Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cycling back to folate metabolism in cancer

Abstract

Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The SSP, the folate cycle and the methionine cycle.
Fig. 2: Folate metabolism in the cytoplasm and mitochondria.
Fig. 3: Mitochondrial and cytosolic NADPH use in cancer cells and hepatocytes.
Fig. 4: Inputs and outputs of formate metabolism.
Fig. 5: Potential consequences of formate metabolism in cancer.

Similar content being viewed by others

References

  1. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  4. Osborn, M. J., Freeman, M. & Huennekens, F. M. Inhibition of dihydrofolic reductase by aminopterin and amethopterin. Proc. Soc. Exp. Biol. Med. 97, 429–431 (1958).

    Article  CAS  PubMed  Google Scholar 

  5. Schalinske, K. L. & Steele, R. D. Methotrexate alters carbon flow through the hepatic folate-dependent one-carbon pool in rats. Carcinogenesis 17, 1695–1700 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Huennekens, F. M., Duffy, T. H. & Vitols, K. S. Folic acid metabolism and its disruption by pharmacologic agents. NCI Monogr. 5, 1–8 (1987).

    Google Scholar 

  7. Chabner, B. A. & Roberts, T. G. Jr. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Sedillo, J. C. & Cryns, V. L. Targeting the methionine addiction of cancer. Am. J. Cancer Res. 12, 2249–2276 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Parsa, S. et al. The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing. Nat. Cancer 1, 653–664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geeraerts, S. L., Heylen, E., De Keersmaecker, K. & Kampen, K. R. The ins and outs of serine and glycine metabolism in cancer. Nat. Metab. 3, 131–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Ducker, G. S. & Rabinowitz, J. D. One-carbon metabolism in health and disease. Cell Metab. 25, 27–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Pfeiffer, C. M. et al. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011–2. Br. J. Nutr. 113, 1965–1977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chandler, C. J., Wang, T. T. & Halsted, C. H. Pteroylpolyglutamate hydrolase from human jejunal brush borders. Purification and characterization. J. Biol. Chem. 261, 928–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Wright, A. J., Dainty, J. R. & Finglas, P. M. Folic acid metabolism in human subjects revisited: potential implications for proposed mandatory folic acid fortification in the UK. Br. J. Nutr. 98, 667–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sullivan, M. R. et al. Methionine synthase is essential for cancer cell proliferation in physiological folate environments. Nat. Metab. 3, 1500–1511 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghergurovich, J. M. et al. Methionine synthase supports tumour tetrahydrofolate pools. Nat. Metab. 3, 1512–1520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tucker, E. J. et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 14, 428–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minton, D. R. et al. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell 69, 610–621 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 1140–1153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng, Y. et al. Mitochondrial one-carbon pathway supports cytosolic folate integrity in cancer cells. Cell 175, 1546–1560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brosnan, M. E. & Brosnan, J. T. Formate: the neglected member of one-carbon metabolism. Annu. Rev. Nutr. 36, 369–388 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Meiser, J. et al. Serine one-carbon catabolism with formate overflow. Sci. Adv. 2, e1601273 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barlowe, C. K. & Appling, D. R. In vitro evidence for the involvement of mitochondrial folate metabolism in the supply of cytoplasmic one-carbon units. Biofactors 1, 171–176 (1988).

    CAS  PubMed  Google Scholar 

  25. Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 84, 246–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nowak, M., Chuchra, P. & Paprocka, J. Nonketotic hyperglycinemia: insight into current therapies. J. Clin. Med. 11, 3027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McBride, M. J. et al. Glycine homeostasis requires reverse SHMT flux. Cell Metab. 36, 103–115 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Solans, A., Estivill, X. & de la Luna, S. Cloning and characterization of human FTCD on 21q22.3, a candidate gene for glutamate formiminotransferase deficiency. Cytogenet. Cell Genet. 88, 43–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Mao, Y. et al. Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer. EMBO J. 23, 2963–2971 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Newman, A. C. et al. Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells. Mol. Cell 81, 2290–2302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sen, K. & Hackett, J. C. Peroxo-iron mediated deformylation in sterol 14α-demethylase catalysis. J. Am. Chem. Soc. 132, 10293–10305 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Dorokhov, Y. L., Shindyapina, A. V., Sheshukova, E. V. & Komarova, T. V. Metabolic methanol: molecular pathways and physiological roles. Physiol. Rev. 95, 603–644 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Burgos-Barragan, G. et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature 548, 549–554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ergal, I. et al. Formate utilization by the crenarchaeon desulfurococcus amylolyticus. Microorganisms 8, 454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laverde Gomez, J. A. et al. Formate cross-feeding and cooperative metabolic interactions revealed by transcriptomics in co-cultures of acetogenic and amylolytic human colonic bacteria. Environ. Microbiol. 21, 259–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Hughes, E. R. et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe 21, 208–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. DeNicola, G. M. et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47, 1475–1481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Torrence, M. E. et al. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 10, e63326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tajan, M. et al. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun. 12, 366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kottakis, F. et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539, 390–395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, X. et al. ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Cell Rep. 36, 109706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Diehl, F. F., Lewis, C. A., Fiske, B. P. & Vander Heiden, M. G. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat. Metab. 1, 861–867 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rathore, R. et al. Metabolic compensation activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogenase inhibition in osteosarcoma. Cell Rep. 34, 108678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kampen, K. R. et al. Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat. Commum. 10, 2542 (2019).

    Article  Google Scholar 

  53. Liao, L. et al. Upregulation of phosphoserine phosphatase contributes to tumor progression and predicts poor prognosis in non-small cell lung cancer patients. Thorac. Cancer 10, 1203–1212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sato, K. et al. Phosphoserine phosphatase is a novel prognostic biomarker on chromosome 7 in colorectal cancer. Anticancer Res. 37, 2365–2371 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, J. et al. High expression of PHGDH predicts poor prognosis in non-small cell lung cancer. Transl. Oncol. 9, 592–599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang, B. et al. PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep. 19, 2289–2303 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Christopher, S. A., Diegelman, P., Porter, C. W. & Kruger, W. D. Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res. 62, 6639–6644 (2002).

    CAS  PubMed  Google Scholar 

  60. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng, J., Li, B., Wu, Y., Wu, X. & Wang, Y. Targeting arginine methyltransferase PRMT5 for cancer therapy: updated progress and novel strategies. J. Med. Chem. 66, 8407–8427 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Kang, Y. P. et al. PHGDH supports liver ceramide synthesis and sustains lipid homeostasis. Cancer Metab. 8, 6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Broeks, M. H. et al. The malate–aspartate shuttle is important for de novo serine biosynthesis. Cell Rep. 42, 113043 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128 (2014).

