 127, 102001–102001 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Xu, R. et al. Surrounding greenness and biological aging based on DNA methylation: a twin and family study in Australia. Environ. Health Perspect. 129, 087007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nwanaji-Enwerem, J. C. et al. Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environ. Epigenet. 2, dvw006 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Raffington, L. & Belsky, D. W. Integrating DNA methylation measures of biological aging into social determinants of health research. Curr. Environ. Health Rep. 9, 196–210 (2022).

    Article  PubMed  Google Scholar 

  99. Raffington, L. et al. Socioeconomic disadvantage and the pace of biological aging in children. Pediatrics 147, e2020024406 (2021).

    Article  PubMed  Google Scholar 

  100. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00511-7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mohai, P., Pellow, D. & Roberts, J. T. Environmental justice. Annu. Rev. Environ. Resour. 34, 405–430 (2009).

    Article  Google Scholar 

  102. Lee, E. K. et al. Health outcomes in redlined versus non-redlined neighborhoods: a systematic review and meta-analysis. Soc. Sci. Med 294, 114696 (2022).

    Article  PubMed  Google Scholar 

  103. Nardone, A., Rudolph, K. E., Morello-Frosch, R. & Casey, J. A. Redlines and greenspace: the relationship between historical redlining and 2010 greenspace across the United States. Environ. Health Perspect. 129, 017006 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hamann, M. et al. Inequality and the biosphere. Annu. Rev. Environ. Resour. 43, 61–83 (2018).

    Article  Google Scholar 

  105. Romanello, M. et al. The 2021 report of the Lancet countdown on health and climate change: code red for a healthy future. Lancet 398, 1619–1662 (2021).

    Article  PubMed  Google Scholar 

  106. Kim, K. et al. Inequalities in urban greenness and epigenetic aging: different associations by race and neighborhood socioeconomic status. Sci. Adv. 9, eadf8140 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wallerstein, N. B. & Duran, B. Using community-based participatory research to address health disparities. Health Promot. Pract. 7, 312–323 (2006).

    Article  PubMed  Google Scholar 

  108. Li, Y. et al. Heatwave events and mortality outcomes in Memphis, Tennessee: testing effect modification by socioeconomic status and urbanicity. Int J. Environ. Res. Public Health 16, 4568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yin, P. et al. The added effects of heatwaves on cause-specific mortality: a nationwide analysis in 272 Chinese cities. Environ. Int. 121, 898–905 (2018).

    Article  PubMed  Google Scholar 

  110. Kang, S.-H. et al. Heat, heat waves, and out-of-hospital cardiac arrest. Int. J. Cardiol. 221, 232–237 (2016).

    Article  PubMed  Google Scholar 

  111. Ahmadnezhad, E. et al. Excess mortality during heat waves, Tehran Iran: an ecological time-series study. J. Res. Health Sci. 13, 24–31 (2013).

    PubMed  Google Scholar 

  112. Toloo, G. S. et al. Socio-demographic vulnerability to heatwave impacts in Brisbane, Australia: a time series analysis. Aust. N. Z. J. Public Health 38, 430–435 (2014).

    Article  PubMed  Google Scholar 

  113. Nidadavolu, L. S. & Walston, J. D. Underlying vulnerabilities to the cytokine storm and adverse COVID-19 outcomes in the aging immune system. J. Gerontol. A Biol. Sci. Med. Sci. 76, e13–e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Verhoeven, J. I., Allach, Y., Vaartjes, I. C. H., Klijn, C. J. M. & Leeuw, F.-E. Ambient air pollution and the risk of ischaemic and haemorrhagic stroke. Lancet Planet. Health 5, e542–e552 (2021).

    Article  PubMed  Google Scholar 

  115. Lumey, L., Khalangot, M. D. & Vaiserman, A. M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: a retrospective cohort study. Lancet Diabetes Endocrinol. 3, 787–794 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Mariet, A.-S. et al. Association between moderated level of air pollution and fetal growth: the potential role of noise exposure. Sci. Rep. 11, 11238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Malmqvist, E. et al. Fetal growth and air pollution—a study on ultrasound and birth measures. Environ. Res. 152, 73–80 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Cao, Z. et al. Maternal exposure to ambient fine particulate matter and fetal growth in Shanghai, China. Environ. Health 18, 49 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Johnson, M. et al. Critical time windows for air pollution exposure and birth weight in a multicity canadian pregnancy cohort. Epidemiology 33, 7–16 (2022).

    Article  PubMed  Google Scholar 

  120. Glymour, M. M. & Manly, J. J. Lifecourse social conditions and racial and ethnic patterns of cognitive aging. Neuropsychol. Rev. 18, 223–254 (2008).

