Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leveraging translational insights toward precision medicine approaches for brain metastases

Abstract

Due to increasing incidence and limited treatments, brain metastases (BM) are an emerging unmet need in modern oncology. Development of effective therapeutics has been hindered by unique challenges. Individual steps of the brain metastatic cascade are driven by distinctive biological processes, suggesting that BM possess intrinsic biological differences compared to primary tumors. Here, we discuss the unique physiology and metabolic constraints specific to BM as well as emerging treatment strategies that leverage potential vulnerabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The brain metastatic cascade.
Fig. 2: Simplified schematic of BBB and BTB physiology and potential therapeutic strategies.
Fig. 3: A translational workflow in analyzing patient-derived BM tissue and identifying new therapeutic targets.

References

  1. Berghoff, A. S. et al. Predictive molecular markers in metastases to the central nervous system: recent advances and future avenues. Acta Neuropathol. 128, 879–891 (2014).

    CAS  PubMed  Google Scholar 

  2. Paterson, A. H., Agarwal, M., Lees, A., Hanson, J. & Szafran, O. Brain metastases in breast cancer patients receiving adjuvant chemotherapy. Cancer 49, 651–654 (1982).

    CAS  PubMed  Google Scholar 

  3. Sundermeyer, M. L., Meropol, N. J., Rogatko, A., Wang, H. & Cohen, S. J. Changing patterns of bone and brain metastases in patients with colorectal cancer. Clin. Colorectal Cancer 5, 108–113 (2005).

    PubMed  Google Scholar 

  4. Nussbaum, E. S., Djalilian, H. R., Cho, K. H. & Hall, W. A. Brain metastases: histology, multiplicity, surgery, and survival. Cancer 78, 1781–1788 (1996).

    CAS  PubMed  Google Scholar 

  5. Habbous, S. et al. Incidence and real-world burden of brain metastases from solid tumors and hematologic malignancies in Ontario: a population-based study. Neurooncol. Adv. 3, vdaa178 (2021).

    PubMed  Google Scholar 

  6. Barnholtz-Sloan, J. S. et al. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 22, 2865–2872 (2004).

  7. Westover, K. D. et al. Phase II trial of hippocampal-sparing whole brain irradiation with simultaneous integrated boost for metastatic cancer. Neuro Oncol. 22, 1831–1839 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Gradishar, W. J. et al. Clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 16, 310–320 (2018).

    PubMed  Google Scholar 

  9. Zhu, W. et al. Temozolomide for treatment of brain metastases: a review of 21 clinical trials. World J. Clin. Oncol. 5, 19–27 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    CAS  PubMed  Google Scholar 

  11. Felding-Habermann, B. et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA 98, 1853–1858 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Malin, D. et al. αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin. Cancer Res. 20, 56–67 (2014).

    CAS  PubMed  Google Scholar 

  13. Carbonell, W. S., Ansorga, O., Sibson, N. & Muschel, R. The vascular basement membrane as ‘soil’ in brain metastasis. PLoS ONE 4, e5857 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Karreman, M. A. et al. Active remodeling of capillary endothelium via cancer cell-derived MMP9 promotes metastatic brain colonization. Cancer Res. 83, 1299–1314 (2023).

    CAS  PubMed  Google Scholar 

  15. Digernes, I. et al. Brain metastases with poor vascular function are susceptible to pseudoprogression after stereotactic radiation surgery. Adv. Radiat. Oncol. 3, 559–567 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Lee, S. K., Huang, S., Lu, W., Lev, D. C. & Price, J. E. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis 21, 107–118 (2004).

    Google Scholar 

  17. Leenders, W. P. J. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004).

    CAS  PubMed  Google Scholar 

  18. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    PubMed  Google Scholar 

  19. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Indraccolo, S. et al. Cross-talk between tumor and endothelial cells involving the Notch3–Dll4 interaction marks escape from tumor dormancy. Cancer Res. 69, 1314–1323 (2009).

    CAS  PubMed  Google Scholar 

  21. Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

    CAS  PubMed  Google Scholar 

  22. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    CAS  PubMed  Google Scholar 

  23. Dubois, L. G. et al. Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci. 8, 418 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Achrol, A. S. et al. Brain metastases. Nat. Rev. Dis. Primers 5, 5 (2019).

    PubMed  Google Scholar 

  25. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sevenich, L. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16, 876–888 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolff, G., Davidson, S. J., Wrobel, J. K. & Toborek, M. Exercise maintains blood–brain barrier integrity during early stages of brain metastasis formation. Biochem. Biophys. Res. Commun. 463, 811–817 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stemmler, H. & Heinemann, V. Central nervous system metastases in HER-2-overexpressing metastatic breast cancer: a treatment challenge. Oncologist 13, 739–750 (2008).

    PubMed  Google Scholar 

  29. Lockman, P. R. et al. Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res. 16, 5664–5678 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yonemori, K. et al. Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer 116, 302–308 (2010).

    PubMed  Google Scholar 

  31. Gril, B. et al. Reactive astrocytic S1P3 signaling modulates the blood–tumor barrier in brain metastases. Nat. Commun. 9, 2705 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Osswald, M. et al. Impact of blood–brain barrier integrity on tumor growth and therapy response in brain metastases. Clin. Cancer Res. 22, 6078–6087 (2016).

    CAS  PubMed  Google Scholar 

  33. Wyatt, E. A. & Davis, M. E. Method of establishing breast cancer brain metastases affects brain uptake and efficacy of targeted, therapeutic nanoparticles. Bioeng. Transl. Med. 4, 30–37 (2019).

    PubMed  Google Scholar 

  34. Heye, A. K., Culling, R. D., Valdés Hernández, M. D. C., Thrippleton, M. J. & Wardlaw, J. M. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. NeuroImage Clin. 6, 262–274 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. Henry, M. N., Chen, Y., McFadden, C. D., Simedrea, F. C. & Foster, P. J. In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model. Melanoma Res. 25, 127–137 (2015).

    CAS  PubMed  Google Scholar 

  36. Sun, H., Dai, H., Shaik, N. & Elmquist, W. F. Drug efflux transporters in the CNS. Adv. Drug Deliv. Rev. 55, 83–105 (2003).

    CAS  PubMed  Google Scholar 

  37. Fricker, G. & Miller, D. S. Modulation of drug transporters at the blood–brain barrier. Pharmacology 70, 169–176 (2004).

    CAS  PubMed  Google Scholar 

  38. Brastianos, P. K. et al. Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. Nat. Cancer 2, 498–502 (2021).

    CAS  PubMed  Google Scholar 

  39. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, H. et al. Genes associated with increased brain metastasis risk in non-small cell lung cancer: comprehensive genomic profiling of 61 resected brain metastases versus primary non-small cell lung cancer (Guangdong Association Study of Thoracic Oncology). Cancer 125, 3535–3544 (2019).

    CAS  PubMed  Google Scholar 

  41. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, G. et al. Biology of human tumors molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin. Cancer Res. 20, 5537–5546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ippen, F. M. et al. The dual PI3K/mTOR pathway inhibitor GDC-0084 achieves antitumor activity in PIK3CA-mutant breast cancer brain metastases. Clin. Cancer Res 25, 3374–3383 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Shih, D. J. H. et al. Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat. Genet. 52, 371–377 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fischer, G. M. et al. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov. 9, 628–645 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. Davies, M. A. et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 18, 863–873 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gadgeel, S. M. et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 34, 4079–4085 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Solomon, B. J. et al. Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from PROFILE 1014. J. Clin. Oncol. 34, 2858–2865 (2016).

    CAS  PubMed  Google Scholar 

  51. Bachelot, T. et al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol. 14, 64–71 (2013).

    CAS  PubMed  Google Scholar 

  52. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    CAS  PubMed  Google Scholar 

  53. Soria, J.-C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    CAS  PubMed  Google Scholar 

  54. Wu, Y. L. et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non-small-cell lung cancer: data from a randomized phase III trial (Aura3). J. Clin. Oncol. 36, 2702–2709 (2018).

  55. Batalini, F. et al. Response of brain metastases from PIK3CA-mutant breast cancer to alpelisib. JCO Precis. Oncol. 4, PO.19.00403 (2020).

  56. Brastianos, P. K. et al. Alliance A071701: genomically guided treatment trial in brain metastases. J. Clin. Oncol. 38, https://doi.org/10.1200/jco.2020.38.15_suppl.tps2573 (2020).

  57. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van de Haar, J. et al. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. Nat. Med. 27, 1553–1563 (2021).

    PubMed  Google Scholar 

  60. Zhang, X. H. F. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boire, A., Brastianos, P. K., Garzia, L. & Valiente, M. Brain metastasis. Nat. Rev. Cancer 20, 4–11 (2020).

    CAS  PubMed  Google Scholar 

  62. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Basnet, H. et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 8, e43627 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Priego, N. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 24, 1024–1035 (2018).

    CAS  PubMed  Google Scholar 

  65. Klemm, F. et al. Interrogation of the microenvironmental landscape in brain tumors reveals disease-specific alterations of immune cells. Cell 181, 1643–1660 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guldner, I. H. et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through Cxcl10. Cell 183, 1234–1248 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, L. et al. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci. Transl. Med. 12, eaaz5387 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642 (2020).

    CAS  PubMed  Google Scholar 

  70. Valiente, M. et al. The evolving landscape of brain metastasis. Trends Cancer 4, 176–196 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Quail, D. F. & Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell 31, 326–341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Doron, H., Pukrop, T. & Erez, N. A blazing landscape: neuroinflammation shapes brain metastasis. Cancer Res. 79, 423–436 (2019).

    PubMed  PubMed Central  Google Scholar 

  73. Taggart, D. et al. Anti-PD-1/anti-CTLA-4 efficacy in melanoma brain metastases depends on extracranial disease and augmentation of CD8+ T cell trafficking. Proc. Natl Acad. Sci. USA 115, E1540–E1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Berghoff, A. S. et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. OncoImmunology 5, e1057388 (2016).

    PubMed  Google Scholar 

  75. Zakaria, R. et al. T-cell densities in brain metastases are associated with patient survival times and diffusion tensor MRI changes. Cancer Res. 78, 610–616 (2018).

    CAS  PubMed  Google Scholar 

  76. Mansfield, A. S. et al. Contraction of T cell richness in lung cancer brain metastases. Sci. Rep. 8, 2171 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Kudo, Y. et al. Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann. Oncol. 30, 1521–1530 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Alvarez-Breckenridge, C. et al. Microenvironmental landscape of human melanoma brain metastases in response to immune checkpoint inhibition. Cancer Immunol. Res. 10, 996–1012 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, N. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Amoozgar, Z. et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat. Commun. 12, 2582 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rubio-Perez, C. et al. Immune cell profiling of the cerebrospinal fluid enables the characterization of the brain metastasis microenvironment. Nat. Commun. 12, 1503 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Freeman, M. R. & Rowitch, D. H. Evolving concepts of gliogenesis: a look way back and ahead to the next 25 years. Neuron 80, 613–623 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Ben Haim, L. & Rowitch, D. H. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18, 31–41 (2016).

    PubMed  Google Scholar 

  84. Fitzgerald, D. P. et al. Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin. Exp. Metastasis 25, 799–810 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Seike, T. et al. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 28, 13–25 (2011).

    CAS  PubMed  Google Scholar 

  86. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Xing, F. et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol. Med. 5, 384–396 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Marchetti, D., Li, J. & Shen, R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 60, 4767–4770 (2000).

    CAS  PubMed  Google Scholar 

  89. Chen, Q. et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, S. W. et al. Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro Oncol. 16, 1585–1598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, S. J. et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13, 286–298 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, L. et al. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS ONE 8, e80933 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Stoletov, K. et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J. Cell Sci. 126, 904–913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. John Lin, C. C. et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 20, 396–405 (2017).

    CAS  PubMed  Google Scholar 

  95. Batiuk, M. Y. et al. Identification of region-specific astrocyte subtypes at single cell resolution. Nat. Commun. 11, 1220 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Heiland, D. H. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun. 10, 2541 (2019).

    Google Scholar 

  97. Sartorius, C. A. et al. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene 35, 2881–2892 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Contreras-Zárate, M. J. et al. Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene 38, 4685–4699 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Reichenbach, N. et al. Inhibition of Stat3‐mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med. 11, e9665 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Haim, L. B. et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817–2829 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Zhu, X., Fujita, M., Snyder, L. A. & Okada, H. Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. J. Neurooncol. 104, 83–92 (2011).

    PubMed  Google Scholar 

  102. Mercurio, L. et al. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model. J. Exp. Clin. Cancer Res. 35, 55 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Darmanis, S. et al. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep. 21, 1399–1410 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Venteicher, A. S. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Böttcher, C. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22, 78–90 (2019).

    PubMed  Google Scholar 

  106. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    CAS  PubMed  Google Scholar 

  107. Haruwaka, K. et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 10, 5816 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pukrop, T. et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58, 1477–1489 (2010).

    PubMed  Google Scholar 

  109. Aslan, K. et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat. Commun. 11, 931 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ochocka, N. et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat. Commun. 12, 1151 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dusoswa, S. A. et al. Glioblastomas exploit truncated O-linked glycans for local and distant immune modulation via the macrophage galactose-type lectin. Proc. Natl Acad. Sci. USA 117, 3693–3703 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Satoh, J. I. et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology 36, 39–49 (2016).

    CAS  PubMed  Google Scholar 

  114. Bennett, F. C. et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98, 1170–1183 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schulz, M. et al. Cellular and molecular changes of brain metastases-associated myeloid cells during disease progression and therapeutic response. iScience 23, 101178 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Suh, J. H. et al. Current approaches to the management of brain metastases. Nat. Rev. Clin. Oncol. 17, 279–299 (2020).

    PubMed  Google Scholar 

  117. Fecci, P. E. et al. The evolving modern management of brain metastasis. Clin. Cancer Res. 25, 6570–6580 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, G. et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin. Cancer Res. 20, 5537–5546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Park, E. S. et al. Cross-species hybridization of microarrays for studying tumor transcriptome of brain metastasis. Proc. Natl Acad. Sci. USA 108, 17456–17461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Maas, S. L. N. et al. Glioblastoma hijacks microglial gene expression to support tumor growth. J. Neuroinflammation 17, 120 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Qian, J. et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J. Neuroinflammation 15, 290 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H. & Freeman, G. J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27, 111–122 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Long, G. V. et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 19, 672–681 (2018).

    CAS  PubMed  Google Scholar 

  125. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Holtzhausen, A. et al. TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol. Res. 7, 1672–1686 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Edelman, M. J. et al. Prophylactic cranial irradiation for small-cell lung cancer: time for a reassessment. Am. Soc. Clin. Oncol. Educ. Book 40, 24–28 (2020).

    PubMed  Google Scholar 

  128. Palmieri, D. et al. Profound prevention of experimental brain metastases of breast cancer by temozolomide in an MGMT-dependent manner. Clin. Cancer Res. 20, 2727–2739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ilhan-Mutlu, A. et al. Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol. Cancer Ther. 15, 702–710 (2016).

    CAS  PubMed  Google Scholar 

  130. Massard, C. et al. Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann. Oncol. 21, 1027–1031 (2010).

    CAS  PubMed  Google Scholar 

  131. Lin, N. U. et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res. 15, 1452–1459 (2009).

    CAS  PubMed  Google Scholar 

  132. Cameron, D. et al. A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat. 112, 533–543 (2008).

    CAS  PubMed  Google Scholar 

  133. Zimmer, A. S. et al. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncol. 16, 899–909 (2020).

    PubMed  PubMed Central  Google Scholar 

  134. Tehranian, C. et al. The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol. 24, 213–225 (2022).

    PubMed  Google Scholar 

  135. Steeg, P. S., Camphausen, K. A. & Smith, Q. R. Brain metastases as preventive and therapeutic targets. Nat. Rev. Cancer 11, 352–363 (2011).

    PubMed  PubMed Central  Google Scholar 

  136. Pentsova, E. I. et al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J. Clin. Oncol. 34, 2404–2415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Miller, A. M. et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 565, 654–658 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Y. et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc. Natl Acad. Sci. USA 112, 9704–9709 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. De Mattos-Arruda, L. et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6, 8839 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful feedback from G.P. Perrino. P.K.B. is supported by the NCI (1R01CA227156-01 and 1R01CA244975-01), Terry and Jean de Gunzburg MGH Research Scholar Fund, Victoria’s Secret Global Fund for Women’s Cancers Rising Innovator Research Grant, in Partnership with Pelotonia and AACR, and the Breast Cancer Research Foundation. A.E.K. is supported by an American Brain Tumor Association Basic Research Fellowship in honor of Paul Fabbri (BRF1900017), the William G. Kaelin, Jr., MD, Physician–Scientist Award of the Damon Runyon Cancer Research Foundation, an American Association for Cancer Research Breast Cancer Research Fellowship and an American Society of Clinical Oncology/Conquer Cancer Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla K. Brastianos.

Ethics declarations

Competing interests

P.K.B. has consulted for Tesaro, Angiochem, Genentech–Roche, ElevateBio, Axiom Healthcare Strategies, Eli Lilly, SK Life Science, Pfizer, Voyager Therapeutics, Sintetica, MPM Capital Advisers, Advise Connect Inspire, Kazia, CraniUS and Dantari; has received institutional research funding (to Massachusetts General Hospital) from Merck, Mirati, Eli Lilly, BMS, Kinnate and Pfizer; has received clinical trial support (to institution) from AstraZeneca, Eli Lilly, Pfizer, Bristol Myers Squibb, Genentech–Roche, GSK and Merck; and has received honoraria from Merck, Medscape, Pfizer and Genentech–Roche. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Cancer thanks Frank Winkler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A.E., Nieblas-Bedolla, E., de Sauvage, M.A. et al. Leveraging translational insights toward precision medicine approaches for brain metastases. Nat Cancer 4, 955–967 (2023). https://doi.org/10.1038/s43018-023-00585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00585-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer