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Microwave quantummemcapacitor effect
Check for updates
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Enrique Solano 2 & Francisco Albarrán-Arriagada 4

Developing the field of neuromorphic quantum computing necessitates designing scalable quantum
memory devices. Here, we propose a superconducting quantum memory device in the microwave
regime, termed amicrowave quantummemcapacitor. It comprises two linked resonators, the primary
one is coupled to aSuperconductingQuantum InterferenceDevice,which allows for themodulation of
the resonator properties through external magnetic flux. The auxiliary resonator, operated through
weak measurements, provides feedback to the primary resonator, ensuring stable memory behavior.
This device operateswith a classical input in one cavitywhile reading the response in the other, serving
as a fundamental building block toward arrays of microwave quantum memcapacitors. We observe
that a bipartite setup can retain its memory behavior and gains entanglement and quantum
correlations. Our findings pave the way for the experimental implementation of memcapacitive
superconducting quantumdevices andmemory device arrays for neuromorphic quantum computing.

Neuromorphic computing has emerged as a promising avenue for
energy-efficient and advanced computing systems1, utilizing nonlinear
devices with memory properties such as phase-change memory, tran-
sistors, spintronic devices, and memory devices2 to achieve heightened
computational capabilities. Memristors, as nonlinear resistors, can be
well described by Kubo’s response theory3,4, where one characteristic
feature is the pinched hysteresis loop in their input-output relation,
which can be associated to memory properties5. In 1971, L. Chua
introduced the memristor concept as a theoretical fourth fundamental
circuit element6. Its experimental realization was later confirmed by HP
Labs in 20087. However, the precise existence of the ideal memristor, as
postulated by Chua, remains debated8.

Similarly, other nonlinear devices with memory such as memcapaci-
tors andmeminductors have beenproposed9,10, where themain difference is
related to the input-output relation. Memristors relate voltage and current,
memcapacitors relate voltage and charge andmeminductors relate flux and
current. The different input-output relations also provide different coupling
mechanisms aswell as different high frequency behavior. Recently,memory
devices have been studied as fundamental elements for neuromorphic
computing11–14, offeringpotential for robustneuromorphic architectures15–18

beyond von Neumann’s architectures19–21.
On the other hand, quantum computing has shown the potential to

revolutionize computer science with the first claims of quantum advantage,
but always in the context of vonNeumann’s architecture. In this context, it is
natural to think of quantum memory devices such as quantum memca-

pacitors, that is, memcapacitors working in the quantum regime. In recent
years, quantum devices with memory properties have been proposed in
platforms like superconducting circuits22–26 and photonics27,28, with an
experimental realization in 202129. These proposals align with the emer-
gence of neuromorphic quantum computing, which aims to develop
quantum hardware and software implementations with brain-inspired
devices30–32. Scalable quantum memcapacitors may also enable the devel-
opment of analog devices that simulate brain-inspired functions, nonlinear
models of materials, biology, and finance. Ongoing studies on coupled
quantummemory devices have shown the nontrivial presence of quantum
correlations in a memristive dynamics, a useful resource for interconnected
quantum memristor arrays33,34, as is suggested in reservoir computing
paradigm29.

In this work, we propose a superconducting circuit design for the
feasible implementation of a microwave quantum memcapacitor and its
extension to multipartite arrays. Our proposal employs two coupled LC
oscillators and a SQUID to adjust the effective frequency of one of the
oscillator through an external magnetic flux. Such external magnetic flux
depends on a weak measurement over the other oscillator, thus imple-
menting a feedbackprocess.Wecharacterize thememcapacitive response of
the proposed device to the external voltage applied over one of the oscilla-
tors. To do this, we consider different separable and entangled initial states.
Additionally, we explore the response of coupled devices, computing the
quantum correlations during the memcapacitive dynamics, revealing a
nontrivial behavior.
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Results and discussion
Classical and quantum memory devices
We characterize a memory system by its input-output relation35

yðtÞ ¼ g x; u; t½ �uðtÞ; ð1Þ

where y(t) and u(t) stand for the output and input signal of the system,
respectively, and are related through the response function g[x, u, t]. The
response function also depends on a state variable x whose dynamics is
described by the equation

_x ¼ f x; u; t½ �: ð2Þ

In the context of electrical circuits, and specifically for memristors, the
response function g[x, u, t] is usually called memristance35,36 and can be
derived using linear response theory developed in 1957 by Kubo4. We note
that Eq. (1) ensure pinched hysteresis curves since when the input becomes
zero, the output also becomes zero. This feature extends directly to the
quantum case for quantum memory devices in an ideal case, nevertheless
issue can be relaxed according to the Kubo’s response theory. Classical
devices have restrictions on f and g to ensure passivity, which leads to
requiring f to be always positive. Such property do not extend to quantum
memory devices in general as we will explain latter.

Now, we can define a quantum memory device in a similar way. We
can consider observables hŷðtÞi and hûðtÞi following a similar relation as Eq.
(1) and Eq. (2)

hŷðtÞi ¼ G hx̂i; hûi; t½ �hûðtÞi; ð3aÞ

h _̂xi ¼ F hx̂i; hûi; t½ �: ð3bÞ

Here, G hx̂i; hûi; t½ � and F hx̂i; hûi; t½ � are the quantum analog to the
response and state variable function, respectively. Also, we note that this is
an input-output relationbetween expectation values of physical observables,
the dynamics of which is described by quantum mechanical laws.

Even though there are general methods to quantize electrical circuit
elements with classical counterparts such as capacitors and inductors, or
pure quantumones such as Josephson junction37, even complex elements as
n-port nonreciprocal ones38,39, to the best of our knowledge there is no
general formulation for the quantization of memory devices, despite efforts
made on other platforms22–29. For this reason the characterization of
quantum devices with memory properties takes relevance. In this context
our proposal for a quantummemcapacitor in themicrowave regime aims to
develop and characterize scalable quantum components for neuromorphic
quantum devices.

It is important to mention that in classical memory devices such as
memcapacitors, memristors and meminductors, passivity is an essential
property. Nevertheless, in quantum technologies this condition has been
relaxed, and only the nonlinear responsewithmemory signatures is studied.
This is the case of the experimental quantum memory device reported in
ref. 29, and other theoretical proposals.

The model
We consider the circuit shown in Fig. 1, which is composed of two LC
oscillators, each with a capacitance Cj and inductance Lj, and coupled by a
capacitorCc. Oneof the resonators, labeledwith j = 2, is coupled galvanically
to a SQUID, which consists of a closed loop with two Josephson junctions.
The SQUID in the circuit acts as a Josephson junction with capacitance CJ

and tunable Josephson energy, given by 2EJ j cosð2πΦx=Φ0Þj, which
depends on the external magnetic flux Φx threading the SQUID. Here
Φ0 = h/(2e) is the superconducting magnetic flux quantum. The role of the
SQUID in this design is to change the cavity properties using the external
magnetic flux Φx as feedback. Finally, we provide an input signal using a
voltage source coupled capacitively, as is shown in Fig. 1. The Lagrangian
that describes our circuit reads

L ¼ C1
2
_Φ
2
1 � Φ2

1
2L1

þ Cg

2 ð _Φ1 � Vg Þ
2 þ Cc

2 ð _Φ1 � _Φ2Þ
2

þ C2
2 ð _Φ2 � _Φ3Þ

2 � ðΦ2�Φ3Þ2
2L2

þ CJ

2
_Φ
2
3

þ2EJ cosðφxÞ cosðφ3Þ;
ð4Þ

whereφ3 = 2πΦ3/Φ0 is the superconductingphase andφx = 2πΦx/Φ0.Using
the Legendre transformation and second-quantization techniques, we
obtain the systemHamiltonian Ĥ as (for detailedderivation, seeMethods in
Derivation of the circuit Hamiltonian for a single microwave quantum
memcapacitors)

ĤðΦxÞ ¼
X
‘¼1;2

ω‘ðΦxÞây‘ â‘ þ iGg‘
ðΦx;Vg Þðây‘ � â‘Þ

h i

þ λþðΦxÞðây1â2 þ â1â
y
2Þ þ λ�ðΦxÞðây1ây2 þ â1â2Þ;

ð5Þ

wherewe adopt the convention ℏ = 1.Here,ωℓ(Φx) is the effective frequency
of the ℓth resonator,modified by the externalmagnetic signal in the SQUID.
The effect of the voltage source Vg over each cavity is represented by
Gg‘

ðΦx;Vg Þ, which also depends on the external flux Φx. The effective
coupling strength between resonators, λ±(Φx) = I12(Φx) ±G12(Φx), com-
prises both an inductive contribution, I12(Φx), and a capacitive contribution,
G12(Φx). It is important to note that all coefficients in the Hamiltonian
depend on the external flux Φx. We remark that we have used the high-
plasma frequency and low-impedance approximation40,41, which enables us
to express Q3 and Φ3 in terms of the other two charge and flux variables.

Therefore, our proposed device consists of two coupled harmonic
oscillators connected via a capacitor. The effective frequency of each reso-
nator is time-dependent and a function of the external magnetic flux
through the SQUID.Weupdate thisfluxusing a feedbackmechanismbased

Fig. 1 | Circuit design for the proposed memcapacitive device in the microwave
regime.The input signal is given byVg, and the feedback is provided by themagnetic
flux Φx through the SQUID.
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on weak measurements applied to one of the oscillators. As a result, this
process introduces changes in the response of the quantum devices, leading
to effective memory properties.

To analyze the memory behavior of our device, we consider as input
signal the voltageVg, and the output signal as the signal in the nodeΦ2. We
study the response of the charge operator in the oscillator 2, considering
quantum feedback through the SQUID based on weak measurements on
the oscillator 1. We call the initial state of the total system as ∣Ψð0Þ�. We
update the externalmagnetic flux according to a cosine function, remember
that trigonometric function has been successfully used previously, which for
short time can be approximated as

Φð jÞ
x

Φ0
¼ c1 � c2hφ̂1ðtjÞi2: ð6Þ

where c1 and c2 are constants and tj = jΔt. During the timewindows [tj, tj+1],
the magnetic flux is constant and given by Φð jÞ

x . To ensure continuous
feedback, we use the condition ωΔt≪ 1 where ω is the input voltage fre-
quency. This means the time window Δt is much smaller than the input
voltage oscillation period, allowing fast updates. Experimentally, we can also
replace eachLC oscillator with a coplanarwaveguide resonator, considering
only the fundamental mode, where weak measurements can be performed
over microwave photons, and the measurement outcome can be used to
provide analog quantum feedback42–44.

It is important tomention that in order to get the input-output relation
as Eq. (3a) and Eq. (3b), it is necessary to integrate the Schrödinger equation
in the Heisenberg picture, that is, _O ¼ ði=_Þ½H;O� for the different
operators O. This is a challenging task due to the large dimension of the
involved systems, as well as the nontrivial relation between observables
introducedby the feedback process. An alternative approach is to obtain the
Krauss representation of the dynamics, which directly provides the input-
output relation. Nevertheless, to obtain the analytical form of the Krauss
representation is also quite involve for most quantum systems, being an
active research area.

Nonetheless, we can have an intuitive understanding of thememory
relations in our system. The internal variable in the circuit should be a
function of the magnetic fluxΦx which depends on the output of a weak
measurement over the dynamical variable φ̂1, that carries information of
the input signalVg. As the properties of the device depend onΦx, the rate
of change in the value Φx, will depend on its instantaneous value, being
natural to think in a relation of the form given by Eq. (3b). In a similar
way, the output signal must be dependent on the internal variable Φx,
since this magnetic flux changes the physical properties of the system.
Additionally, the output variable depends on the input signal via reso-
nance condition, which changes in time due to the dependence of the
Hamiltonian (5) with the magnetix flux. Thus, Eq. (3a) becomes a nat-
ural ansatz for the input-output relation. The input-output relation of
the memory device is given by the external voltage Vg(t) and hn̂2ðtÞi. In
what follows, we will analyze the response of the observable hn̂2ðtÞi for
different initial states and changing the frequency of the external voltage
with Vg ðtÞ ¼ V0 cosðωνtÞ.

We remark thatwewill consider a driving frequency of the input signal
of the order of the frequency of resonator 1, ων ~ω1. This means that
timescale of a cycle of the input signal is much smaller than the relaxation
time of the system, τs, which can be taken as τs∼ 103ω�1

1
45,46. Therefore, we

can analyze the time evolution of our system for tens of cycles of the input
signal without considering the interaction with the environment.

Single microwave quantum memcapacitor
In this section, we study the response of the single device to different initial
states, and driving frequencies.We remark that the values of c1 and c2 in Eq.
(6) and the driving frequency ων have been obtained by numerical opti-
mization to maximize the memory properties for the different cases con-
sidered. First, we consider non-correlated initial states. Specifically, we
consider the first resonator in the vacuum state and the second in

superposition between zero and one photon, coherent and squeezed states,
respectively. Afterwards, we consider correlated initial states for both
oscillators, such as Bell-like, NOON, and cat states. The values of the con-
stants in Eq. (6) are considered c1 = 1.84 and c2 = 0.08 throughout the
analysis. The circuit parameters used in our calculations are summarized in
Table 1 in Methods, Derivation of the circuit Hamiltonian for a single
microwave quantum memcapacitors.

We study the response of the device modifying the input voltage fre-
quency for two particular values, where we expect to observe pinched
hysteresis at a high-frequency regime,where the dynamics tend to behave as
a linear resistor. These two behaviors are the fingerprints of amemcapacitor
system9.

Non-correlated inputs
We start our analysis considering initial vacuum states for both resonators
∣Ψð0Þ� ¼ ∣0i � ∣0i. Figure 2a shows the evolution of the charge hn̂2i as a
function of the external voltage Vg. For the input voltage frequency ων = π/
5.94ω1, we can see that the curve is pinched at the origin, which can be
considered as characteristic of a memcapacitor device9. On the other hand,
for the input voltage frequency 2ων, high-frequency regime, we observe in
Fig. 2d that the response tends to a line, which is another feature ofmemory
behavior. It means our system, starting from the ground state, can be
considered a memory device.

For the case of the initial state ∣Ψð0Þ� ¼ ∣0i � ∣ψðη; χÞ�, with
∣ψðη; χÞ� ¼ cosðη=2Þ∣0i þ eiχ sinðη=2Þ∣1i. The dynamical response of the
device will be modified as long as we change phase χ. Here, we will consider
states with the same amplitudes η = π/2 and choose two values for the
relative phase χ = {0, π/2}. Figure 2b, c shows the dynamical response of the
device for the two mentioned values for the phase χ at driving frequency
ων = π/5.92ω1. We notice that the value of χ plays the role of control for the
memory feature of our device. For χ = 0,we do not observe a hysteresis loop.
However, adjusting χ = π/2, it shows a stable hysteresis loop. Moreover, at
high-driving frequency, for phase χ = 0,weobserve a line, and for χ = π/2,we
get a circle, which means that the phase χ also modifies the memory effects
for the high-frequency regime.

It is interesting to also consider classical initial states, along the
manuscript we call classical states to states that saturate the uncertainty
relation and thathave anonnegativeWigner function.Under this definition
coherent and squeeze states, can be named classical. We consider coherent
states for the second oscillator, ∣Ψð0Þ� ¼ ∣0i � ∣αi. We characterize the
coherent state by its amplitude and phase through the relation α = reiφ. We
consider r = π/4 and φ = {π/4, π/8}. Figure 3(a)–(b) show the dynamical
response for the two different phases. In both cases, the expectation value of
hn̂2ðtÞi all exhibit the pinched hysteresis curve. Notice that in this case, the
phase does not considerably affect the memcapacitor behavior as in the
previous case. Also, we observe that for the high-frequency in Fig. 3(e)-(f),
we obtain curves with oscillatory features again.

Finally, we can consider another type of classical states like squeezed
states defined as ∣Ψðα; ξÞ� ¼ ŜðξÞ∣αi. Here, ∣αi is the same coherent state as
defined in the previous section, and ŜðξÞ ¼ expðξâ2 � ξ�ây2Þ is the squeeze
operator. Here, ξ = Reiθ is also a complex number that characterizes the
amount of squeezing and over which resonator quadrature will be applied.
Thus, the initial state of the system is given by ∣Ψð0Þ� ¼ ∣0i � ∣Ψðα; ξÞ�. In
Fig. 3c, d, we observe the input-output dynamics for different squeezing

Table 1 | Optimal circuit parameters

Circuit Parameters

Cc [fF] C1 [fF] C2[fF] CJ [fF] Cg [fF] L1 [pH] L2 [pH] EJ/2π [GHz]

5.657 413.5 530.4 536 116.9 746.2 749.8 219.1

System parameters

ω1 [GHz] ω2 [GHz] ωS [GHz] G12/ω1 I12/ω1 Z1/ZS Z2/ZS ωS/ω1

5 5 50 0.005 0.00005 9.999 9.999 10

https://doi.org/10.1038/s43246-024-00505-4 Article

Communications Materials |            (2024) 5:70 3



parameters. Specifically, we use for Fig. 3c, d R = 0.1 and R = 1, respectively,
and θ = π/2 in both cases. In the high-frequency regime of the input voltage,
we see that the system response again looks like an oscillator.

We note that for all classical states (coherent, squeeze, and vacuum) as
initial state, our coupled device shows memory properties in each mem-
capacitor,making our proposal suitable as amemdevice, at least for classical
initialization.

Correlated input
An interesting feature of quantummechanics is the emergence of quantum
correlations, which are useful resources to approach quantum advantage in
quantum computing. Then, it is important to calculate the dynamical
response of our devices for correlated inputs. Specifically, in this section, we
consider a Bell-like state, the NOON state, which is a generalization of Bell
states for higher photonnumbers, andfinally,we consider an initial cat state.

For the case of Bell-like states, we consider initial superpositions of the form
∣Ψð0Þ� ¼ cosðθÞ∣0; 0i þ sinðθÞ∣1; 1i. The dynamics of the system is shown
in Fig. 4a for θ = π/4 and Fig. 4b for θ = π/16. These two figures show similar
results with the vacuum state, which suggests that the memory properties
captured by the hysteresis loop are insensitive to the amount of entangle-
ment. Also, for the high-frequency regime, see Fig. 4(f)-(g), the dynamics
tends to a line as the vacuum case, being again insensitive to the initial
entanglement in the device. For the case of a NOON state, where we con-
sider ∣Ψð0Þ� ¼ ð∣2; 0i þ ∣0; 2iÞ= ffiffiffi

2
p

, again the dynamics present the same
shape as can be seen in Fig. 4c, h (high-frequency regime). Finally, for
entangled coherent or cat states, we consider ∣Ψð0Þ� ¼ ð∣α; 0i þ
∣0; αiÞ= ffiffiffi

2
p

with α = reiφ. Here, the dynamics is close to the coherent state
case as shown in Fig. 4d, e for the cases of φ = π/4 and φ = π/2. In both cases
with r = π/2, aswell as for the high-frequency regime, that is Figs. 4i–j. These
numerical results prove that our proposal keeps the behavior for entangled

Fig. 3 | Dynamic response of the microwave quantum device under the action of
the input voltage for different initial states. a, b ∣Ψð0Þ� ¼ ∣0i � ∣αi � ∣0i � ∣reiφ

�
with r = π/4, a φ = π/4, whereas b φ = π/8. c, d ∣Ψð0Þ� ¼ ∣0i � ∣Ψðα; ξÞ� � ∣0i�
ŜðReiθÞ∣reiφ�, with c R = 0.1, θ = π/4 and d R = 1, θ = π/4. e–h High-frequency

response (2ων) for the previous states. For both cases, the driving frequencies are
identical ων = π/5.92ω1. Coupling strength G12=ω1 ¼ 5:294× 10�3; I 12=ω1 ¼
2:00× 10�4.

Fig. 2 | Dynamic response of microwave quantum device under the action of the
input voltage for different initial states. (a) ∣Ψð0Þ� ¼ ∣0i � ∣0i;ων ¼ π=5:92ω1

and (b, c) ∣Ψð0Þ� ¼ ∣0i � ∣Ψðη; χÞ� with η = π/2, for (b) χ = 0, for (c) χ = π/2, and

ων = π/5.94 ω1. (d–f) High-frequency response of the aforementioned cases at
2ων. The calculations used V0 = 0.01μV. Coupling strengths G12=ω1 ¼
5:294× 10�3; I 12=ω1 ¼ 1:998 × 10�4.
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initial states between both resonators, which means entanglement between
the internal variable and the output.

Coupled microwave quantummemcapacitors
We now consider a capacitive coupling between our proposed microwave
quantum memcapacitor. Specifically, we consider a coupling between the
input node of one device and the output node of the other device, as shown

in Fig. 5. We have inverted the second microwave quantummemcapacitor
to minimize the crosstalk effect between the SQUIDs. The circuit Hamil-
tonian for the coupled devices reads (see Methods, Classical Hamiltonian
for a singlemicrowave quantummemcapacitor for the complete derivation)

Ĥ2M ¼
X

‘¼f1;2g
ω‘ðΦxÞây‘ â‘ þ iGg‘ðΦx; tÞðây‘ � â‘Þ þΩ‘ðΦxÞb̂

y
‘ b̂‘ þ iJg‘ðΦx; tÞðb̂

y
‘ � b̂‘Þ

h i

þ λþðΦxÞðây1â2 þ â1â
y
2Þ þ λ�ðΦxÞðây1 ây2 þ â1â2Þ þ ΛþðΦxÞðb̂

y
1b̂2 þ b̂1b̂

y
2Þ

þ Λ�ðΦxÞðb̂
y
1 b̂

y
2 þ b̂1b̂2Þ þ

X2
j;k¼1

γþj;kðΦxÞðâyj b̂k þ âjb̂
y
kÞ þ γ�j;kðΦxÞðâyj b̂

y
k þ âjb̂kÞ

h i
:

ð7Þ

Here, â‘ and b̂‘ stand for the bosonic annihilation operators for each LC
oscillator from the ℓth memcapacitive quantum device. Also, ωℓ(Φx) and
Ωℓ(Φx) are the resonator frequency of each microwave quantum memca-
pacitor, while Ggℓ(Φx) and Jgℓ(Φx) correspond to the coupling strength
between the resonators with the gate voltage. Moreover, λ±(Φx) andΛ

±(Φx)
are the coupling strength between the different nodes of each microwave
quantummemcapacitor, whereas γ±

j;kðΦxÞ is the coupling strength between
different devices. We will analyze the coupled case using the same initial
state, non-correlated and correlated inputs, for each device of the previous
section.

Non-correlated inputs for microwave quantummemcapacitors
We analyze the dynamic response of the memcapacitive variable of the
coupled device that corresponds to the second oscillator of each subsystem,
labeled as oscillator 2 andoscillator 4.We study the evolution of a subsystem
during the timescale T = 10(2π)/ων, with ων as the driving frequency of the
input voltage. Notice that the coupling capacitance Cm modifies the fre-
quency of both microwave quantummemcapacitor, which leads to a slight
change in the conditions required for the input voltage to achieve memory
behavior in both devices. The parameter values used in the analysis are
provided in Table 2 in Methods, Classical Hamiltonian for a single micro-
wave quantum memcapacitor.

We start our analysis by considering the initial state
∣Ψð0Þ� ¼ ∣0;ψðπ=2; 0Þ�∣0;ψðπ=2; 0Þ�, where ∣ψðπ=2; 0Þ� ¼ ð∣0i þ ∣1iÞ
=
ffiffiffi
2

p
. We show the response with this initial condition in Fig. 6a, b. We can

observe that the observable hn̂i exhibits memory behavior in both micro-
wave quantum memcapacitors. At high frequency, shown in Fig. 6e, f, we
can observe that dynamics response from circumference, which corre-
sponds to an oscillatory behavior.

Now, we consider coherent states of the form ∣Ψð0Þ� ¼ ∣0; αi∣0; αi,
where α = (π/2)eiπ/4. At voltage frequency ων = 0.5ω1 both devices show

Fig. 4 | Dynamic response of the microwave quantum device under the action of
the input voltage when the system is initialized in different states. a, b The Bell
state, ∣Ψð0Þ� ¼ cos θ∣0; 0i þ sin θ∣1; 1i where a θ = π/4, and b θ = π/16, driving
frequency ων = π/5.94ω1. c Noon state, ∣Ψð0Þ� ¼ ð∣2; 0i þ ∣0; 2iÞ= ffiffiffi

2
p

. Cat state

∣Ψð0Þ� ¼ ð∣α; 0i þ ∣0; αiÞ= ffiffiffi
2

p
with α = reiφ, where d r = π/2, φ = π/4 and e r = π/

2, φ = π/2 where ων = π/5.9ω1. f–j High-frequency response (2ων) for the
previous states. We consider V0 = 0.01μV, whereas the coupling strengths
are G12=ω1 ¼ 5:294× 10�3; I 12=ω1 ¼ 1:998× 10�4.

Fig. 5 | Coupling of two microwave quantum memcapacitors. The devices are
coupled by a capacitor Cm (red color). The second node,Φ2 in the first device, serves
as the input signal to the second device.
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Fig. 6 | Dynamic response of the coupled micro-
wave quantum memcapacitive devices under the
action of the input voltage for different states.
a, b superposition state, ∣Ψð0Þ� ¼ ∣0;ψðη; χÞ�∣0;ψ
ðη; χÞi, with η = π/2 and χ = 0. c, d Coherent state,
∣Ψð0Þ� ¼ ∣0; αi∣0; αi, where α = reiφ with r = π/
2, φ = π/4. a–c ων = π/6.33ω1, b–d ων = π/6.25ω1.
e–hHigh-frequency response (2ων) for the previous
states.

Table 2 | Coupled device circuit parameters

Circuit parameters

Cc [fF] C1 [fF] C2[fF] C3 [fF] C4[fF] CJ [fF] Cg [fF] Cm[fF]

5.657 413.5 530.4 413.5 530.4 536.0 116.9 11.69

L1 [pH] L2 [pH] L3 [pH] L4 [pH] EJ/2π [GHz]

746.2 749.8 746.2 749.8 219.1

System parameters

ω1 [GHz] ω2 [GHz] Ω1 [GHz] Ω2 [GHz] λ+/ω1 λ−/ω1 Λ+/ω1 Λ−/ω1

5 4.97 5.579 5.034 0.00569 −0.00529 0.00652 −0.00597

γþ1;1ω1 γ�1;1=ω1 γþ1;2=ω1 γ�1;2=ω1 γþ2;1=ω1 γ�2;1=ω1 γþ2;2=ω1 γ�2;2=ω1

0.000145 −0.000134 0.0 0.0 0.0139 −0.0128 0.00016 −0.00014
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pinched hysteresis loop for hn̂i. Similar to the superposition state, we
observe that the memcapacitive response of the second device is more
stable than the first one (see Fig. 6c, d) where again the pinched curve
does not shrink or expand. On the other hand, at high frequency (2ων),
the dynamical response of the variable hn̂i corresponds again to an
oscillator-like behavior.

Finally, we consider as the initial state the state ∣Ψð0Þ� ¼ ∣0; αξi∣0; αξi
corresponding to a squeezed state for the resonator 2 and 4, in this case we
choose α = ξ = 0.1eπ/8. Similar to the uncoupled case, here we also observe
memory behavior due to the pinched loop at voltage frequency ων = 0.5ω1

(see Fig. 7). The second memcapacitive system has a more stable response
than the first one, maintaining unaltered its pinched hysteresis curve. For
the high-frequency response, we see that the system exhibits an elliptical
response, looking like an oscillator. This dynamics is similar to the single-
device case using the squeezed states.

As a brief conclusion, we can observe that for the case of uncorrelated
inputs, the memcapacitive behavior is preserved, obtaining curves with the
same shape as in the uncoupled case. Also, we can see that the response of
the microwave quantum memcapacitor that is further to the input voltage
presents more stable dynamics. This can suggest that for a chain of
microwave quantummemcapacitorwith uncorrelated inputs, the dynamics
will be more stable at the end of the chain.

Correlated Input for microwave quantum memcapacitor
As in the case of uncoupled devices, we can calculate the dynamics of
coupled deviceswith initially correlated input states.Weuse similar states as
in the case of a single device it means Bell, NOON, and cat states.

We start our analysis considering Bell state as the initial state, that is
∣Ψð0Þ� ¼ ∣ψB

�
∣ψB

�
, where ∣ψB

� ¼ ð∣0; 0i þ ∣1; 1iÞ= ffiffiffi
2

p
. Figure 8a, b

shows the input-output dynamics for bothmemcapacitors forων = 0.5ω1. In
this case, curves approach pinched hysteresis loops.We notice that the first
device is more stable than the second one. For the high-frequency regime,
we can note that the response of the observable hn̂‘i squashes losing the
memcapacitive properties (see Fig. 8e, f).

Next, we initialize the devices a in tensor product ofNOONstate of the
form ∣Ψð0Þ� ¼ ∣ψN

�
∣ψN

�
, where ∣ψN

� ¼ ð∣0; 2i þ ∣2; 0iÞ= ffiffiffi
2

p
. Interest-

ingly, we observe that for this initialization, the results are similar to Bell
states, as depicted in Fig. 8c, d for voltage frequency ων = 0.5ω1.We need to
mention that forBell andNOONstates, the expectation value in thenumber

of photons is zero,which is related to the position of the pinchedpoint in the
curves, as pointed out inReferences33. ForNOONstates, the high-frequency
dynamics is similar to the Bell state as can be seen in Fig. 8g, h, where the
devices tend to lose their memcapacitive properties.

Finally, we consider an initial cat state ∣Ψð0Þ� ¼ ∣ψC

�
∣ψC

�
, with

∣ψC

� ¼ ð∣α; 0i þ ∣0; αiÞ= ffiffiffi
2

p
. For input voltage frequency ων = 0.5ω1 we

can obtain pinched hysteresis curves, with a more stable response from the
second device, as shown in Fig. 9. On the other hand, at high frequency, the
response in the coupled system produces a circle. Therefore, the memory
dynamics is replaced by an oscillatory one.

Again, all these results show that our proposal has memcapacitive
quantum properties in each device when coupled in a suitable parameters
regime, which can be switched with the frequency of the external input. It is
important to mention that our proposal differs from the ideal memory
device, where the input-output relation gives perfect close loops, never-
theless, as Kubo’s response theory, these results can be linked with the
memory properties of the proposed device47.

Quantum correlations
We calculate the correlation embedded in the different resonators of our
coupled device described by the reduced density matrix
ρri;rj ¼ Trrk ;rl ð∣Ψi Ψh ∣Þ, wherewe have traced out two of the resonators. As a
measure of quantum correlations, we consider the quantum discord48,49,
which considers all the correlations in a system that cannot be considered as
classical correlations. Formally, quantum discord is defined as

Qi;j ¼ Sðρri Þ �min
Πm

ri

Sðρri ;rj jrj Þ; ð8Þ

where SðρÞ ¼ Tr½ρ logðρÞ� is the von Neumann entropy, ρri ¼ Trrj ðρri;rj Þ
and ρri;rjjrj is the density matrix after a projective measurement in the
resonator rj. The second term minimizes the von Neumann entropy for all
the possible projective measurements in rj. Such projective measurements
can be written as Πm

rj
¼ Iri � U ∣mi mh ∣Uy. The d-dimensional unitary

matrix U can be written in terms of d(d− 1)/2 two-level matrices as

U ¼
Yd�1

k¼1

Yd�k

n¼1

Uk;n: ð9Þ

Fig. 7 | Dynamic response of coupled microwave
quantum devices utilizing squeezed states. Initial
state ∣Ψð0Þ� ¼ ∣0; αξi∣0; αξi, where α = reiφ, ξ = reiφ

(r = 0.1, φ = π/8). a ων = π/6.33ω1, and b ων = π/
6.25ω1. c, d are the corresponding high-frequency
response of the device at double the frequency pre-
viously considered.
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Here, the matrix Uk,n reads

Uk;n ¼

1 0 ::

0 1

:: ::

vk;k vk;kþn

::

::

vkþn;k vkþn;kþn

:: ::

1 0

:: 0 1

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð10Þ

where eachmatrixUk,n can be parametrized in terms of three angles, that is
vk;k ¼ sinðϕ1Þeiϕ2 ; vkþn;k ¼ cosðϕ1Þeiϕ3 ; vk;kþn ¼ cosðϕ1Þe�iϕ3 and
vkþn;kþn ¼ � sinðϕ1Þe�iϕ2 . It means that the U in Eq. (9) can be

parametrized by 3(d− 1)d/2 angles, which need to be optimized to mini-
mize the second term in Eq. (8). To perform such an optimization process,
we used the basin hopping algorithm from Online documentation
scipy.optimize.basinhopping.

Figure 10 shows the dynamics of the quantum correlation for the
different resonators in the coupled microwave quantummemcapacitors
configuration for different initial states. In Fig. 10a–c, we consider the
bipartite state ρij for the ith and jth resonators, we consider initializations
in the coherent state, squeezed-displaced state, and superposition state,
respectively. As these initial product states possess no inherent corre-
lations, the emergence of finite correlations over time indicates pro-
gressive quantum interaction between subsystems. These correlations
experience oscillatory behavior, alternating between maximum and
minimum values. We note that for the initial superposition state, we
reach a non-negligible correlation between the microwave quantum
memcapacitors.

Next, we analyze the case when the system starts in an entangled state,
Fig. 10d–g, where we consider ρij to be in the bell, noon, and cat states. In

Fig. 8 | Dynamic response of the coupled micro-
wave quantum memcapacitive devices for differ-
ent innitial states. a, bBell state ∣Ψð0Þ� ¼ ∣ψB

�
∣ψB

�
,

with ∣ψB

� ¼ ð∣0; 0i þ ∣1; 1iÞ= ffiffiffi
2

p
. c, d NOON state,

∣Ψð0Þ� ¼ ∣ψN

�
∣ψN

�
, with ∣ψN

� ¼ ð∣0; 2i
þ∣2; 0iÞ= ffiffiffi

2
p

. The driving frequencies are a–cων =π/
6.3ω1, and b–d ων = π/6.22ω1. e–h High-frequency
response (2ων) for the previous states.
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Fig. 10d, since the system is initialized in a maximally entangled state, ρ12
and ρ34 start with maximal quantum correlations that decay over time
undergoing an oscillatory behavior. It is worth noticing that the oscillations
produce a rise and decay in the correlations contained in ρ12 and ρ34 that
coincide with the decay and rise of the correlations contained in ρ13, ρ14, ρ23,
ρ24. This implies that the correlations between resonators of the individual
microwave quantum memcapacitors get shared over time between the
resonators of the different devices. This transfer of quantumcorrelations is a
well-knownphenomenon amongmultipartite systems50, and their interplay
with memory behavior has been reported recently in SQUID-based quan-
tum memristor33,34.

Changing to adifferent initialization, the 2ndand3rd resonators canbe
initialized in a Bell state. The plots corresponding to this configuration are
shown in Fig. 10e. Due to this initial state configuration, the bipartite state

ρ23 starts frommaximal correlationsdecayingwith time and is accompanied
by the increase in the correlations of the other bipartite states. We find a
similar observation where the maximal (minimal) values of ρ23 coincide
with the minimal (maximal) values of the other states. Finally, we study the
correlations when the system is initialized in the NOON and cat states, as is
shown inFig. 10f, g,where the transfer of correlations is alsoobserved.Using
the NOON state, the correlations evolve and go beyond unity since the
number of photons in the resonators is 2, and therefore the maximal
quantumcorrelation isnot bounded to theunit. Similarly, using the cat state,
the correlations depend on the value of α that determines the maximal
correlations in the system.

Our proposal can be easily implemented via capacitive coupling as is
shown in Fig. 5. This allows the implementation of more complex arrays of
memcapacitive quantum devices, opening the door to the experimental

Fig. 10 | Quantum discord between different resonators of the coupled QMs in
different initial states. ρij coresponds to the bipartite state of ith and jth resonator in
the device. a Coherent state,∣Ψð0Þ� ¼ ∣0; αi∣0; αi with α = π/2eiπ/2. b Squeezed state,
∣Ψð0Þ� ¼ ∣0; αξi∣0; αξi, where α = reiφ, ξ = reiφ (r = 0.1, φ = π/8). c Superposition
state, ∣Ψð0Þ� ¼ ∣0;ψðπ=2; 0Þ�∣0;ψðπ=2; 0Þ�, where ∣ψðπ=2; 0Þ�ð∣0i þ ∣1iÞ= ffiffiffi

2
p

.

d Bell state, ∣Ψð0Þ� ¼ ∣ΨB

�
∣ΨB

�
, e ∣Ψð0Þ� ¼ ∣0i∣ΨB

�
∣0i where ∣ψB

� ¼ 1ffiffi
2

p ð∣00i
þ∣11iÞ. fNoon state, ∣Ψð0Þ� ¼ ∣ψN

�
∣ψN

�
, where ∣ψN

� ¼ ð∣0; 2i þ ∣2; 0iÞ= ffiffiffi
2

p
. gCat

state, ∣Ψð0Þ� ¼ ∣ψC

�
∣ψC

�
, with ∣ψC

� ¼ ð∣α; 0i þ ∣0; αiÞ= ffiffiffi
2

p
.

Fig. 9 | Dynamic response of coupled microwave
quantum devices using a product of entangled
coherent state. Initial state ∣Ψð0Þ� ¼ ∣ψC

�
∣ψC

�
,

where ∣ψC

� ¼ ð∣α; 0i þ ∣0; αiÞ= ffiffiffi
2

p
with α = reiφ and

r = π/2, φ = π/4. a The driving frequency ων = π/
6.3ω1, and b the driving frequency ων = π/6.22ω1.
Panels c and d are the high frequency response for
the cases described in a, b respectively.
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implementation of neuromorphic quantum computing and simulation
systems.

Conclusions
We proposed an experimentally feasible quantum memcapacitor device, a
microwave quantum memcapacitor, using superconducting circuits in the
microwave regime.Our design consists of two coupled resonators grounded
through a SQUID, where one of the resonators plays the role of the main
system and the other of the auxiliary feedback system. We observe mem-
capacitive quantum dynamics in pinched hysteresis curves in the expecta-
tion values of the charge variable when we introduce feedback through a
magnetic flux in the SQUID. Such magnetic flux depends on weak mea-
surements over the auxiliary resonator. We test these memcapacitive
quantum behaviors for different initial states, from classical to entangled
inputs.

We showed that our proposal can be easily extended to coupled
microwave quantum memcapacitor, allowing for complex networks
suitable for developing neuromorphic quantum computers and simu-
lators. In this context, we proved that the memory properties are pre-
served when we couple two microwave quantum memcapacitors with
different classical or quantum initial states. Finally, we displayed that the
quantum correlations measured by the quantum discord present non-
trivial behaviors, which are fingerprints of the quantumness of our
device.

Also, it is necessary to highlight that quantummemory devices such
as in ref. 29 have shown applicability in pattern recognition in the
context of reservoir computing, outperforming the classical counterpart.
This advantage is obtained by introducing coherence and quantum
correlations into the reservoir of quantum memdevices. In this sense,
our design offers great connectivity and scalability as two or more
quantum devices can be capacitively coupled while still retaining their
memory properties. Furthermore, with our design, the quantum
memcapacitor becomes correlated in time being a suitable candidate for
reservoir computing.

Methods
Derivation of the circuit Hamiltonian for a single microwave
quantummemcapacitors
This section is devoted to deriving the quantized Hamiltonian of the
architecture shown inFig. 1.Wederive the classicalHamiltonian andobtain
a simplified version of the Hamiltonian using genuine approximations.
Finally, we will quantize the Hamiltonian by promoting the charge and flux
coordinates to the quantum operators.

Classical Hamiltonian for a single microwave quantum memcapa-
citor. The Lagrangian of the circuit given in Fig. 1 is

L ¼C1

2
_Φ
2
1 �

Φ2
1

2L1
þ Cg

2
ð _Φ1 � Vg Þ

2 þ Cc

2
ð _Φ1 � _Φ2Þ

2

þ C2

2
ð _Φ2 � _Φ3Þ

2 � ðΦ2 �Φ3Þ2
2L2

þ CJ

2
_Φ
2
3 þ 2EJ cosðφxÞ cosðφ3Þ;

ð11Þ

where φ3 = 2πΦ3/Φ0 is the superconducting phase, with Φ0 = h/2e as the
quantum flux where h is the Planck’s constant and 2e is the Cooper-pair
electric charge. Moreover, φx = 2πΦx/Φ0 is the external flux through the
SQUID. We calculate the canonical conjugate momenta (node charge)
through the relationQn ¼ ∂L=∂ _Φn,

Q1 ¼ðCg þ C1 þ CcÞ _Φ1 � Cc
_Φ2 � CgVg ;

Q2 ¼� Cc
_Φ1 þ Cc

_Φ2 þ C2ð _Φ2 � _Φ3Þ;
Q3 ¼C2ð _Φ3 � _Φ2Þ þ CJ

_Φ3:

ð12Þ

By defining ~Q1 ¼ Q1 þ CgVg ;
~Q2 ¼ Q2;

~Q3 ¼ Q3, the set of equations

given in Eq. (12) can be written as ~Q
!

¼ Ĉ _Φ
!

. Here, ~Q
!

and _Φ
!

correspond
to the charge and time derivative flux vector, respectively, and Ĉ is the
capacitance matrix. Applying the Legendre transformation
H ¼ i

~Qi
_Φi � L, we obtain the circuit Hamiltonian as

H ¼C�1
11

~Q2
1

2
þ C�1

22
~Q2
2

2
þ C�1

33
~Q2
3

2
þ C�1

12
~Q1

~Q2 þ C�1
13

~Q1
~Q3

þ C�1
23

~Q2
~Q3 þ

Φ2
1

2L1
þ ðΦ2 �Φ3Þ2

2L2
� 2EJ cosðφxÞ cosðφ3Þ:

ð13Þ

Here, C�1
ij corresponds to the matrix elements of the inverse of the capa-

citance matrix given by

Ĉ
�1 ¼ 1

C?

CcCJ þ C2ðCc þ CJ Þ CcðCJ þ C2Þ C2Cc

CcðCJ þ C2Þ ðCc þ C1 þ CgÞðCJ þ C2Þ C2ðCc þ C1 þ CgÞ
C2Cc C2ðCc þ C1 þ CgÞ CcCg þ C2ðCc þ CgÞ þ C1ðCc þ C2Þ

0
B@

1
CA;

where C ⋆ =C2Cc(C1+Cg)+CJ(C1(C2+Cc)+CcCg+C2(Cc+Cg)).
Notice that the system dynamics of our circuit depend on three degrees of
freedom {Φ1,Φ2,Φ3} corresponding to the two resonators and the SQUID,
respectively. We may reduce the system dynamics in terms of {Φ1,Φ2}
considering the high-plasma frequency ( _Φ3 ≪ _Φ1ð2Þ (€Φ3 ≪ €Φ1ð2Þ) and low-
impedance regime (Φ3≪Φ1(2)) of the SQUID51, obtaining the relation
between the node charges as

~Q3 ¼
�C2Cc

C2ðC1 þ CgÞ þ CcðC1 þ Cg þ C2Þ
~Q1 þ

�C2ðCc þ C1 þ CgÞ
C2ðC1 þ Cg Þ þ CcðC1 þ Cg þ C2Þ

~Q2

 !
:

ð14Þ
Next, we derive the relation between the node fluxes using the Euler-
Lagrange equation ∂L=∂Φi � dð∂L=∂ _ΦiÞ=dt ¼ 0 and considering high-
plasma frequency €Φ3 ≪ €Φ1ð2Þ

�Φ1

L1
þ Cc

€Φ2 � ðCc þ C1 þ CgÞ€Φ1 ¼0;

�Φ2

L2
� ðCc þ C2Þ€Φ2 þ Cc

€Φ1 ¼0;

4πEJ cosðφxÞ
Φ0

sinðφ3Þ þ C2
€Φ2 ¼0:

ð15Þ

We get Φ3 from Φ1 and Φ2 using the second linearized regime of the
Josephson junction52 i.e., sinðφ3Þ ¼ φ3 leading to

φ3 ¼
Φ0

4πEJ cosðφxÞ
α1

Φ1

L1
þ α2

Φ2

L2

� �
; ð16Þ

where α1 ¼ C2Cc

ðCcþC1þCg ÞðCcþC2Þ�C2
c
and α2 ¼

C2ðCcþC1þCg Þ
ðCcþC1þCg ÞðCcþC2Þ�C2

c
. We note

that

α2 ¼ α1 þ
C2ðC1 þ Cg Þ

ðCc þ C1 þ CgÞðCc þ C2Þ � C2
c

: ð17Þ

To express the Hamiltonian in terms of Eq. (16), we consider the low-
impedance regime (Φ3 ≪ Φ1(2)), so that cosðφ3Þ ¼ 1� φ2

3=2
and keep the potential energy of the SQUID up to the second order.
Using Eq. (14) and Eq. (16) in Eq. (13) we arrive at the Hamiltonian
given by

H ¼ Q2
1

2~C1

þ Q2
2

2~C2

þ Φ2
1

2~L1ðΦxÞ
þ Φ2

2

2~L2ðΦxÞ
þQ1Q2

~C12

þQ1Qg

~C1g

þQ2Qg

~C2g

þ Φ1Φ2

~L12ðΦxÞ
;

ð18Þ

https://doi.org/10.1038/s43246-024-00505-4 Article

Communications Materials |            (2024) 5:70 10



where we have used ~Q1 ¼ Q1 þ CgVg ;
~Q2 ¼ Q2 and defined the follow-

ing dressed circuit parameters

~C1 ¼~C1g ¼
ðC2 þ CgÞðC1 þ CgÞ þ CcC2

C2 þ Cc
; ~C2 ¼

ðC2 þ Cg ÞðC1 þ Cg Þ þ CcC2

Cc þ C1 þ Cg
;

~LiðΦxÞ ¼
L2i

Li þ Φ2
0α

2
i

8π2EJ cosðφxÞ
;

~C12 ¼ ~C2g ¼
ðC2 þ Cg ÞðC1 þ Cg Þ þ CcC2

Cc
; ~L12ðΦxÞ ¼

4π2EJ cosðφxÞL1L2
α1α2Φ

2
0

:

ð19Þ

Quantization of the Hamiltonian for a single microwave quantum
memristor. To proceed with the quantummechanical description of the
system, we promote the classical variables to quantum operators using
Q̂‘ ¼ 2en̂‘; Φ̂‘ ¼ ðφ̂‘=2πÞΦ0, where n̂‘ and φ̂‘ are the cooper pair charge
and phase operators, respectively, satisfying ½Φ̂‘; Q̂‘0 � ¼ i_δ‘;‘0 . Then, the
Hamiltonian in Eq. (18) can be written as

Ĥ ¼
X
‘¼1;2

4EC‘n̂
2
‘ þ

EL‘ðΦxÞ
2

φ̂2
‘ þ 8EC‘g n̂‘ng

� �

þ 8EC12n̂1n̂2 þ EL12ðΦxÞφ̂1φ̂2;

ð20Þ

where ng ¼ Qg=2e is the dimensionless gate charge, EC‘ ¼ e2=2~C‘ and
EL‘ðΦxÞ ¼ Φ2

0=ð4π2~L‘ðΦxÞÞ are the charge and inductive energies,
respectively, while EC12 ¼ e2=2~C12 and EL12ðΦxÞ ¼ Φ2

0=ð4π2~L12ðΦxÞÞ are
the coupling energies. Finally, we define the coupling energy of the lth
resonator with the gate voltage as EC‘g ¼ e2=2~C‘g . The charge and phase
operators can bewritten in terms of the annihilation and creation operators,
n̂‘ ¼ in‘ðây‘ � â‘Þ and φ̂‘ ¼ φ‘ðây‘ þ â‘Þ, where n‘ ¼
ðEL‘=32EC‘Þ1=4;φ‘ ¼ ð2EC‘=EL‘Þ1=4 correspond to zero point fluctuations,
leading to the following quantum Hamiltonian

Ĥ ¼
X
‘¼1;2

_ω‘ðΦxÞây‘ â‘ þ iGg‘ðΦx; tÞðây‘ � â‘Þ
h i

þ λ�ðΦxÞðây1ây2

þ â1â2Þ þ λþðΦxÞðây1â2 þ â1â
y
2Þ;

ð21Þ

where ω‘ðΦxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EC‘EL‘ðΦxÞ

p
=_ is the frequency of the ℓth resonator.

Also,Ggℓ(Φx, t) corresponds to the coupling strengthwith the external time-
dependent gate voltage. Moreover, λ±(Φx) = I12(Φx) ±G12(Φx) is the
effective coupling strength where I12(Φx) and G12(Φx) are the tunable
inductive andcapacitive coupling strengths, respectively.They are expressed
as

Gg‘ðΦx; tÞ ¼8EC‘gng
EL‘ðΦxÞ
32EC‘

� �1=4

;

G12ðΦxÞ ¼2EC12
EL1ðΦxÞEL2ðΦxÞ

4EC1EC2

� �1=4

;

I12ðΦxÞ ¼EL12
4EC1EC2

EL1ðΦxÞEL2ðΦxÞ

� �1=4

:

The circuit and system parameters obtained after constrained opti-
mization based on the mentioned approximations are summarized in the
following Table 1,

Derivation of the circuit Hamiltonian for coupled microwave
quantummemcapacitors
In this section, we derive the quantum Hamiltonian of the coupled
microwave quantum memcapacitors of Fig. 5.

Classical Hamiltonian for coupled microwave quantum memcapa-
citors. The coupled system is described by the Lagrangian

L ¼C1

2
_Φ
2
1 þ

C3

2
_Φ
2
4 �

Φ2
1

2L1
� Φ2

4

2L3
þ Cc

2
ð _Φ1 � _Φ2Þ

2 þ ð _Φ2 � _Φ3Þ
2

n o

þ C2

2
ð _Φ2 � _Φ3Þ

2 þ C4

2
ð _Φ5 � _Φ6Þ

2 � ðΦ2 �Φ3Þ2
2L2

� ðΦ5 �Φ6Þ2
2L4

þ CJ

2
ð _Φ2

3 þ _Φ
2
6Þ þ 2EJ cosðφxÞ cosðφ3Þ þ cosðφ6Þ

� 	
þ Cm

2
ð _Φ2 � _Φ4Þ

2 þ Cg

2
ð _Φ1 � VgÞ

2
;

ð22Þ

where φ3 = 2πΦ3/Φ0 and φ6 = 2πΦ6/Φ0 are the superconducting phases in
the respective devices, while φx = 2πΦx/Φ0 is the external flux through the
SQUID. Using the relationQn ¼ ∂L=∂ _Φn, we obtain the relation between
the node charges as

Q1 ¼ðCg þ C1 þ CcÞ _Φ1 � Cc
_Φ2 � CgVg ;

Q2 ¼� Cc
_Φ1 þ ðCc þ Cm þ C2Þ _Φ2 � C2

_Φ3 � Cm
_Φ4;

Q3 ¼� C2
_Φ2 þ ðCJ þ C2Þ _Φ3;

Q4 ¼� Cm
_Φ2 � ðCc þ Cm þ C3Þ _Φ4 � Cc

_Φ5;

Q5 ¼� Cc
_Φ4 � ðCc þ C4Þ _Φ5 � C4

_Φ6;

Q6 ¼� C4
_Φ5 þ ðCJ þ C4Þ _Φ6:

ð23Þ

Similar to the previous section, we define ~Q1 ¼ Q1 þ CgVg ;
~Q2

¼ Q2;
~Q3 ¼ Q3, ~Q4 ¼ Q4, ~Q5 ¼ Q5, and ~Q6 ¼ Q6. The set of relations

given in Eq. (23) can be written as ~Q
!

¼ Ĉ _Φ
!

. By using the Legendre
transformationH ¼PnQn

_Φn � L, we get the circuit Hamiltonian

H2M ¼
X6

i;j¼1ði≠jÞ

1
2

~Q
2
i C

�1
i;i þ ~Qi

~QjC
�1
i;j


 �
þ Φ2

1

2L1
þ ðΦ2 �Φ3Þ2

2L2
þ Φ2

4

2L3

þ ðΦ5 �Φ6Þ2
2L4

� 2EJ cosðφxÞ cosðφ3Þ þ cosðφ6Þ
� 	

;

ð24Þ
where C�1

ij corresponds to the inverse capacitance matrix element of Ĉ. As
with a single microwave quantum memcapacitor, we consider the low-
impedance regime of the SQUIDs ð _Φ3 ≪ _Φ1ð2Þ; _Φ6 ≪ _Φ4ð5ÞÞ obtaining the
relation between the node charges

~Q3 ¼ �C2ðB�1
21

~Q1 þ B�1
22

~Q2 þ B�1
23

~Q4 þ B�1
24

~Q5Þ;
~Q6 ¼ �C4ðB�1

41
~Q1 þ B�1

42
~Q2 þ B�1

43
~Q4 þ B�1

44
~Q5Þ;

ð25Þ

where B�1
ij are the elements of the inverse of matrix B̂ given by

B̂ ¼

Cc þ Cg þ C1 �Cc 0 0

�Cc Cc þ Cm þ C2 �Cm 0

0 �Cm Cc þ Cm þ C3 �Cc

0 0 �Cc Cc þ C4

0
BBB@

1
CCCA:

ð26Þ

Similarly, for the node fluxes, using the Euler-Lagrange equation ∂L=∂Φi �
dð∂L=∂ _ΦiÞ=dt ¼ 0 and considering the second linearized regime of the
Junctions (sinðφ3ð6ÞÞ ¼ φ3ð6Þ) and low-impedance regime of the SQUIDs
(€Φ3 ≪ €Φ1ð2Þ; €Φ6 ≪ €Φ4ð5Þ), we get

φ3ð6Þ ¼
ð�C2ð4ÞÞΦ0

4πEJ cosðφxÞ
B�1
2ð4Þ1

Φ1

L1
þ B�1

2ð4Þ2
Φ2

L2
þ B�1

2ð4Þ3
Φ4

L3
þ B�1

2ð4Þ4
Φ5

L4

� �
:

ð27Þ
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Furthermore, we express the Hamiltonian in terms of Eq. (27) considering
high plasma frequency (Φ3≪Φ1(2),Φ6≪Φ4(5)) and approximating
cosðφ3ð6ÞÞ≈ 1� φ2

3ð6Þ. Using Eq. (25) and Eq. (27) in Eq. (24), we obtain

H2M ¼
X2
i¼1

Hi þHc; ð28Þ

where Hi is the Hamiltonian of the single microwave quantum memca-
pacitor derived in the last section, Eq. (18), and the couplingHamiltonian is

Hc ¼
Q1Q4

~C13

þQ1Q5

~C14

þQ2Q4

~C23

þQ2Q5

~C24

þΦ1Φ4

~L13
þΦ1Φ5

~L14
þΦ2Φ4

~L23
þΦ2Φ5

~L24
:

Here, we have used ~Q1 ¼ Q1 þ CgVg ;
~Q2 ¼ Q2;

~Q3 ¼ Q3, the effective
coupling capacitances are defined as

~Cm;nðm¼1;2;n¼3;4Þ ¼ C�1
m;nþ1 þ C�1

3;3C
2
2B

�1
2;mb

�1
2;n � C2C

�1
m;3B

�1
2n � C2C

�1
3;nþ1B

�1
2;m þ C2

4C
�1
6;6B

�1
4;mB

�1
4;n



�C4C

�1
m;6B

�1
4;n�C4Cnþ1;6B

�1
4;m þ C4C2C

�1
3;6B

�1
2;mB

�1
4;n þ C4C2C

�1
3;6B

�1
2;nB

�1
4;m

��1
;

and the effective coupling inductances reads

~Lm;nðm¼1;2;n¼3;4Þ ¼
4πEJ cosðφxÞ

Φ2
0

C2
2B�1

2;mB
�1
2;n

LmLn
þ C4

2B�1
4;mB

�1
4;n

LmLn

 !�1

:

Quantization of the Hamiltonian for coupled microwave quantum
memcapacitors. By promoting the charge and phase variables to
quantum operators, using Q̂‘ ¼ 2en̂‘; Φ̂‘ ¼ ðφ̂‘=2πÞΦ0 to satisfy the
canonical commutation relation ½Φ̂‘; Q̂‘0 � ¼ i_δ‘;‘0 , we obtain the quan-
tum Hamiltonian of the coupled microwave quantummemcapacitors as

Ĥ2M ¼
X2
i¼1

Ĥi þ Ĥc: ð29Þ

Here, Ĥi is the quantum Hamiltonian of a single microwave quantum
memcapacitor (see Eq. (20)) and the quantized coupling Hamiltonian Ĥc
reads

Ĥc ¼
X

n¼1ð2Þ;m¼3ð4Þ
4ECnmn̂nn̂mþ1 þ ELnmφ̂nφ̂mþ1

� 
; ð30Þ

where the coupling capacitance and inductance energies are
ECnmðn¼1;2;m¼3;4Þ ¼ e2=ð2~CnmÞ; ELnmðn¼1;2;m¼3;4ÞðΦxÞ
¼ Φ2

0=ð4π2~LnmðΦxÞÞ. We express the charge and phase operators in terms
of the annihilation and creation operators

n̂1ð2Þ ¼ in1ð2Þðây1ð2Þ � â1ð2ÞÞ; φ̂1ð2Þ ¼ φ1ð2Þðây1ð2Þ þ â1ð2ÞÞ;
n̂4ð5Þ ¼ in4ð5Þðb̂

y
1ð2Þ � b̂1ð2ÞÞ; φ̂4ð5Þ ¼ φ4ð5Þðb̂

y
1ð2Þ þ b̂1ð2ÞÞ;

where n1ð2Þ ¼ ðEL1ð2Þ=32EC1ð2ÞÞ1=4;φ1ð2Þ ¼ ð2EC1ð2Þ=EL1ð2ÞÞ1=4; n4ð5Þ ¼
ðEL3ð4Þ=32EC3ð4ÞÞ1=4;φ4ð5Þ ¼ ð2EC3ð4Þ=EL3ð4ÞÞ1=4 with EC‘¼1;2;3;4 ¼ e2=2~C‘,
EL‘¼1;2;3;4ðΦxÞ ¼ Φ2

0=ð4π2~L‘ðΦxÞÞ. Then, we obtain the second quantized
Hamiltonian

Ĥ1 ¼
X
‘¼1;2

ω‘ðΦxÞây‘ â‘ þ iGg‘ðΦx; tÞðây‘ � â‘Þ
h i

þ λþðΦxÞðây1 â2 þ â1â
y
2Þ

þ λ�ðΦxÞðây1 ây2 þ â1â2Þ;
Ĥ2 ¼

X
‘¼1;2

Ω‘ðΦxÞb̂
y
‘ b̂‘ þ iJg‘ðΦx; tÞðb̂

y
‘ � b̂‘Þ

h i
þ ΛþðΦxÞðb̂

y
1 b̂2 þ b̂1b̂

y
2Þ

þ Λ�ðΦxÞðb̂
y
1b̂

y
2 þ b̂1b̂2Þ;

Ĥc ¼
X2
j;k¼1

γþj;kðΦxÞðâyj b̂k þ âjb̂
y
kÞ þ γ�j;kðΦxÞðâyj b̂

y
k þ âjb̂kÞ

h i
;

where ω1ð2ÞðΦxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EC1ð2ÞEL1ð2ÞðΦxÞ

p
=_ and Ω1ð2ÞðΦxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EC3ð4ÞEL3ð4ÞðΦxÞ
p

=_ are the frequencies of the resonator in each micro-
wave quantum memcapacitor. Also, Ggℓ(Φx, t) and Jgℓ(Φx, t) correspond to
the coupling strength between the resonators with gate voltage. Here,
λ±(Φx) = I12(Φx) ±G12(Φx), andΛ

±(Φx) = F12(Φx) ± J12(Φx) are the effective
coupling strengths of each singlemicrowave quantummemcapacitor, while
γ±(Φx) =Kj,k(Φx) ±Mj,k(Φx) are the effective coupling strength between
oscillators of the two microwave quantum memcapacitor defined as

Kj¼1;2;k¼3;4ðΦxÞ ¼ELjkðΦxÞ
4ECjECk

ELjðΦxÞELkðΦxÞ

 !1=4

;

Mj¼1;2;k¼3;4ðΦxÞ ¼2ECjk

ELjðΦxÞELkðΦxÞ
4ECjECk

 !1=4

:

Finally, we summarize the coupled systemparameters used in themain text,
where Table 2 shows the optimal case.

Data availability
All the data that support this work is available under a proper request to the
corresponding author.
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