    Article  PubMed  Google Scholar 

  121. Sousa, A. C. P. et al. Lifecourse adversity and physical performance across countries among men and women aged 65–74. PLoS ONE 9, e102299 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Geronimus, A. T., Hicken, M., Keene, D. & Bound, J. ‘Weathering’ and age patterns of allostatic load scores among blacks and whites in the United States. Am. J. Public Health 96, 826–833 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Modrek, S., Roberts, E., Warren, J. R. & Rehkopf, D. Long-term effects of local-area new deal work relief in childhood on educational, economic, and health outcomes over the life course: evidence from the Wisconsin Longitudinal Study. Demography 59, 1489–1516 (2022).

    Article  PubMed  Google Scholar 

  124. Belsky, D. W. et al. Impact of early personal-history characteristics on the pace of aging: implications for clinical trials of therapies to slow aging and extend healthspan. Aging Cell 16, 644–651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chetty, R. et al. The association between income and life expectancy in the United States, 2001–2014. JAMA 315, 1750–1766 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kinge, J. M. et al. Association of household income with life expectancy and cause-specific mortality in Norway, 2005–2015. JAMA 321, 1916–1925 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Moffitt, T. E., Belsky, D. W., Danese, A., Poulton, R. & Caspi, A. The longitudinal study of aging in human young adults: knowledge gaps and research agenda. J. Gerontol. A. Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glw191 (2016).

  128. Casey, J. A. et al. Improved asthma outcomes observed in the vicinity of coal power plant retirement, retrofit and conversion to natural gas. Nat. Energy 5, 398–408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. South, E. C., Hohl, B. C., Kondo, M. C., MacDonald, J. M. & Branas, C. C. Effect of greening vacant land on mental health of community-dwelling adults: a cluster randomized trial. JAMA Netw. Open 1, e180298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Phipatanakul, W. et al. Effect of school integrated pest management or classroom air filter purifiers on asthma symptoms in students with active asthma: a randomized clinical trial. JAMA 326, 839–850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vermeulen, R., Schymanski, E. L., Barabási, A. -L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Finch, C. E. & Haghani, A. Gene–environment interactions and stochastic variations in the gero-exposome. J. Gerontol. A Biol. Sci. Med. Sci. 76, 1740–1747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Finch, C. E. & Kulminski, A. M. The Alzheimer’s disease exposome. Alzheimers Dement. 15, 1123–1132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jbaily, A. et al. Air pollution exposure disparities across US population and income groups. Nature 601, 228–233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. McFarland, M. J., Hauer, M. E. & Reuben, A. Half of US population exposed to adverse lead levels in early childhood. Proc. Natl Acad. Sci. USA 119, e2118631119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Noppert, G. A., Aiello, A. E., O’Rand, A. M. & Cohen, H. J. Race/ethnic and educational disparities in the association between pathogen burden and a laboratory-based cumulative deficits index. J. Racial Ethn. Health Disparities 7, 99–108 (2020).

    Article  PubMed  Google Scholar 

  137. Knopov, A. et al. The role of racial residential segregation in Black–white disparities in firearm homicide at the state level in the United States, 1991–2015. J. Natl Med. Assoc. 111, 62–75 (2019).

    PubMed  Google Scholar 

  138. Wong, B., Bernstein, S., Jay, J. & Siegel, M. Differences in racial disparities in firearm homicide across cities: the role of racial residential segregation and gaps in structural disadvantage. J. Natl Med. Assoc. 112, 518–530 (2020).

    PubMed  Google Scholar 

  139. Manduca, R. & Sampson, R. J. Punishing and toxic neighborhood environments independently predict the intergenerational social mobility of Black and white children. Proc. Natl Acad. Sci. USA 116, 7772–7777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Ryan, C. P. ‘Epigenetic clocks’: theory and applications in human biology. Am. J. Hum. Biol. 33, e23488 (2021).

    Article  PubMed  Google Scholar 

  144. Sehgal, R., Higgins-Chen, A., Meer, M. & Levine, M. System specific aging scores: a state of the art aging clock built using aging scores from different bodily functions. Innov. Aging 6, 20–21 (2022).

    Article  Google Scholar 

  145. Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Nat. Aging 3, 1144–1166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.W.B. is supported by National Institute on Aging grants R01AG073402, R01AG066887 and R01AG061378 and is a fellow of the Canadian Institute for Advanced Research Child Brain Development Network. A.A.B. is supported by the National Institutes of Health (P30ES009089). We gratefully acknowledge D. Prada and C. Eckstein for their work on the figures in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.W.B. and A.A.B. wrote the manuscript.

Corresponding author

Correspondence to Andrea A. Baccarelli.

Ethics declarations

Competing interests

D.W.B. is listed as an inventor of DunedinPACE, a Duke University and University of Otago invention licensed to TruDiagnostic.

Peer review

Peer review information

Nature Aging thanks Michael Brauer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belsky, D.W., Baccarelli, A.A. To promote healthy aging, focus on the environment. Nat Aging 3, 1334–1344 (2023). https://doi.org/10.1038/s43587-023-00518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00518-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing