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Analyzing microstructure relationships in
porous copper using a multi-method
machine learning-based approach
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The prediction of material properties from a given microstructure and its reverse engineering displays
an essential ingredient for accelerated material design. However, a comprehensive methodology to
uncover the processing-structure-property relationship is still lacking. Herein, we develop a
methodology capable of understanding this relationship for differently processed porous materials.
We utilize a multi-method machine learning approach incorporating tomographic image data
acquisition, segmentation, microstructure feature extraction, feature importance analysis and
synthetic microstructure reconstruction. Enhanced segmentation with an accuracy of about 95%
based on an efficient annotation technique provides the basis for accurate microstructure
quantification, prediction andunderstandingof thecorrelationof theextractedmicrostructure features
and electrical conductivity. We show that a diffusion probabilistic model superior to a generative
adversarial networkmodel, provides syntheticmicrostructure images includingphysical information in
agreement with real data, an essential step to predicting properties of unseen conditions.

Machine learning algorithms have taken a big leap in the past few years1.
Their applications are far-reaching, e.g., for autonomous driving2, natural
language processing3, or speech recognition devices4. Recently data driven
approaches have gained high interest, particularly to accelerate the material
development from atomic scales to microstructure level5,6. Consequently,
machine learning (ML) has been used to identify the influence of chemical
structures ranging from sub-angstrom-level to gross-level in relation to the
property of interest1. Deep learning has been used to predict material
properties, e.g., ionic conductivity7, or mechanical properties8,9.

Further, the recent development in deep learning provides exciting
possibilities towards synthetic image generation10 enabling the possibility to
predictmaterial properties for unseen conditions, an essential ingredient for
accelerated material design. Nevertheless, this has not been fully demon-
strated so far. Deep generative models exhibit the ability to create complex
structures11,12. Various generative adversarial network (GAN)-based archi-
tectureshavebeendeveloped in recent years targeting specificproblems, e.g.,
X-ray image augmentation13, or molecular design11. Although GAN shows
high potential for microstructure prediction14–16, there are challenges con-
cerning the stable training and mode collapse, causing serious problems
when certain descriptors need to be extracted from the image data17.
Notably, such an elicitation of physical descriptors or the microstructure
features displays an essential requirement in material science.

Recently, denoising diffusion probabilistic models (DDPMs) for the
generation of high- quality image synthesis have been introduced10. The
model represents a parametrized Markov chain, which is trained utilizing
variational interference to generate samples, matching the data after finite
time10. Due to the recent development of this approach, up tonowonly view
attempts in context to synthetic microstructure reconstruction have been
performed in the field ofmaterial science18. It is important to point out, that
for the prediction of material properties under unseen conditions, which
represents an important asset towards accelerated material development,
not only the synthetic image generation displays an important ingredient,
but also the accurate extraction of the physical descriptors from the gen-
erated image data as well as correlation to the material property is essential.
Hence, proper microstructure quantification as well as microstructure
feature assessment is important to foster the understanding of the under-
lying processing-structure-property relationship. A methodology implying
such considerations is still lacking.

The reliable extraction of microstructure features from a given
microstructure depends on the experimental characterization method as
well as on a time efficient and objective segmentation of the different
material phases. Various approaches have been presented, e.g., for X-ray
computed tomography (XCT)19 or for Scanning Electron Microscopy
(SEM)20–22. SEM-basedmethodsprovide advantageswith respect to contrast
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and resolution. Nevertheless, fully automated segmentation of SEM image
data especially for porous materials is challenging because of the ever pre-
sent shine through artifacts23.Here, conventional segmentationmethods are
often limited due to misinterpretation of fore- and background
information24.

ML shows advantages to process complex and bigmicrostructure data
as well as to extract relevantmorphological features obtained fromSEM25 or
tomography-based methods26. Recent studies show that deep learning
algorithms are highly suitable for semantic image segmentation27. In par-
ticular, the U-Net architecture28 is considered as a highly valuable approach
for most image segmentation workflows25,26,29. However, further improve-
ment of the prediction accuracy is mandatory for accelerated material
design.Yet, thepredictionaccuracynotonly relieson themodel architecture
but also concerns the efficiency of the annotation process. Usually the
annotation of the present phases within the microstructure is performed
manually30. However, this is time-consuming especially for a large amount
of data as well as heavily relies on user expertise. Hence, not appropriate for
accelerated material design workflows. The need for rapid annotation for
tomographic image data enabling an enhanced prediction accuracy beyond
the state of the art is crucial rather than a supplement.

Further, the assessment of the relation between the microstructure
features and the underlying material property is essential for accelerated
material development. Multi-variable linear regression models convey an
expressible relationship between two features or among several features31.
For instance, those can be used to predict mechanical properties of
alloys9,32,33 which are correlated with process parameters, alloy components,
or microstructural features. SHapley Additive exPlanations (SHAP) ana-
lysis, originating from cooperative game theory can be utilized to measure
the feature importance34. Yet, a major difficulty for a proper assessment of
the microstructure-property relationship often lies in the accuracy and
statistical pertinence of the extracted microstructure features.

Herein, we develop a comprehensive methodology enabling proper
microstructure quantification as well as the assessment of the micro-
structure feature dominance fostering the understanding of the underlying
processing-structure-property relationship. Our findings highlight not only
the importance of synthetic image generation and of accurately retrieving a
set of microstructural features with statistical confidence for accelerated
material design but also scrutinizing the features physical meaning in
context to the material property. The presented methodology provides an
essential step for the prediction ofmaterial properties, of unseen conditions,
for porous materials.

As a representative porous system, we investigate different sintered
porous copper materials. Such copper-based porous materials display a
promising alternative to conventional interconnection technologies35.
We develop a multi-method machine learning-based approach incor-
porating tomographic focused image data acquisition, image segmen-
tation, as well as microstructure feature extraction based on the
segmented data, feature importance analysis and synthetic micro-
structure reconstruction. We collect three-dimensional (3D) image data
by conducting ion beam-scanning electron microscopy (FIB-SEM). For
an accurate microstructure feature evaluation, we develop a semantic
image segmentation workflow based on a U-Net architecture incorpor-
ating an advanced annotation technique. Hence, an improved segmen-
tation accuracy of about 95% is feasible. The extracted microstructural
features are further used to perform a correlation analysis with different
multi-variable linear regression (MVLR) models to gain valuable clues
about the relation of the microstructure features and electrical con-
ductivity as well as associated sinter temperature. Here the best model,
based on a defined set of microstructure features, attains an R2 of 0.988.
SHAP analysis is performed to assess the importance of the features on
the electrical conductivity, a key for improved microstructure design.
Ultimately, we perform synthetic image reconstruction for different
sinter temperatures and electrical conductivities utilizing a conditional
GANmodel and a DDPM based on the preceding regression and feature
importance analysis. The comparison identifies the DDPM as a highly

valuable model for microstructure reconstruction in material science. As
a measure of the performance we utilize the physical descriptors or
microstructure features extracted from the segmented synthetic and real
images. The developed methodology is suitable to govern the electrical
conductivity based on the underlying microstructure and vice versa. We
point out, that the presented methodology and provided results are
highly crucial to support the future design of complex porous structures
in various fields.

Results
A need for an efficient annotation and deep learning micro-
structure segmentation
We conduct FIB-SEM tomography to image three different porous copper
materials. For the first and second sample set, we use sinter pastes consisting
ofmicro- andnanoparticles. Those sample sets are indicated as hybrid-paste
material A (HPA) and B (HPB), respectively. The third sample set is
composed of nanoparticles and is labeled as nano-paste material C (NPC),
see Methods for further sample details. For the investigation of the micro-
structure evolution upon temperature, six sinter temperatures with 175 °C,
200 °C, 225 °C, 250 °C, 350 °C, and 400 °C are selected, see Fig.1a. Each
reconstructed 3D dataset comprises about 450 images with an image size of
1120 × 640 pixels2 which makes an automated analysis approach indis-
pensable, see Methods for further details regarding the image acquisition.

Here, we aim for an accurate classification of two phases, associated
with the pore and copper, respectively, using a U-Net deep learning
architecture from Chollet36 (see Supplementary Note 1 and 2). For an
accurate prediction, the need of an efficient training for the U-Net model is
apparent25,37. Figure 1b shows a representative cross section obtained from
the SEM-FIB tomography data. Here, the segmentation of the so-called
shine through artifact38 within the pore is challenging. Infiltration of the
pore38 might work but would extend the expenditure. In the following we
compare various segmentation approaches. As shown in Fig. 1b, a con-
ventional threshold algorithm (CTA)39 segmentation, as shown as yellow
overlay, is not able to deal with all shine through artifacts within the pore
phase.TheCTAassigns the pore phase correctlywith darker gray values but
fails for regions with similar gray values to the copper phase. Therefore, we
conduct ahybrid approach toprovide amore accurate training for theU-net
model. For this semi-automatic hybrid approach35, a two-step procedure is
used. First, the selection of a threshold between the pore and copper in the
second derivative histogram plot is selected, see Fig. 1c. Figure 1d illustrates
with a color map the associated pore and copper phases, based on the
selected threshold at the first peak of the second derivative histogram.
Within the second step we conduct the simple linear iterative clustering
(SLIC) algorithm for superpixel generation40, see Fig. 1e. Each superpixel
segment’s average gray value is calculated and is segmented with the
threshold obtained in the first step. Figure 1f depicts the segmented pore
phase utilizing the introduced hybrid method. The segmentation includes
also the non-detected shine through artifacts. Figure 1g illustrates the
annotation for theU-netmodel, see SupplementaryNote 1 and 2 for further
details. We are able to annotate, based on the results from the hybrid
segmentation, 0 for copper, 1 for the pore detected by the conventional
threshold, and 2 for the shine-through artifacts.More details with respect to
the training are provided in the Methods section. Figure 1h, i shows the
output for the pores in 2D and both pores as well as copper in 3D,
respectively utilizing the U-Net segmentation trained with the
hybrid model.

We validate the segmentation performance using known metrics41

such as Jaccard Index, precision, recall, and accuracy, see Table 1. A
manually segmented dataset with the support of the Avizo software is used
as the ground truth. Further details are presented in Supplementary Note 3.
Overall, the U-Net using the hybrid annotation workflow provides the best
performance. Our work shows that a U-Net architecture with semi-
automatic annotation, is capable to provide segmentation with an accuracy
of up to 94%, which is higher than previously reported with U-net
architectures42.

https://doi.org/10.1038/s43246-024-00493-5 Article

Communications Materials |            (2024) 5:59 2



Three-dimensional copper network formation upon sintering
For an improved design of the microstructure in context to the targeted
property, it is essential to understand the correlation between the physical
descriptors describing the microstructure and the property. Figure 2a

illustrates the segmented 3D microstructure for sample HPA, HPB and
NPC, utilizing the U-net model based on the semi-automatic hybrid
annotation. Here, exemplary the segmented volume of interest (VOI) for
175 °C is shown. The microstructure exhibits significant differences for the

Fig. 1 | Segmentation challenges, annotation for the U-Net model and associated
results. a 3D morphology representations of the three different copper configura-
tions (HPA, HPB, and NPC) for different sinter temperatures. HPA and HPB
exhibits a microstructure which consists of micro- and nanosized pores. NPC
exhibits a microstructure with nanosized pores for all temperatures. b Challenging
are the shine-through artifacts within the SEM image. As illustrated conventional
threshold algorithms (CTA) usually segment the pores (yellow) incomplete. c The
second derivative of the histogram is performed to pre-select the threshold between
the pore and copper phase for the hybrid image analysis approach. d Gray value
range is illustrated by a color map from red to gray, projected on the SEM image.
Threshold between the copper and pore phases is depicted from the second deri-
vative histogram, as indicated in the image. e Simple linear iterative clustering (SLIC)

for superpixel generation is utilized. Accuracy of the segmentation is increased by
utilizing the superpixel’s average grayscale threshold, obtained from the second
derivative method. f The hybrid segmentation shows an efficient and fast method to
segment the pore and copper phase. g Improved segmentation accuracy can be
achieved by the introduced annotation method for the U-Net model. Three phases
are depicted in the histogram associated with the copper, pore, and shine-through
artifact domains associated with the labels 0 (gray), 1 (yellow) and 2 (blue),
respectively based on the hybrid segmentation, see inset. The pore volume is given by
pores detectedwith theCTA (yellow) and the shine-through artifacts (blue).hU-Net
model trained with the hybrid segmentation approach illustrating the seg-
mented pores (red). i 3D representation illustrating the segmented copper (gray) and
pores (red), reaching an accuracy of 94%.
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threematerialsHPA,HPBandNPC.NPC indicates a nano-porous network
with a porosity of 45.2%at 175 °C.HPAandHPBshowmicron-sizedaswell
as nano-sizedporeswithin theVOI, however, theydiffer in theporositywith
42.4% and 61.7% at 175 °C, respectively. Figure 2b shows the
densification43,44 of the three porous copper configurations upon sintering.
Here, the relative densityD is definedas the ratio of the copper volume to the
total volume of the VOI. The hybrid-paste HPA and nano-paste NPC
exhibits, compared to HPB, a rather similar behavior for the densification.
The changes in the relative density from175 °C to 400 °C forHPAandNPC
material are about 18.5% and 20.8%, respectively. The hybrid-paste HPB
shows the highest porosity and depicts a different behavior upon sintering.
Here, the densification gives about 7.3%.

We inverse the specific resistivity obtained from the 4-point probe
measurement to obtain the electrical conductivity σ. The superior electrical
performance of the nano-paste is demonstrated in Fig. 2c. Although the
relative densities D for HPA and NPC are similar, there are significant
differences of 50.2 μS.cm−1 and 84.3 μS.cm−1 in the electrical characteristics
of σNPC and σHPA at 350 °C and 400 °C, respectively.

For the evaluationof the copper strut diameterϕ and its evolutionupon
sintering, we skeletonize and statistically analyze the segmented data24

(Fig. 2d, e). The mean values are obtained by fitting the log-normal dis-
tribution of the strut diameter histograms (Supplementary Note 4). We
observe an increase of ϕ with temperature. This behavior is linked to the
continuous growth of the bonds between the sinter particles due to the
increase in temperature45. The NPC material indicates a small variation of
the copper strut diameter. The 95% confidence interval lieswithin a range of
0.01–3.5 nm and suggests a highly homogenous distribution of the copper
network as indicated for the volumetric microstructure data in Fig. 2d. For
HPA and HPB, the confidence interval lies within 2.4–36.4 nm and
0.7–23.6 nm, respectively, and is significantly larger than for the NPC
material.

Evolution of the copper strut-interconnectivity and investigation
on the surface properties upon cycling
Another significantmicrostructural feature concerns the connectivity of the
copper strut and its evolution upon sintering, see Methods. We use the
geodesic tortuosity τ46 as a measure for the strut interconnectivity. A high
tortuosity of the copper relates to a small copper strut interconnectivity. The
geodesic tortuosity is defined by the ratio of the geodesic distance to the
Euclidiandistance. Figure 3a illustrates the evaluated3D tortuosity along the

Table 1 | Segmentation quality

Segmentation method Jaccard Index Precision Recall Accuracy

Pore Copper Pore Copper Pore Copper

CTA 0.69 0.81 0.98 0.81 0.70 0.99 0.87

Hybrid 0.77 0.82 0.83 0.93 0.92 0.88 0.89

U-Net CTA 0.59 0.77 0.98 0.77 0.60 0.99 0.83

U-Net Hybrid 0.86 0.89 0.89 0.96 0.96 0.92 0.94

Wecompare severalmetrics, e.g., Jaccard Index, precision, recall, and accuracy to validate the segmentation results for the pore and copper. For the segmentation,we use theCTA, the hybrid algorithmas
well as the U-Net predictions trained by the CTA and the hybrid algorithm.

Fig. 2 | Segmented Volume of interest, relative density and copper strut size.
a Segmented volume of interests (VOIs) with 10 × 10 × 10 μm3 for sample HPA,
HPB and NPC, exemplary for 175 °C, with the copper (gray) and pore (red) phases.
Scale bar is 10 μm. b Evaluated relative density D as a function of the sinter tem-
perature for HPA (blue), HPB (gold) and NPC (red) extracted from the segmented
VOIs. c Electrical conductivity σ vs. relative density D for HPA (blue), HPB (gold)
and NPC (red). d Skeletonized copper phases illustrate the 3D copper struts

distributions for sample HPA, HPB andNPC between 175 °C and 400 °C. Each VOI
is 10 × 10 × 10 μm3. Color coding indicates the strut diameters variation within the
volume ranging from 0 (white) to 1 µm (yellow). e Statistical analysis of the strut
diameter ϕ for different temperatures and sample sets. Sample HPA, HPB and NPC
are indicated by blue, gold, and red, respectively. All the quantification plots in this
work show the means and the 95% confidence intervals except those stated
otherwise.

https://doi.org/10.1038/s43246-024-00493-5 Article

Communications Materials |            (2024) 5:59 4



y-direction, which conforms to the direction from the surface to the sub-
strate, exemplary for 175 °C, 250 °C and 400 °C. The tortuosity τ is quan-
tifiedby averaging the extracted tortuosity valuesalong they-directionof the
last 25% from the sample’s length38. Further information with respect to the
tortuosity is provided in Supplementary Note 5 where we calculate the
overall tortuosity in five directions and average them.

As indicated by the 3D tortuosity distribution in Fig. 3a and the cal-
culated averaged tortuosity inFig. 3b, theHPBmaterial indicates the highest
tortuosity of the copper strut in comparison toHPA andNPC. As shown in
Fig.3b, forHPAandNPCthe average tortuosity decreases between175 °C to
400 °C from 1.039 to 1.013 and from 1.030 to 1.008, respectively. The NPC
material, as indicated in Fig. 3a, illustrates the lowest tortuosity distribution
within the analyzed VOIs for all temperatures.

During the sintering, the surface area is reduced by the growing of
bonds between the sinter particles. The driving force for the sintering
decreases as the surfacearea is annihilated. Thedecline of the specific surface

area SA with the sinter temperature is shown in Fig. 3c. At 175 °C, the
specific surface area forHPAandNPC is about a factor of two larger than for
HPB. SAHPA decays very fast from 175 °C to 200 °C. Consequently, it starts
to decay slowly after 200 °C. SAHPB and SANPC decays in a more constant
manner with temperature. The sample HPA and NPC reaches a similar SA
at 400 °C. The value for HPB is about 30% smaller.

Further, we investigate the pore-copper interface evolution upon sin-
tering using the Gaussian curvature G and mean curvatureM47. Both cur-
vatures classify the local surface geometries with their joint distributions48.
Figure 3d depicts the G-M curvature joint distributions of the copper sur-
faces for different sinter stages. In the first (QI) and second (QII) quadrants,
two tails extend to high mean curvature values. The changes of those tails
with temperature indicate the change of the copper particles’ convexity. The
copper particles’ local geometries at the lower sinter temperature, display
mostly cup-convex surfaces resembling spheroidal structures49, therefore,
their Ms are positive. The sintering process reduces the sphericity of the

Fig. 3 | Strut interconnectivity, surface and copper-pore interface analysis upon
sintering. a 3D tortuosity analysis in the y direction to quantify the connectivity of
the copper along the direction from the surface to the substrate, with high tortuosity
(blue) and low tortuosity (black). b Evolution of the averaged tortuosity upon sin-
tering for HPA (blue), HPB (gold) and NPC (red). For the analysis we average the
values of the last 25% of the volume, as highlighted for the 3D volume for HPB at
175 °C in five directions (see Supplementary Note 5). c Specific surface area analysis
for HPA (blue), HPB (gold) and NPC (red), respectively. All samples indicate a
reduction of the specific surface area. d The complexity of the sintering process is
illustrated by joint distributions of the Gaussian (G) and mean (M) curvatures. All

materials’ tails stretch in the first quadrant (QI) and second quadrant (QII). The QI
tails show the presence of small radii convex regions, inversely related to the mag-
nitudes. Consequently, the low temperature plots show the early stage of sintering. In
contrast, the QII tails show the progress of sintering when the particles are joining.
This progress indicates the formation of necks and concave radii. Interestingly as
temperature increases, the QI tails tend to get shorter and the QII tails tend to get
denser and longer. The intensity maximums/peaks show negative Gs for all samples
at low temperatures. As the temperature increases, the necks become flattened, i.e.,G
becomes less negative.
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particles. As a result, the emerging tails in QI are getting less pronounced by
increasing the temperature for all presented materials. The observed
behavior is complemented with an increased number of cup-concave geo-
metries indicated by more pronounced tails in QII.

The intensitymaximumclose to the origin of the graph shows negative
Gs for all samples. ForHPB themagnitude ofG is decreasingwhich suggests
an increaseof theneck’s radii during sintering.The sinter process also causes
a reduction of the particles’ convexity leading to a decrease of the mean
curvature for the higher porosity material HPB (Fig. 3d). Supplementary
Note 6 provides the G andM at each sinter temperature. At 175 °C for the
material HPA, GHPA is −146 μm−2. Its negative value indicates that necks
with small radii saddle-like surfaces are prevalent. The positive MHPA of
2.18 μm−1 shows that the incidence of convex structures is quite dominant.
Therefore, spherical geometries of HPA’s nanoparticles are still abundant.
This type of surface illustrates thatHPAis still in an early stage of sintering50;
therefore, the particles are just starting to coalesce and their necks are newly
formed. As the temperature is increased, the particles are coarsened. As a
result, the necks radii areflattened and itsGmagnitude is decreased towards
zero. Subsequently, the small radii nanoparticles’ convex surfaces are
diminishing and M decreases. This trend continues and GHPA and MHPA

reaches −16 μm−2 and −1.72 μm−1 at 400 °C, respectively.
GNPC andMNPC at 175 °C is−102 μm−2 and−0.93 μm−1, respectively.

NPC shows a more positive G than for HPA. Therefore, the necks radii are
larger than for HPA. The negative value ofMNPC indicates the reduction of
convex surfaces for the nanoparticles. Here, the material is in a more
advanced stage than HPA at this temperature. Indeed, the electrical con-
ductivity σHPA and σNPC at 175 °C is 2.3 μS.cm−1 and 78.2 μS.cm−1,
respectively. This finding is in line with the tortuosity analysis and it pro-
vides further insight into the enhanced electrical property of the
material NPC.

Microstructure feature importance and mathematical relation-
ship of microstructural features and electrical behavior
The evaluation of themicrostructure features, their physical analysis, as well
as their correlation to the material property display crucial ingredients for
acceleratedmaterial design. In the previous sections,we qualitatively tried to
explain the correlation between the extracted microstructure features and
the electrical behavior of the material. The understanding of such

correlations, however, is challenging due the underlying complexity
andmulti-faceted problems. Here, we establish amathematical relationship
between the microstructure and property by applying a machine learning-
based deployment in the form of a linear regressionmodel1,51, see Methods.

We build variousmulti-variable linear regression (MVLR)models that
shall enable us to provide the microstructure features or independent
variables as an input and the targeted electrical conductivity or dependent
variable as a predicted output. As a result, the structure-property relation-
ship can be defined arithmetically. We train the models with at least two
microstructure features obtained from the segmented VOIs. The coeffi-
cient’s sign of each feature is used to indicate the dependence of the feature
with respect to the electrical conductivity, see Supplementary Table 1. We
use a leave-one-out cross-validation (LOOCV) to obtain reliable and
unbiased results52 for the training, see Methods. We test different MVLR
models based on different microstructural feature combinations, see Sup-
plementary Table 2. For the prediction of the electrical conductivity, we
define three different microstructure sets, as an input for the MVLR, which
are not used as training data sets, see Supplementary Note 8. Subsequently,
the outcomes are compared with the experimental data.

ThevariousMVLR-basedmodels are summarized inTable 2. Figure 4a
illustrates the regression analysis for the models A, C and I. The models
labeled as A, C, and I incorporate different raw features, like the relative
density, specific surface area, strut diameter, average tortuosity, and Gaus-
sian and mean curvatures. Model A, C and I provide R2 values of 0.956,
0.956, and 0.960, respectively. Here, the linearity lies within the range of
about 10–200 µS.cm−1. Outside of this conductivity range, predictions are
inaccurate. In order to enhance the prediction, we perform feature engi-
neering to boost the model performance with mathematical
transformation6. Therefore, we augment two additional features, labeled
with α and β, taking mathematical correlations between different features
into account. α incorporates the correlation between the relative density D
and the tortuosity τ according to the Bruggeman equation53 with τ =D-α.
The second feature is defined by β =M/(|G|. ϕ). Further details are provided
in Supplementary Note 7. The corresponding models utilizing the addi-
tional features are labeled with J, N, R and Q. The results are displayed in
Fig. 4b and Fig. 4c respectively.

Indeed, as illustrated in Fig. 4b and c the utilization of the additional
features improve the linearity from 0 to 285 μS.cm−1. In particular, the
MVLR-based model Q provides the best performance, as indicated by
Table 2. Further, we assess the importance of the features for the model Q
utilizing a SHapley Additive exPlanations (SHAP) analysis34. The global
impact of the features is calculated with the mean of the absolute SHAP
values. Figure 4d illustrates the impact of each feature from thehighest to the
lowest. The analysis indicates that the feature α, which relates to the tor-
tuosity and relative density by theBruggemanequation, provides thehighest
impact on the electrical conductivity, followed by the specific surface area
SA, and β. The results provide guidelines for the microstructure design,
uncovering the most critical microstructural features for the electrical
conductivity.

Synthetic image reconstruction of the porous microstructures
for different sinter temperatures and electrical
conductivity values
Apromising approach to reconstruct themicrostructure for a givenmaterial
parameter is by utilizing deep generative models14,54,55. In particular, we
apply a denoising diffusion probabilistic model (DDPM) architecture. A
DDPM is a parameterized Markov chain and consists of forward and
reverse diffusion processes10. The forward process adds different Gaussian
noise levels to the images, and the reverse process denoises the imageswith a
neural network to find the added noise distribution to each training data.
Original microstructure images can be reconstructed by removing the
noise56. By applying the trainedmodel to an image sampled frompure noise,
the model can denoise it to generate images similar to the real dataset56, see
Fig. 5 and theMethods section for further details in context to theDDPM. In
addition, we compare the results obtained from the DDPM with a

Table 2 | MVLR models: RMSE and R2 from LOOCV and
test sets

Notation:

D
SA
ϕ
τ
G
M
α
β

Relative density
Specific surface area
Strut diameter
Average tortuosity
Gaussian curvature
Mean curvature
Bruggeman exponent
M / (|G|. ϕ)

Model Features Training Testing

LOOCV
RMSE

R2 RMSE R2

A τ, G 21.8 0.956 35.1 0.707

C SA, τ, G 22.1 0.956 35.2 0.707

I SA, ϕ, τ, G 22.7 0.960 36.5 0.684

J SA, α 13.1 0.982 25.1 0.851

N SA, G, α 13.4 0.983 25.0 0.852

Q SA, α, β 11.5 0.988 21.9 0.887

R SA, M, ϕ, α 14.0 0.985 23.3 0.871

Differentmodels are presented including information about the features used. Themodels A, C, and
I are linear between 10 to 200 µS.cm−1. For the models J, N, R and Q additional engineered fea-
tures (α β) are applied. For the latter models a linearity between 0 to 285 μS.cm−1 is achieved.
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conditional generative adversarial network (cGAN). The generator within
the cGAN architecture generates synthetic images at each training cycle
based on the provided input. The discriminator determines the authenticity
of the reconstruction. As the training progresses, synthetic images are
produced by the generator, see Fig. 5 and Methods section.

Figure 5a, d, g show the segmented real microstructure indicated by
the pore and copper phases for different sinter temperatures. For the
segmentation the introducedU-Net architecture, trained with the hybrid
model, is used. In addition, in Fig. 5b, e, h andFig. 5c, f, i the reconstructed
synthetic microstructure images depicted from the cGAN model and
DDPM, respectively, are illustrated. Clearly the change of the micro-
structure with temperature is represented for bothmodels. A quantitative
performance analysis is important to assess the prediction result in
more detail.

Evaluation of the model performance
The next step is to assess the quality of the reconstructed synthetic
images. As illustrated here16, Frechet inception distance (FID) as well as
precision and recall are not suitable to measure the quality of synthetic
microstructure data. Here, we assesses the quality of the synthetic images
based on extracted physical descriptors of the microstructure or micro-
structural features57.

In particular we validate the model performance by comparing the
evaluated relative density, specific perimeter, as well as shape index for the
real and synthetic microstructures in relationship to the sinter temperature,
see Fig. 6. The critical descriptors are also related to the electrical con-
ductivity. Further, we extract the R2 for the three descriptors individually, as
well as the average of R2 for all three physical descriptors, see Table 3. The
presented assessment of the synthetic microstructures in Fig. 6 and Table 3
illustrate the superiority of the DDPM over the cGAN model. The largest
deviation between the two models is observed for HPA and HPB. Both
exhibit amore inhomogeneousmicrostructure thanNPC, whichmakes the
prediction with the GAN more challenging. Nevertheless, as illustrated in
Fig. 6 and Table 3 even for the NPC material, which illustrates a homo-
genous nano-porous structure, the DDPM predicts better than the cGAN.

Discussion
Due to the complexity of the process-structure-property relationship for
porous materials, a single mathematical formulation from the porosity and
the material parameter dependence58 is not sufficient. The microstructure
can be quantified by the physical descriptor or microstructure features.
However, not every microstructure feature impacts the underlyingmaterial
property equally. Detailed knowledge about the interplay of the feature with
the property generates guidelines for the design of themicrostructurewithin
theprocessing step.Ourwork shows that the electrical conductivity is clearly
more affected by the alteration of certain microstructural features. There-
fore, to generate accurate guidelines it is highly important to retrieve the
microstructural features accurately with adequate statistical confidence as
well as to understand their physical meaning in context to the processing
and material properties.

Further, the presented methodology enables us to gain an under-
standing about the correlation between themicrostructure and the electrical
conductivity utilizing amulti-variable linear regression (MVLR)model. The
microstructural features, which are obtained from the microstructure
analysis, change non-monotonically which makes the prediction of the
electrical conductivity based on the microstructure complicated. Usually,
MVLR models working with categorical variables, i.e., each material is
assigned to a numerical value59, provide a non-satisfying deployment for an
accelerated material design. Such approaches need prior knowledge about
the material category and a general expression, which usually cannot be
attained easily. However, the presented MVLR model is suitable for the
generalization of the conductivity prediction frommicrostructural features.

Hence, the presented MVLR model can produce a highly linearized
correlation with an R2 of 0.986 for model Q. The substantial perception of
the microstructural features and their correlation is crucial for the model’s
performance as well as to deliver microstructure design guidelines for the
production. Indeed, as depicted from the SHAP global impact analysis, α
represents ahighlydominating factor among theother features todetermine
the conductivity of model Q.

TheMVLRmodel provides information about the interplay but is not
suitable to predict the microstructure with high accuracy. It may rather

Fig. 4 | Regression and microstructure feature
importance analysis in context to the electrical
conductivity. a Prediction results for MVLR model
A, C and I versus the measured electrical con-
ductivity. Only raw features are used. Here a line-
arity is provided from 10 to 200 uS.cm−1, which is
not for the whole experimental window.We validate
the models’ performance with three test sets, indi-
cated by Test A, C and I, not used for the training, to
find the best model. b Improved prediction results
for model J, N and R incorporating the engineered
feature α in combination with raw features. The
performance of themodel is validatedwith three test
sets indicated by Test J, N and R. c Prediction result
for Model Q with the raw feature SA, and the engi-
neered features α and β. Model Q shows the best
performance with an improved linearity across the
experimental window of 0 to 285 μS.cm−1. The
model performance is validated with the test set
indicated by Test Q. dThe importance of the feature
is assessed by SHAP. The analysis indicates that α
represents the most important feature for the elec-
trical conductivity, followed by SA and β.
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provide an estimate about the spatial extent in context to themicrostructural
feature space. For the definite reconstruction of the microstructure, we
utilize a conditional GAN (cGAN) model and diffusion-based model
(DDPM). The work highlights how a cGAN and DDPM architecture ren-
ders possibilities for the reconstruction of synthetic microstructure images.
The presented work indicates that the microstructure can be reconstructed
synthetically for an allocated conductivitywith significant quality, especially
utilizing the DDPM. Clearly for the synthetic generation of the materials
microstructure it is shown that the DDPM is superior to the cGANmodel.
The inferiority of cGAN might originate from its architecture prone to
unstable training and mode collapse17. Such generated reconstructed syn-
thetic images can be further utilized for morphological analysis16,60,61.

Indeed, the developed unique workflow paves the way towards
machine learning driven accelerated material design. The findings in this
paper are not only limited to the conductivity prediction of sintered porous
materials but also suggest broader applications to other porous micro-
structures and material properties. Ultimately, we point out that the pro-
vided results illustrate the potential of machine learning to support the
design of complex structures for advanced material manufacturing, e.g., of

solid oxide electrolysis cell62,63, solid state materials for batteries64, power
semiconductors65, batteries26,29,66, electro ceramics67 or hydrogen storage68 as
well as provides an essential step to predict properties of unseen conditions.

Methods
Porous copper preparation
Three copper pastes have been developed by Dycotec Materials Ltd and
Intrinsiq Materials. They consist of micro- and nanoscale size copper, sol-
vents, organic metal precursors, and organic binders. The size of nano-
particles and microparticles is about 150 nm and approximately within a
micrometer, respectively. Two other differences are the viscosity and solid
content of the copper pastes. At ambient conditions andwith a shear rate of
50/s, leading to different viscosities ofHPA,HPB, andNPC. In addition, the
solid content of HPA, HPB, and NPC are 78.8%, 76.0%, and 84%, respec-
tively. The pastes are stencil printed on 200mm wafers. The samples are
dried immediately in a YES-PB8 high pressure vacuum furnace (Yield
Engineering System) to evaporate the solvent and to solidify the paste. Both
pre-curing and curing are done with a SRO700 single-wafer furnace (ATV
Technologie GmbH).

Fig. 5 | Synthetic microstructure reconstruction
utilizing a conditional generative cGAN model
and DDPM. a, d and g illustrate the segmented
microstructures for the porousmaterialsHPA,HPB,
and NPC obtained with FIB-SEM. b, e and h corre-
spond to the predicted (synthetic) microstructures
utilizing the cGANmodel for HPA, HPB, and NPC,
respectively. The data visualized in c, f and
i correspond to the predicted (synthetic) micro-
structures utilizing the DDPM for HPA, HPB, and
NPC, respectively. The synthetic and experimentally
retrieved (real) microstructures are plotted for dif-
ferent sinter temperatures. The segmented copper
and pore phases are illustrated in white and black,
respectively. The frame colors are related to the
porous materials (HPA, HPB and NPC), real and
predicted microstructures.
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4-point probe measurements
The SRO700 furnace is installedwith an in-situ four-point probe by T.I.P.S.
Messtechnik GmbH. This is used to monitor the electrical resistance of the
copper pastes during sintering process. First, the probe’s four equidistant
copper tips are brought into contact with the surface. Second, the tips are

connected to a multimeter and a voltmeter. Then, 1 A current is directed
through the twoouter probes and the voltage ismeasured between the inner
two probes.

FIB-SEM nano-tomography
The nanotomography experiment is performed by utilizing a Zeiss
AURIGA-CrossBeam workstation. The current and voltage are 2 nA and
30 kV and the angle of the FIB to the detector columns is 54°. A layer of
platinum is deposited over the sample to decrease charging. The porous
copper film is cut into a cubic shape of 20 × 20 × 20 μm3 byGa+ ionmilling.
The SEM image is taken by a Secondary Electron Secondary Ion (SESI)
detectorwith an acceleration voltage of 30 kV.Wemill the cube every 25 nm
so that a series of 2D image slices are obtained. We use the line averaging
techniquewith scan speed 8 andN = 1 so that noise is reduced. The number
of images per sample are 450 images. Overall, we spend 8 h duration per
sample.

Image pre-processing
Avizo 3D is used to reconstruct 450 2D images into 3D data. The alignment
is performed by FIB stack wizard module with least square method. The

Fig. 6 | Image quality assessment for the cGAN model and DDPM based on the
extracted microstructure features. Evaluated relative density, specific
perimeter (SP2D), and shape index for the segmented real microstructures, and the
synthetic microstructures for the cGANmodel as well as for the DDPM (from left to

right): (a–c) for HPA, (d–f) for HPB, and (g–i) for NPC. The legend in the graph
indicates the associated colors for the real microstructures as well as for the pre-
dictions performed with the cGAN model and DDPM. For all plots the standard
deviation is indicated.

Table 3 | Evaluated R2 to assess the synthetic image quality

Sample R2

Relative den-
sity D

Specific peri-
meter SP2D

Shape index Avg. of physi-
cal descriptors

cGAN DDPM cGAN DDPM cGAN DDPM cGAN DDPM

HPA 0.33 0.76 0.75 0.86 0.72 0.89 0.60 0.84

HPB 0.28 0.72 0.69 0.83 0.34 0.92 0.44 0.82

NPC 0.88 0.86 0.87 0.97 0.34 0.92 0.87 0.90

Comparison of the different R2 values for the relative density D, the specific perimeter SP2D,
the shape index and their average, in relationship to the different samples (HPA, HPB, NPC) and
microstructure prediction models (cGAN, DDPM). The analysis indicates that the DDPM provides
better results than the cGAN model.
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volume of interest (VOI) from each reconstructed 3D dataset is
1120 × 640 × 450 voxel3. The raw 3D data has voxel sizes of 18.6 nm,
18.6 nm, and25 nmin thex, y, andzdirections, respectively.Therefore, each
volume is 20.8 × 11.9 × 11.3 μm3. We cut 3 VOIs of 10 × 10 × 10 μm3 from
this volume for each samples measurements. Each volume contains
538 × 538 × 400 voxels2. The curtaining and shadowing artifacts of the
obtained tomography image data are reduced with FFT-filter69 and histo-
gram shifting methods35,38, respectively. The renderings of images are pro-
duced with Avizo 3D.

Relative density and specific surface area formula
We utilize the segmented 3D data, utilizing the U-NET with the hybrid
training approach, to evaluate the relative density and specific area. The
relative density D is defined as

D ¼ No:of copper voxels
Total no:of voxels in VOI

The specific surface areameasurement is donewithAvizo 3D software.
The surface of the 3D volume is generated with generate_surface module,
excluding the surface at the extremities. The software measures the surface
area of the pore-copper interface, and the specific surface area SA is cal-
culated with:

SA ¼ pore� copper interface surface area
total volume of one VOI

Skeletonization procedure
We utilize the segmented 3D data, utilizing the U-NET with the hybrid
training approach, to perform the skeletonization procedure. Skeletoniza-
tion is performed by Avizo 3D distance-ordered thinner and distance map
modules. The strut diameters are then extracted with the Spatial_Graph_-
Statistics module. The skeleton’s strut diameters are fitted by log-normal
distributionwith the scipy package in Python. SupplementaryNote 4 shows
the histogram and the fitted log-normal distribution of HPA, HPB,
and NPC.

Curvature measurements
Based on the segmented 3D data, utilizing the U-NET with the hybrid
training approach, we perform the curvature analysis. The Avizo 3D cur-
vature module extracts the Gaussian and mean curvature data from the
pore-copper surface. The joint probability distribution plot and the mean
values of the curvatures are done with the gaussian_kde module and the
NumPy package in Python, respectively.

Tortuosity measurements
We utilize the segmented 3D data to evaluate the tortuosity. The geodesic
and Euclidian distances are carried out by Python’s skfmm library. The two
3D distance arrays are divided with geometric tortuosity τ formula:

τ ¼ geodesic distance
Euclidean distance

The tortuosity calculation is done with numpy package in Python.
Supplementary Fig. 5a–g depicts the 3D tortuosity calculations.

Deep learning annotation and segmentation
We utilize a Fujitsu Celcius M740B workstation. Avizo 3D is applied for
the visualization of the segmented volume of interest (VOI). We utilize a
U-Net deep learning architecture from Chollet36 in Python as well as
apply the open source deep-learning library Keras to segment the pore and
copper phases. The developed hybrid model and threshold segmentation
(Otsu´s algorithm) are used as the training annotations. We use 20% of the
data as the training set, i.e., one set of image and annotation set is chosen for

every other five training sets. Within this training set, 70% is set aside as
validation set. The optimizer, loss function, batch size, and epochs are
rmsprop, sparse categorical crossentropy, 1, and 100, respectively, see
Supplementary Note 2. The conventional threshold algorithm (CTA) pore
and shine through are combined to get the pore phase. Finally, the seg-
mentation process is finalized by inverting the pore phase.

Multi-variable linear regression model
The evaluated microstructure features extracted from the segmented 3D
microstructure data, see Table 2 are used as an input for the MVLRmodel.
We maximize the use of the training set with a leave-one-out cross-
validation (LOOCV) to obtain reliable and unbiased results52. As a result, 18
conductivity predictions of each unseen validation sample are produced
from one LOOCV-set. We average root mean square errors (RMSE) for
eachmodel. Themodel takes the form σ = b0+ b1X1+…+ bnXnwhere b0
is a constant, and b1,…, bn are coefficients of featuresX1,…,Xn

59. The linear
regression models are generated and evaluated by Python’s sklearn library.
First, we standardize the scaling of the data with sklearn’s StadardScaler
module. Then, we use sklearn’s LinearRegression module to find the linear
coefficients. RMSE and R2 are calculated by usingmean_squared_error and
r2_squaremodules.We set the number of features to be equal ormore than
two so that different models with various number of features are calculated.
TheR2 values of eachmaterial are: R2

HPA = 0.97, R2
HPB = 0.61, R2

NPC = 0.99.

Conditional GAN
Weutilize aHPProLiantDL385Gen10workstationwith a singleA40GPU.
Further, Python’s Keras library are used for analysis. The number of images
for each temperature class is 1350, so there are 8100 images for the training.
The image is resized to 224 × 224 pixels2. Themodel consists of generatorG
and discriminator D to generate synthetic data and to distinguish between
synthetic and real data, see furtherdetails in SupplementaryNote 9.G andD
are trained together so that G is maximizing misdetection by D70. This
framework follows min-max game of two players with the loss function:

min
G

max
D

V D;Gð Þ ¼Ex∼ pdata xð Þ logD xjy� �� �
þEz∼ pz zð Þ log 1� D G zjy� �� �� �� �

where the distributionof real images isPdatawhile z corresponds to the input
noise vectors71.

Denoising diffusion probabilistic model
The model is implemented using the PyTorch library on a single HP Pro-
Liant A40 GPU Gen10 server. Similar to cGAN, each temperature class
contains 1350 images, and the image is resized to 224 × 224 pixels2. In
total, there are 8100 images for the training. The forward diffusion process
q(xt|xt−1) gradually adds Gaussian noise to the initial image x0. The
probability density function of the noisier image xt from the previous less
noisy image xt-1 is

q xt jxt�1

� �
:¼Nðxt ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtIÞ

with linear variance schedule β1,…, βt where t is the time step and I is the
identity matrix10.

Using notation αt :¼ 1� βt and �αt :¼
Qt

s¼1αs The noisy image at an
arbitrary time step t is

q xtjx0
� � ¼ Nðxt ;

ffiffiffiffi
�αt

p
x0; ð1� �αtÞIÞ

With re-parametrization, image at arbitrary time t can be obtained directly
with

xt ¼
ffiffiffiffi
�αt

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵ

where, ϵ∼Nðϵj0; IÞ
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The reverse diffusion process p(xt-1|xt) aims to denoise the image
iteratively to a less noisy image and it is defined:

p xt�1jxt
� �

:¼Nðxt�1;eμt xt ; t
� �

; σ2t IÞ

Because the variance σ2t isfixed to a certain schedule. Themeanofnoise
is estimated with

eμt xt ; t
� �

≈
1ffiffiffiffi
αt

p xt �
1� αtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p ϵt

� �

where ϵt is the noise introduced in step t. We can train neural network
ϵθðxt ; tÞ (see Supplementary Note 10) to approximate ϵt minimizing

Lθ ¼ jjϵt � ϵθðxt; tÞjj2

Slice 2D shape index
Based on the segmented image data utilizing the U-NET with the hybrid
training we perform the curvature analysis. The shape index used for the
analysis of the real and synthetically reconstructed image relates to the local
curvature measurement. Its value lies between -1 and 1, where 1 represents
‘spherical caps’72. The analysis is performed by utilizing the shape_index
module in the python’s scikit-image library.

Data availability
All data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Code availability
All code that support the findings of this study are available from the
corresponding author upon reasonable request.
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