    Article  PubMed  Google Scholar 

  65. Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, A. M. et al. Metabolic profiling reveals a dependency of human metastatic breast cancer on mitochondrial serine and one-carbon unit metabolism. Mol. Cancer Res. 18, 599–611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, W. C. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Labuschagne, C. F., van den Broek, N. J., Mackay, G. M., Vousden, K. H. & Maddocks, O. D. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248–1258 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Mukha, D. et al. Glycine decarboxylase maintains mitochondrial protein lipoylation to support tumor growth. Cell Metab. 34, 775–782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghrayeb, A. et al. Serine synthesis via reversed SHMT2 activity drives glycine depletion and acetaminophen hepatotoxicity in MASLD. Cell Metab. 36, 116–129 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Sun, L. et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 25, 429–444 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xia, Y. et al. Metabolic reprogramming by MYCN confers dependence on the serine–glycine-one-carbon biosynthetic pathway. Cancer Res. 79, 3837–3850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vazquez, A., Tedeschi, P. M. & Bertino, J. R. Overexpression of the mitochondrial folate and glycine–serine pathway: a new determinant of methotrexate selectivity in tumors. Cancer Res. 73, 478–482 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Ye, J. et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4, 1406–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bjelosevic, S. et al. Serine biosynthesis is a metabolic vulnerability in FLT3-ITD-driven acute myeloid leukemia. Cancer Discov. 11, 1582–1599 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Xu, R. et al. The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Rep. 21, e48260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith, A. L. M., Whitehall, J. C. & Greaves, L. C. Mitochondrial DNA mutations in ageing and cancer. Mol. Oncol. 16, 3276–3294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bao, X. R. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 5, e10575 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moran, D. M. et al. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther. 13, 1611–1624 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Maddocks, O. D. et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Ou, Y., Wang, S. J., Jiang, L., Zheng, B. & Gu, W. p53 protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. J. Biol. Chem. 290, 457–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Maguire, M. et al. MDM2 regulates dihydrofolate reductase activity through monoubiquitination. Cancer Res. 68, 3232–3242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riscal, R. et al. Chromatin-bound MDM2 regulates serine metabolism and redox homeostasis independently of p53. Mol. Cell 62, 890–902 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Audet-Walsh, E. et al. The PGC-1α/ERRα axis represses one-carbon metabolism and promotes sensitivity to anti-folate therapy in breast cancer. Cell Rep. 14, 920–931 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Ma, L. et al. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell 152, 599–611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reina-Campos, M. et al. Increased serine and one-carbon pathway metabolism by PKCλ/ι deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35, 385–400 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mehrmohamadi, M., Liu, X., Shestov, A. A. & Locasale, J. W. Characterization of the usage of the serine metabolic network in human cancer. Cell Rep. 9, 1507–1519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. De Vitto, H., Arachchige, D. B., Richardson, B. C. & French, J. B. The intersection of purine and mitochondrial metabolism in cancer. Cells 10, 2603 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shi, D. D., Savani, M. R., Abdullah, K. G. & McBrayer, S. K. Emerging roles of nucleotide metabolism in cancer. Trends Cancer 9, 624–635 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Montrose, D. C. et al. Exogenous and endogenous sources of serine contribute to colon cancer metabolism, growth, and resistance to 5-fluorouracil. Cancer Res. 81, 2275–2288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pranzini, E. et al. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis. Cell Rep. 40, 111233 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Lewis, C. A. et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab. 3, 1608–1620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He, L. et al. Serine is required for the maintenance of redox balance and proliferation in the intestine under oxidative stress. FASEB J. 34, 4702–4717 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Balsa, E. et al. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat. Commun. 11, 2714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Z., TeSlaa, T. & Rabinowitz, J. D. Reply to: revisiting the role of serine metabolism in hepatic lipogenesis. Nat. Metab. 5, 762–764 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Engel, A. L. et al. Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br. J. Cancer 122, 1391–1398 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hennequart, M. et al. ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep. 42, 112562 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Wei, L. et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for sorafenib resistance in HCC. Nat. Commun. 10, 4681 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ju, H. Q., Lin, J. F., Tian, T., Xie, D. & Xu, R. H. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct. Target Ther. 5, 231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tran, D. H. et al. Mitochondrial NADP+ is essential for proline biosynthesis during cell growth. Nat. Metab. 3, 571–585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhu, J. et al. Mitochondrial NADP(H) generation is essential for proline biosynthesis. Science 372, 968–972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gao, X. et al. Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep. 22, 3507–3520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tani, H. et al. Mice deficient in the Shmt2 gene have mitochondrial respiration defects and are embryonic lethal. Sci. Rep. 8, 425 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ron-Harel, N. et al. Defective respiration and one-carbon metabolism contribute to impaired naive T cell activation in aged mice. Proc. Natl Acad. Sci. USA 115, 13347–13352 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Momb, J. et al. Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc. Natl Acad. Sci. USA 110, 549–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Meiser, J. et al. Increased formate overflow is a hallmark of oxidative cancer. Nat. Commun. 9, 1368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pietzke, M. et al. Stratification of cancer and diabetes based on circulating levels of formate and glucose. Cancer Metab. 7, 3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Oizel, K. et al. Formate induces a metabolic switch in nucleotide and energy metabolism. Cell Death Dis. 11, 310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kiweler, N. et al. Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nat. Commun. 13, 2699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rinaldi, G. et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol. Cell 81, 386–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Rossi, M. et al. PHGDH heterogeneity potentiates cancer cell dissemination and metastasis. Nature 605, 747–753 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Soflaee, M. H. et al. Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat. Commun. 13, 2698 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Samanta, D. et al. PHGDH expression is required for mitochondrial redox homeostasis, breast cancer stem cell maintenance, and lung metastasis. Cancer Res. 76, 4430–4442 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Quere, M. et al. ALDH1L2 knockout in U251 glioblastoma cells reduces tumor sphere formation by increasing oxidative stress and suppressing methionine dependency. Nutrients 14, 1887 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 22, 280–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Itagaki, K. et al. Formyl peptide receptor-1 blockade prevents receptor regulation by mitochondrial danger-associated molecular patterns and preserves neutrophil function after trauma. Crit. Care Med. 48, e123–e132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shao, G. et al. Formyl peptide receptor ligands promote wound closure in lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 44, 264–269 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Wenceslau, C. F. et al. Mitochondrial N-formyl peptides cause airway contraction and lung neutrophil infiltration via formyl peptide receptor activation. Pulm. Pharmacol. Ther. 37, 49–56 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Delbrouck, C. et al. Formate promotes invasion and metastasis in reliance on lipid metabolism. Cell Rep. 42, 113034 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sullivan, M. R. et al. Increased serine synthesis provides an advantage for tumors arising in tissues where serine levels are limiting. Cell Metab. 29, 1410–1421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Banh, R. S. et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell 183, 1202–1218 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, D. et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab. 35, 517–534 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6, 24–37 (2006).

    Article  PubMed  Google Scholar 

  135. Rowe, J. H. et al. Formate supplementation enhances anti-tumor CD8+ T cell fitness and efficacy of PD-1 blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-22-1301 (2023).

    Article  PubMed  Google Scholar 

  136. Xu, X. et al. One-carbon unit supplementation fuels tumor-infiltrating T cells and augments checkpoint blockade. Preprint at bioRxiv https://doi.org/10.1101/2023.11.01.565193 (2023).

  137. Muthusamy, T. et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586, 790–795 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Murphy, J. P. et al. The NAD+ salvage pathway supports PHGDH-driven serine biosynthesis. Cell Rep. 24, 2381–2391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee, W. D. et al. Tumor reliance on cytosolic versus mitochondrial one-carbon flux depends on folate availability. Cell Metab. 33, 190–198 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. LeBoeuf, S. E. et al. Activation of oxidative stress response in cancer generates a druggable dependency on exogenous non-essential amino acids. Cell Metab. 31, 339–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Choi, B. H. et al. Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Cell Rep. 38, 110278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Van Nyen, T. et al. Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nat. Commun. 13, 4578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Pacold, M. E. et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat. Chem. Biol. 12, 452–458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, Q. et al. Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. D’Avola, A. et al. PHGDH is required for germinal center formation and is a therapeutic target in MYC-driven lymphoma. J. Clin. Invest. 132, e153436 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ducker, G. S. et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. USA 114, 11404–11409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Garcia-Canaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Green, A. C. et al. Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells. Nat. Metab. 5, 642–659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kawai, J. et al. Discovery of a potent, selective, and orally available MTHFD2 inhibitor (DS18561882) with in vivo antitumor activity. J. Med. Chem. 62, 10204–10220 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Achreja, A. et al. Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nat. Metab. 4, 1119–1137 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Barinka, C., Rojas, C., Slusher, B. & Pomper, M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr. Med. Chem. 19, 856–870 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Handzlik, M. K. et al. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 614, 118–124 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Ron-Harel, N. et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metab. 24, 104–117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Sugiura, A. et al. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55, 65–81 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wilson, J. L. et al. Inverse data-driven modeling and multiomics analysis reveals Phgdh as a metabolic checkpoint of macrophage polarization and proliferation. Cell Rep. 30, 1542–1552 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Tajan, M. & Vousden, K. H. Dietary approaches to cancer therapy. Cancer Cell 37, 767–785 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Mendez-Lucas, A. et al. Identifying strategies to target the metabolic flexibility of tumours. Nat. Metab. 2, 335–350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kanarek, N. et al. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature 559, 632–636 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Falcone, M. et al. Sensitisation of cancer cells to radiotherapy by serine and glycine starvation. Br. J. Cancer 127, 1773–1786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gravel, S. P. et al. Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res. 74, 7521–7533 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Tramonti, A. et al. Metformin is a pyridoxal-5′-phosphate (PLP)-competitive inhibitor of SHMT2. Cancers 13, 4009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Schaer, D. A. et al. The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy. Clin. Cancer Res. 25, 7175–7188 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Peng, Z. P. et al. Downregulation of phosphoserine phosphatase potentiates tumor immune environments to enhance immune checkpoint blockade therapy. J. Immunother. Cancer 11, e005986 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hennequart, M. et al. The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nat. Commun. 12, 6176 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Guo, J. et al. Azacoccone E inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorg. Chem. 87, 16–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Weinstabl, H. et al. Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 62, 7976–7997 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Mullarky, E. et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl Acad. Sci. USA 113, 1778–1783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Spillier, Q. et al. Anti-alcohol abuse drug disulfiram inhibits human PHGDH via disruption of its active tetrameric form through a specific cysteine oxidation. Sci. Rep. 9, 4737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zheng, M. et al. Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food Funct. 10, 3386–3395 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Tan, Y. et al. Biophysical and biochemical properties of PHGDH revealed by studies on PHGDH inhibitors. Cell. Mol. Life Sci. 79, 27 (2021).

    Article  PubMed  Google Scholar 

  178. Zhang, F. M. et al. Discovery of PHGDH inhibitors by virtual screening and preliminary structure–activity relationship study. Bioorg. Chem. 121, 105705 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Gao, D. et al. Discovery of novel drug-like PHGDH inhibitors to disrupt serine biosynthesis for cancer therapy. J. Med. Chem. 66, 285–305 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Geeraerts, S. L. et al. Repurposing the antidepressant sertraline as SHMT inhibitor to suppress serine/glycine synthesis-addicted breast tumor growth. Mol. Cancer Ther. 20, 50–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Chen, C. et al. Identification of a novel PHGDH covalent inhibitor by chemical proteomics and phenotypic profiling. Acta Pharm. Sin. B 12, 246–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Yadav, G. P. et al. Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS ONE 9, e115409 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Haufroid, M. & Wouters, J. Targeting the serine pathway: a promising approach against tuberculosis? Pharmaceuticals 12, 66 (2019).

  184. Hawkinson, J. E., Acosta-Burruel, M., Ta, N. D. & Wood, P. L. Novel phosphoserine phosphatase inhibitors. Eur. J. Pharmacol. 337, 315–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  185. Hawkinson, J. E., Acosta-Burruel, M. & Wood, P. L. The metabotropic glutamate receptor antagonist l-2-amino-3-phosphonopropionic acid inhibits phosphoserine phosphatase. Eur. J. Pharmacol. 307, 219–225 (1996).

    Article  CAS  PubMed  Google Scholar 

  186. Dekhne, A. S. et al. Novel pyrrolo[3,2-d]pyrimidine compounds target mitochondrial and cytosolic one-carbon metabolism with broad-spectrum antitumor efficacy. Mol. Cancer Ther. 18, 1787–1799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Han, Y. et al. Identification of three new compounds that directly target human serine hydroxymethyltransferase 2. Chem. Biol. Drug Des. 97, 221–230 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Marani, M. et al. A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget 7, 4570–4583 (2016).

    Article  PubMed  Google Scholar 

  189. Scaletti, E., Jemth, A. S., Helleday, T. & Stenmark, P. Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett. 593, 1863–1873 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Pikman, Y. et al. Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Leukemia 36, 348–360 (2022).

    Article  CAS  PubMed  Google Scholar 

  191. Paiardini, A. et al. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming. Biochim. Biophys. Acta 1864, 1506–1517 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Fu, C. et al. The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nat. Commun. 8, 1529 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Jha, V. & Eriksson, L. A. Binding modes of xanthine-derived selective allosteric site inhibitors of MTHFD2. ChemistryOpen 12, e202300052 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhou, F. et al. Pharmacological targeting of MTHFD2 suppresses NSCLC via the regulation of ILK signaling pathway. Biomed. Pharmacother. 161, 114412 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Kawai, J. et al. Structure-based design and synthesis of an isozyme-selective MTHFD2 inhibitor with a tricyclic coumarin scaffold. ACS Med. Chem. Lett. 10, 893–898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gustafsson, R. et al. Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. 77, 937–948 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Bonagas, N. et al. Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress. Nat. Cancer 3, 156–172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Scaletti, E. R. et al. The first structure of human MTHFD2L and its implications for the development of isoform-selective inhibitors. ChemMedChem 17, e202200274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee, L. C. et al. Xanthine derivatives reveal an allosteric binding site in methylenetetrahydrofolate dehydrogenase 2 (MTHFD2). J. Med. Chem. 64, 11288–11301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was funded by Cancer Research UK grant C596/A26855 and ERC-2020-ADG PancObese 101020641 and supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CC2073), the UK Medical Research Council (CC2073) and the Wellcome Trust (CC2073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Ethics declarations

Competing interests

K.H.V. is on the board of directors, is a shareholder of Bristol Myers Squibb and is on the science advisory board (with stock options) of PMV Pharma, Raze Therapeutics, Volastra Pharmaceuticals and Kovina Therapeutics. She is on the SAB of Ludwig Cancer and is a cofounder and consultant (with stock options) of Faeth Therapeutics. She has received research funding from Astex Pharmaceuticals and AstraZeneca and has contributed to CRUK Cancer Research Technology filing patent application WO/2017/144877. The other authors declare no conflicts of interest.

Peer review information

Nature Cancer thanks Richard Possemato and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Vousden, K.H. & Hennequart, M. Cycling back to folate metabolism in cancer. Nat Cancer (2024). https://doi.org/10.1038/s43018-024-00739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43018-024-00739-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer