Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Climate change impacts on snow avalanche activity and related risks

Abstract

In the rapidly evolving mountain cryosphere, snow avalanches threaten livelihoods, settlements and infrastructure. In this Review, we analyse past and projected impacts of climate change on avalanche activity and the associated risks. The limited availability of comprehensive datasets, the potential confounding factors and the limitations of statistical approaches can make it difficult to identify trends in avalanche activity. However, available data indicate a general decrease in avalanche number, size, seasonality and active paths at low elevations, and an increase in the proportion of wet avalanches relative to dry avalanches. Increased snowfall at high elevations can lead to peaks in avalanche activity and an increase in the number of wet and slush-like avalanches. Activity patterns gradually shift from low to high elevations under continued warming. These changes affect avalanche risk; however, risk is also influenced by factors such as land use and the growth or decline of human settlements. The impact of these factors varies across diverse mountain environments, making it challenging to predict how risk will evolve under a changing climate. Therefore, future research should aim to couple an improved systemic understanding of the impacts of these factors with slope-scale projections of avalanche hazards and risks to support sustainable mountain development and adaptation strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The diversity of avalanches.
Fig. 2: The two archetypal avalanche types and the related disaster risks.
Fig. 3: Available data to assess past changes in avalanche activity.
Fig. 4: Assessing changes in risks related to avalanche activity, and their relation to climate change.
Fig. 5: Past and future patterns of change in avalanche activity and risk.
Fig. 6: A conceptual model of changes in seasonal snow cover, avalanche activity and related risks.

Similar content being viewed by others

References

  1. Schweizer, J., Bartelt, P. & van Herwijnen, A. in Snow and Ice-Related Hazards, Risks, and Disasters, 377–416 (Elsevier, 2021).

  2. Reuter, B., van Herwijnen, A., Veitinger, J. & Schweizer, J. Relating simple drivers to snow instability. Cold Reg. Sci. Technol. 120, 168–178 (2015).

    Article  Google Scholar 

  3. Veitinger, J. & Sovilla, B. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site. Nat. Hazards Earth Syst. Sci. 16, 1953–1965 (2016).

    Article  Google Scholar 

  4. Dkengne Sielenou, P. et al. Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps. Cold Reg. Sci. Technol. 187, 103276 (2021).

    Article  Google Scholar 

  5. Rognon, P. G. et al. Rheology of dense snow flows: Inferences from steady state chute-flow experiments. J. Rheology 52, 729–748 (2008).

    Article  CAS  Google Scholar 

  6. Köhler, A., McElwaine, J. N. & Sovilla, B. GEODAR data and the flow regimes of snow avalanches. J. Geophys. Res. Earth Surf. 123, 1272–1294 (2018).

    Article  Google Scholar 

  7. Issler, D. Modelling of snow entrainment and deposition in powder-snow avalanches. Ann. Glaciol. 26, 253–258 (1998).

    Article  Google Scholar 

  8. Mede, T., Chambon, G., Hagenmuller, P. & Nicot, F. Snow failure modes under mixed loading. Geophys. Res. Lett. 45, 351–358 (2018).

    Article  Google Scholar 

  9. Schweizer, J., Jamieson, Bruce, J. & Schneebeli, M. Snow avalanche formation. Rev. Geophys. 41, 1–25 (2003).

    Article  Google Scholar 

  10. Schweizer, J., Mitterer, C. & Stoffel, L. On forecasting large and infrequent snow avalanches. Cold Reg. Sci. Technol. 59, 234–241 (2009).

    Article  Google Scholar 

  11. Eckert, N. et al. Cross-comparison of meteorological and avalanche data for characterising avalanche cycles: the example of December 2008 in the eastern part of the French Alps. Cold Reg. Sci. Technol. 64, 119–136 (2010).

    Article  Google Scholar 

  12. Schweizer, J., Kronholm, K., Jamieson, B. & Birkeland, K. W. Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Reg. Sci. Technol. 51, 253–272 (2008).

    Article  Google Scholar 

  13. McClung, D. & Schaerer, P. A. The Avalanche Handbook (Mountaineers Books, 2006).

  14. Vera Valero, C., Jones, K. W., Bühler, Y. & Bartelt, P. Release temperature, snow-cover entrainment and the thermal flow regime of snow avalanches. J. Glaciol. 61, 173–184 (2015).

    Article  Google Scholar 

  15. Schweizer, J. & Lütschg, M. Characteristics of human-triggered avalanches. Cold Reg. Sci. Technol. 33, 147–162 (2001).

    Article  Google Scholar 

  16. Sovilla, B., McElwaine, J. N. & Louge, M. Y. The structure of powder snow avalanches. C. R. Phys. 16, 97–104 (2015).

    Article  CAS  Google Scholar 

  17. Ancey, C. & Bain, V. Dynamics of glide avalanches and snow glidingG. Rev. Geophys. 53, 745–784 (2015).

    Article  Google Scholar 

  18. Braun, T. et al. Seismic signature of the deadly snow avalanche of January 18, 2017, at Rigopiano (Italy). Sci. Rep. 10, 18563 (2020).

    Article  CAS  Google Scholar 

  19. Stoffel, M. & Corona, C. Future winters glimpsed in the Alps. Nat. Geosci. 11, 458–460 (2018).

    Article  CAS  Google Scholar 

  20. Bühler, Y., Hafner, E. D., Zweifel, B., Zesiger, M. & Heisig, H. Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps. Cryosphere 13, 3225–3238 (2019).

    Article  Google Scholar 

  21. UNDRR. Global Assessment Report on Disaster Risk Reduction 2019 (United Nations, 2019).

  22. Favier, P., Bertrand, D., Eckert, N. & Naaim, M. A reliability assessment of physical vulnerability of reinforced concrete walls loaded by snow avalanches. Nat. Hazards Earth Syst. Sci. 14, 689–704 (2014).

    Article  Google Scholar 

  23. Favier, P., Eckert, N., Bertrand, D. & Naaim, M. Sensitivity of avalanche risk to vulnerability relations. Cold Reg. Sci. Technol. 108, 163–177 (2014).

    Article  Google Scholar 

  24. Eckert, N. & Giacona, F. Towards a holistic paradigm for long-term snow avalanche risk assessment and mitigation. Ambio 52, 711–732 (2023).

    Article  Google Scholar 

  25. Eckert, N., Baya, H. & Deschatres, M. Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: application to 61 winters of data in France. J. Clim. 23, 3157–3180 (2010).

    Article  Google Scholar 

  26. Ballesteros-Cánovas, J. A., Trappmann, D., Madrigal-González, J., Eckert, N. & Stoffel, M. Climate warming enhances snow avalanche risk in the western Himalayas. Proc. Natl Acad. Sci. USA 115, 3410–3415 (2018).

    Article  Google Scholar 

  27. Giacona, F. et al. Upslope migration of snow avalanches in a warming climate. Proc. Natl. Acad. Sci. U.S.A. 118, e2107306118 (2021).

    Article  CAS  Google Scholar 

  28. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  29. Techel, F. et al. Avalanche fatalities in the European Alps: long-term trends and statistics. Geogr. Helv. 71, 147–159 (2016).

    Article  Google Scholar 

  30. Caiserman, A., Sidle, R. C. & Gurung, D. R. Snow Avalanche Frequency Estimation (SAFE): 32 years of monitoring remote avalanche depositional zones in high mountains of Afghanistan. Cryosphere 16, 3295–3312 (2022).

    Article  Google Scholar 

  31. Jamieson, B., Haegeli, P. & Gauthier, D. Avalanche Accidents in Canada Vol. 5, 1996–2007 (Canadian Avalanche Association, 2010).

  32. Höller, P. Avalanche accidents and fatalities in Austria since 1946/47 with special regard to tourist avalanches in the period 1981/82 to 2015/16. Cold Reg. Sci. Technol. 144, 89–95 (2017).

    Article  Google Scholar 

  33. Badoux, A., Andres, N., Techel, F. & Hegg, C. Natural hazard fatalities in Switzerland from 1946 to 2015. Nat. Hazards Earth Syst. Sci. 16, 2747–2768 (2016).

    Article  Google Scholar 

  34. Zgheib, T. et al. Spatio-temporal variability of avalanche risk in the French Alps. Reg. Env. Change 22, 8 (2022).

    Article  Google Scholar 

  35. Stoffel, M. & Huggel, C. Effects of climate change on mass movements in mountain environments. Prog. Phys. Geog. Earth Environ. 36, 421–439 (2012).

    Article  Google Scholar 

  36. Heffernan, O. Coming down the tracks. Nat. Clim. Change 8, 937–939 (2018).

    Article  Google Scholar 

  37. Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (Cambridge Univ. Press, 2019).

  38. Eckerstorfer, M., Bühler, Y., Frauenfelder, R. & Malnes, E. Remote sensing of snow avalanches: recent advances, potential, and limitations. Cold Reg. Sci. Technol. 121, 126–140 (2016).

    Article  Google Scholar 

  39. Karas, A., Karbou, F., Giffard-Roisin, S., Durand, P. & Eckert, N. Automatic color detection-based method applied to Sentinel-1 SAR images for snow avalanche debris monitoring. IEEE Trans. Geosci. Remote. Sens. 60, 1–17 (2022).

    Article  Google Scholar 

  40. Bourova, E. et al. A new web-based system to improve the monitoring of snow avalanche hazard in France. Nat. Hazards Earth Syst. Sci. 16, 1205–1216 (2016).

    Article  Google Scholar 

  41. Höller, P. Avalanche cycles in Austria: an analysis of the major events in the last 50 years. Nat. Hazards 48, 399–424 (2009).

    Article  Google Scholar 

  42. Hancock, H., Prokop, A., Eckerstorfer, M. & Hendrikx, J. Combining high spatial resolution snow mapping and meteorological analyses to improve forecasting of destructive avalanches in Longyearbyen, Svalbard. Cold Reg. Sci. Technol. 154, 120–132 (2018).

    Article  Google Scholar 

  43. van Herwijnen, A. & Schweizer, J. Monitoring avalanche activity using a seismic sensor. Cold Reg. Sci. Technol. 69, 165–176 (2011).

    Article  Google Scholar 

  44. Hao, J., Huang, F., Liu, Y., Amobichukwu, C. A. & Li, L. Avalanche activity and characteristics of its triggering factors in the western Tianshan Mountains, China. J. Mt. Sci. 15, 1397–1411 (2018).

    Article  Google Scholar 

  45. Page, C. E., Atkins, D., Shockley, L. W. & Yaron, M. Avalanche deaths in the United States: a 45-year analysis. Wilderness Environ. Med. 10, 146–151 (1999).

    Article  CAS  Google Scholar 

  46. Jóhannesson, T. & Arnalds, Þ Accidents and economic damage due to snow avalanches and landslides in Iceland. Jökull 50, 81–94 (2001).

    Article  Google Scholar 

  47. McClung, D. M. Avalanche character and fatalities in the high mountains of Asia. Ann. Glaciol. 57, 114–118 (2016).

    Article  Google Scholar 

  48. García-Sellés, C., Peña, J. C., Martí, G., Oller, P. & Martínez, P. WeMOI and NAOi influence on major avalanche activity in the Eastern Pyrenees. Cold Reg. Sci. Technol. 64, 137–145 (2010).

    Article  Google Scholar 

  49. Laternser, M. & Pfister, C. Avalanches in Switzerland 1500–1990. Geogr. Tidsskr. 30, 41–50 (1997).

    Google Scholar 

  50. Léone, S. Les populations de haute-montagne face aux contraintes naturelles: les vallées de Chamonix et Vallorcine: 1730–1914. PhD thesis, Univ. Pierre Mendès-France (2006).

  51. Oller, P. et al. Characterizing major avalanche episodes in space and time in the twentieth and early twenty-first centuries in the Catalan Pyrenees. Cold Reg. Sci. Technol. 110, 129–148 (2015).

    Article  Google Scholar 

  52. García-Hernández, C. et al. Reforestation and land use change as drivers for a decrease of avalanche damage in mid-latitude mountains (NW Spain). Glob. Planet. Change 153, 35–50 (2017).

    Article  Google Scholar 

  53. Giacona, F., Eckert, N. & Martin, B. A 240-year history of avalanche risk in the Vosges Mountains based on non-conventional (re)sources. Nat. Hazards Earth Syst. Sci. 17, 887–904 (2017).

    Article  Google Scholar 

  54. Acharya, A. et al. Snow and ice avalanches in high mountain Asia — scientific, local and indigenous knowledge. Nat. Hazards Earth Syst. Sci. 23, 2569–2592 (2023).

    Article  Google Scholar 

  55. Sangster, H., Jones, C. & Macdonald, N. The co-evolution of historical source materials in the geophysical, hydrological and meteorological sciences: learning from the past and moving forward. Prog. Phys. Geog. Earth Environ. 42, 61–82 (2018).

    Article  Google Scholar 

  56. Granet-Abisset, A. in Les cultures du risque (XVIe–XXIe siècle) (eds Walter, F. et al.) 117–155 (2006).

  57. Corona, C. et al. Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred from tree rings. Holocene 23, 292–304 (2013).

    Article  Google Scholar 

  58. Peitzsch, E. H., Pederson, G. T., Birkeland, K. W., Hendrikx, J. & Fagre, D. B. Climate drivers of large magnitude snow avalanche years in the U.S. northern Rocky Mountains. Sci. Rep. 11, 10032 (2021).

    Article  CAS  Google Scholar 

  59. Nesje, A., Bakke, J., Dahl, S. O., Lie, Ø. & Bøe, A.-G. A continuous, high-resolution 8500-yr snow-avalanche record from western Norway. Holocene 17, 269–277 (2007).

    Article  Google Scholar 

  60. Vasskog, K. et al. A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence in Oldevatnet, western Norway. Holocene 21, 597–614 (2011).

    Article  Google Scholar 

  61. Fouinat, L. et al. Wet avalanches: long-term evolution in the western Alps under climate and human forcing. Clim. Past. 14, 1299–1313 (2018).

    Article  Google Scholar 

  62. Blikra, L. H. & Selvik, S. F. Climatic signals recorded in snow avalanche-dominated colluvium in western Norway: depositional facies successions and pollen records. Holocene 8, 631–658 (1998).

    Article  Google Scholar 

  63. McCarroll, D. Modelling late-Holocene snow-avalanche activity: incorporating a new approach to lichenometry. Earth Surf. Process. Landf. 18, 527–539 (1993).

    Article  Google Scholar 

  64. Luckman, B. H. The geomorphic activity of snow avalanches. Geogr. Ann. A 59, 31–48 (1977).

    Article  Google Scholar 

  65. Jomelli, V. & Pech, P. Effects of the Little Ice Age on avalanche boulder tongues in the French Alps (Massif des Ecrins). Earth Surf. Process. Landf. 29, 553–564 (2004).

    Article  Google Scholar 

  66. Decaulne, A. & Saemundsson, T. Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology 80, 80–93 (2006).

    Article  Google Scholar 

  67. Stoffel, M. & Bollschweiler, M. Tree-ring analysis in natural hazards research — an overview. Nat. Hazards Earth Syst. Sci. 8, 187–202 (2008).

    Article  Google Scholar 

  68. Corona, C. et al. How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg. Sci. Technol. 74–75, 31–42 (2012).

    Article  Google Scholar 

  69. Favillier, A. et al. Identifying and interpreting regional signals in tree-ring based reconstructions of snow avalanche activity in the Goms Valley (Swiss Alps). Quat. Sci. Rev. 307, 108063 (2023).

    Article  Google Scholar 

  70. Casteller, A., Villalba, R., Araneo, D. & Stöckli, V. Reconstructing temporal patterns of snow avalanches at Lago del Desierto, southern Patagonian Andes. Cold Reg. Sci. Technol. 67, 68–78 (2011).

    Article  Google Scholar 

  71. Dubé, S., Filion, L. & Hétu, B. Tree-ring reconstruction of high-magnitude snow avalanches in the northern Gaspé Peninsula, Québec, Canada. Arct. Antarc. Alp. Res. 36, 555–564 (2004).

    Article  Google Scholar 

  72. Potter, N. Tree-ring dating of snow avalanche tracks and the geomorphic activity of avalanches, northern Absaroka mountains, Wyoming. Geol. Soc. Am. Spec. Pap. 123, 141–165 (1969).

    Google Scholar 

  73. Reardon, B. A., Pederson, G. T., Caruso, C. J. & Fagre, D. B. Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, U.S.A. Arct. Antarct. Alp. Res. 40, 148–160 (2008).

    Article  Google Scholar 

  74. Muntán, E. et al. Reconstructing snow avalanches in the southeastern Pyrenees. Nat. Hazards Earth Syst. Sci. 9, 1599–1612 (2009).

    Article  Google Scholar 

  75. Voiculescu, M. & Onaca, A. Spatio-temporal reconstruction of snow avalanche activity using dendrogeomorphological approach in Bucegi Mountains Romanian Carpathians. Cold Reg. Sci. Technol. 104–105, 63–75 (2014).

    Article  Google Scholar 

  76. Šilhán, K. Snow avalanches and debris flows in the Mediterranean conditions of the southern coast of the Crimean Mountains: dendrogeomorphic reconstruction. CATENA 218, 106554 (2022).

    Article  Google Scholar 

  77. Corona, C., Rovéra, G., Lopez Saez, J., Stoffel, M. & Perfettini, P. Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. CATENA 83, 107–118 (2010).

    Article  Google Scholar 

  78. Schläppy, R. et al. Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques. Cold Reg. Sci. Technol. 99, 12–26 (2014).

    Article  Google Scholar 

  79. Favillier, A. et al. Spatio-temporal maps of past avalanche events derived from tree-ring analysis: a case study in the Zermatt Valley (Valais, Switzerland). Cold Reg. Sci. Technol. 154, 9–22 (2018).

    Article  Google Scholar 

  80. De Bouchard d’Aubeterre, G. et al. Tree-ring reconstruction of snow avalanche activity: does avalanche path selection matter? Sci. Total. Environ. 684, 496–508 (2019).

    Article  Google Scholar 

  81. Stoffel, M., Bollschweiler, M. & Hassler, G.-R. Differentiating past events on a cone influenced by debris-flow and snow avalanche activity — a dendrogeomorphological approach. Earth Surf. Process. Landforms 31, 1424–1437 (2006).

    Article  Google Scholar 

  82. Schläppy, R. et al. A new tree-ring-based, semi-quantitative approach for the determination of snow avalanche events: use of classification trees for validation. Arct. Antarct. Alp. Res. 45, 383–395 (2013).

    Article  Google Scholar 

  83. Martin, J.-P. & Germain, D. Can we discriminate snow avalanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United States. Dendrochronologia 37, 17–32 (2016).

    Article  Google Scholar 

  84. Favillier, A. et al. Disentangling the impacts of exogenous disturbances on forest stands to assess multi-centennial tree-ring reconstructions of avalanche activity in the upper Goms Valley (Canton of Valais, Switzerland). Quat. Geochronol. 42, 89–104 (2017).

    Article  Google Scholar 

  85. Shandro, B. & Haegeli, P. Characterizing the nature and variability of avalanche hazard in western Canada. Nat. Hazards Earth Syst. Sci. 18, 1141–1158 (2018).

    Article  Google Scholar 

  86. Reuter, B. et al. Characterizing snow instability with avalanche problem types derived from snow cover simulations. Cold Reg. Sci. Technol. 194, 103462 (2022).

    Article  Google Scholar 

  87. Reuter, B., Hagenmuller, P. & Eckert, N. Snow and avalanche climates in the French Alps using avalanche problem frequencies. J. Glaciol. 69, 1292–1304 (2023).

    Article  Google Scholar 

  88. Mayer, S., van Herwijnen, A., Techel, F. & Schweizer, J. A random forest model to assess snow instability from simulated snow stratigraphy. Cryosphere 16, 4593–4615 (2022).

    Article  Google Scholar 

  89. Castebrunet, H., Eckert, N., Giraud, G., Durand, Y. & Morin, S. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020–2050 and 2070–2100 periods. Cryosphere 8, 1673–1697 (2014).

    Article  Google Scholar 

  90. Haegeli, P., Shandro, B. & Mair, P. Using avalanche problems to examine the effect of large-scale atmosphere–ocean oscillations on avalanche hazard in western Canada. Cryosphere 15, 1567–1586 (2021).

    Article  Google Scholar 

  91. Lazar, B. & Williams, M. Climate change in western ski areas: potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Reg. Sci. Technol. 51, 219–228 (2008).

    Article  Google Scholar 

  92. Katsuyama, Y., Katsushima, T. & Takeuchi, Y. Large-ensemble climate simulations to assess changes in snow stability over northern Japan. J. Glaciol. https://doi.org/10.1017/jog.2022.85 (2022).

  93. IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  94. Laternser, M. & Schneebeli, M. Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat. Hazards 27, 201–230 (2002).

    Article  Google Scholar 

  95. Giacona, F., Martin, B., Eckert, N. & Desarthe, J. Une méthodologie de la modélisation en géohistoire: de la chronologie (spatialisée) des événements au fonctionnement du système par la mise en correspondance spatiale et temporelle. Physio-Géo https://doi.org/10.4000/physio-geo.9186 (2019).

  96. Bebi, P., Kulakowski, D. & Rixen, C. Snow avalanche disturbances in forest ecosystems — state of research and implications for management. For. Ecol. Manag. 257, 1883–1892 (2009).

    Article  Google Scholar 

  97. Mainieri, R. et al. Impacts of land-cover changes on snow avalanche activity in the French Alps. Anthropocene 30, 100244 (2020).

    Article  Google Scholar 

  98. Margreth, S. & Funk, M. Hazard mapping for ice and combined snow/ice avalanches — two case studies from the Swiss and Italian Alps. Cold Reg. Sci. Technol. 30, 159–173 (1999).

    Article  Google Scholar 

  99. Margreth, S. et al. Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif. Cold Reg. Sci. Technol. 69, 194–201 (2011).

    Article  Google Scholar 

  100. Keiler, M., Knight, J. & Harrison, S. Climate change and geomorphological hazards in the eastern European Alps. Phil. Trans. R. Soc. A. 368, 2461–2479 (2010).

    Article  Google Scholar 

  101. Mock, C. J., Carter, K. C. & Birkeland, K. W. Some perspectives on avalanche climatology. Ann. Am. Assoc. Geographers 107, 299–308 (2017).

    Google Scholar 

  102. Heck, M., Hobiger, M., van Herwijnen, A., Schweizer, J. & Fäh, D. Localization of seismic events produced by avalanches using multiple signal classification. Geophys. J. Int. https://doi.org/10.1093/gji/ggy394 (2018).

  103. Keylock, C. J. The North Atlantic Oscillation and snow avalanching in Iceland. Geophys. Res. Lett. 30, 1–4 (2003).

    Article  Google Scholar 

  104. Schauer, A. R., Hendrikx, J., Birkeland, K. W. & Mock, C. J. Synoptic atmospheric circulation patterns associated with deep persistent slab avalanches in the western United States. Nat. Hazards Earth Syst. Sci. 21, 757–774 (2021).

    Article  Google Scholar 

  105. Hatchett, B. J. et al. Avalanche fatalities during atmospheric river events in the western United States. J. Hydrometeorology 18, 1359–1374 (2017).

    Article  Google Scholar 

  106. Eckert, N., Parent, E., Kies, R. & Baya, H. A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the northern French Alps. Climatic Change 101, 515–553 (2010).

    Article  CAS  Google Scholar 

  107. Le Roux, E., Evin, G., Eckert, N., Blanchet, J. & Morin, S. Elevation-dependent trends in extreme snowfall in the French Alps from 1959 to 2019. Cryosphere 15, 4335–4356 (2021).

    Article  Google Scholar 

  108. Lavigne, A., Eckert, N., Bel, L. & Parent, E. Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences. J. R. Stat. Soc. C 64, 651–671 (2015).

    Article  Google Scholar 

  109. Schneebeli, M., Laternser, M. & Ammann, W. Destructive snow avalanches and climate change in the Swiss Alps. Eclogae Geol. Helv. 90, 457–461 (1997).

    Google Scholar 

  110. Teich, M., Marty, C., Gollut, C., Grêt-Regamey, A. & Bebi, P. Snow and weather conditions associated with avalanche releases in forests: rare situations with decreasing trends during the last 41years. Cold Reg. Sci. Technol. 83–84, 77–88 (2012).

    Article  Google Scholar 

  111. Giacona, F., Eckert, N. & Martin, B. Comment interpréter une chronologie événementielle en géohistoire? L’exemple de deux siècles et demi d’avalanches dans le Massif vosgien. Cybergeo https://doi.org/10.4000/cybergeo.39644 (2022).

  112. Lavigne, A., Bel, L., Parent, E. & Eckert, N. A model for spatio-temporal clustering using multinomial probit regression: application to avalanche counts. Environmetrics 23, 522–534 (2012).

    Article  Google Scholar 

  113. Zgheib, T. et al. Diachronic quantitative snow avalanche risk assessment as a function of forest cover changes. J. Glaciol. 69, 841–859 (2023).

    Article  Google Scholar 

  114. Bartelt, P., Bühler, Y., Buser, O., Christen, M. & Meier, L. Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. J. Geophys. Res. 117, 1–28 (2012).

    Article  Google Scholar 

  115. Viallon-Galinier, L., Hagenmuller, P. & Eckert, N. Combining modelled snowpack stability with machine learning to predict avalanche activity. Cryosphere 17, 2245–2260 (2023).

    Article  Google Scholar 

  116. Pérez-Guillén, C. et al. Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland. Nat. Hazards Earth Syst. Sci. 22, 2031–2056 (2022).

    Article  Google Scholar 

  117. Evin, G. et al. Extreme avalanche cycles: return levels and probability distributions depending on snow and meteorological conditions. Weather Clim. Extremes 33, 100344 (2021).

    Article  Google Scholar 

  118. Gassner, M. & Brabec, B. Nearest neighbour models for local and regional avalanche forecasting. Nat. Hazards Earth Syst. Sci. 2, 247–253 (2002).

    Article  Google Scholar 

  119. Hendrikx, J., Owens, I., Carran, W. & Carran, A. Avalanche activity in an extreme maritime climate: the application of classification trees for forecasting. Cold Reg. Sci. Technol. 43, 104–116 (2005).

    Article  Google Scholar 

  120. Jomelli, V. et al. Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg. Sci. Technol. 47, 180–192 (2007).

    Article  Google Scholar 

  121. Schläppy, R. et al. Can we infer avalanche–climate relations using tree-ring data? Case studies in the French Alps. Reg. Env. Change 16, 629–642 (2016).

    Article  Google Scholar 

  122. Castebrunet, H., Eckert, N. & Giraud, G. Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Clim. Past. 8, 855–875 (2012).

    Article  Google Scholar 

  123. Mock, C. J. & Birkeland, K. W. Snow avalanche climatology of the western United States mountain ranges. Bull. Am. Meteorological Soc. 81, 2367–2392 (2000).

    Article  Google Scholar 

  124. Haegeli, P. & McClung, D. M. Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada. J. Glaciol. 53, 266–276 (2007).

    Article  Google Scholar 

  125. Podolskiy, E. A., Izumi, K., Suchkov, V. E. & Eckert, N. Physical and societal statistics for a century of snow-avalanche hazards on Sakhalin and the Kuril Islands (1910–2010). J. Glaciol. 60, 409–430 (2014).

    Article  Google Scholar 

  126. Zgheib, T., Giacona, F., Granet-Abisset, A.-M., Morin, S. & Eckert, N. One and a half century of avalanche risk to settlements in the upper Maurienne Valley inferred from land cover and socio-environmental changes. Glob. Environ. Change 65, 102149 (2020).

    Article  Google Scholar 

  127. Fuchs, S., Bründl, M. & Stötter, J. Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland. Nat. Hazards Earth Syst. Sci. 4, 263–275 (2004).

    Article  Google Scholar 

  128. Giacona, F. & Guyon, F. Les représentations du risque avalancheux chez les pratiquants d’activités récréatives hivernales du Massif vosgien. J. Alp. Res. https://doi.org/10.4000/rga.8010 (2021).

    Article  Google Scholar 

  129. Beniston, M. et al. The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12, 759–794 (2018).

    Article  Google Scholar 

  130. England, M. R., Eisenman, I., Lutsko, N. J. & Wagner, T. J. W. The recent emergence of Arctic amplification. Geophys. Res. Lett. 48, 1–10 (2021).

    Article  Google Scholar 

  131. Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. https://doi.org/10.1029/2020RG000730 (2022).

  132. Vionnet, V. et al. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model. Dev. 5, 773–791 (2012).

    Article  Google Scholar 

  133. Bartelt, P. & Lehning, M. A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model. Cold Reg. Sci. Technol. 35, 123–145 (2002).

    Article  Google Scholar 

  134. Rasmus, S., Räisänen, J. & Lehning, M. Estimating snow conditions in Finland in the late 21st century using the SNOWPACK model with regional climate scenario data as input. Ann. Glaciol. 38, 238–244 (2004).

    Article  Google Scholar 

  135. Bellaire, S., Jamieson, B., Thumlert, S., Goodrich, J. & Statham, G. Analysis of long-term weather, snow and avalanche data at Glacier National Park, B.C., Canada. Cold Reg. Sci. Technol. 121, 118–125 (2016).

    Article  Google Scholar 

  136. Jamieson, B. Formation of refrozen snowpack layers and their role in slab avalanche release. Rev. Geophys. 44, RG2001 (2006).

    Article  Google Scholar 

  137. Valt, M. & Paola, C. Climate change in Italian Alps: analysis of snow precipitation, snow durations and avalanche activity. In International Snow Science Workshop 1247–1250 (Arcus, 2013).

  138. Jamieson, B., Bellaire, S. & Sinickas, A. Climate Change and Planning for Snow Avalanches in Transportation Corridors in Western Canada (Univ. Calgary, 2017).

  139. Birkeland, K. W., Mock, C. J. & Shinker, J. J. Avalanche extremes and atmospheric circulation patterns. Ann. Glaciol. 32, 135–140 (2001).

    Article  Google Scholar 

  140. McClung, D. M. The effects of El Niño and La Niña on snow and avalanche patterns in British Columbia, Canada, and central Chile. J. Glaciol. 59, 783–792 (2013).

    Article  Google Scholar 

  141. Eckert, N., Keylock, C. J., Castebrunet, H., Lavigne, A. & Naaim, M. Temporal trends in avalanche activity in the French Alps and subregions: from occurrences and runout altitudes to unsteady return periods. J. Glaciol. 59, 93–114 (2013).

    Article  Google Scholar 

  142. McCarroll, D., Matthews, J. A. & Shakesby, R. A. Late-Holocene snow-avalanche activity in southern Norway: interpreting lichen size–frequency distributions using an alternative to simulation modelling. Earth Surf. Process. Landf. 20, 465–471 (1995).

    Article  Google Scholar 

  143. Pall, P., Allen, M. R. & Stone, D. A. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 28, 351–363 (2007).

    Article  Google Scholar 

  144. O’Gorman, P. A. Contrasting responses of mean and extreme snowfall to climate change. Nature 512, 416–418 (2014).

    Article  Google Scholar 

  145. Lavigne, A., Eckert, N., Bel, L., Deschâtres, M. & Parent, E. Modelling the spatio-temporal repartition of right-truncated data: an application to avalanche runout altitudes in Hautes-Savoie. Stoch. Env. Res. Risk Assess. 31, 629–644 (2017).

    Article  Google Scholar 

  146. Gądek, B. et al. Snow avalanche activity in Żleb Żandarmerii in a time of climate change (Tatra Mts., Poland). CATENA 158, 201–212 (2017).

    Article  Google Scholar 

  147. Kern, H. et al. Influence of snow and meteorological conditions on snow‐avalanche deposit volumes and consequences for road‐network vulnerability. Land. Degrad. Dev. https://doi.org/10.1002/ldr.4697 (2023).

  148. Naaim, M. et al. Impact du réchauffement climatique sur l’activité avalancheuse et multiplication des avalanches humides dans les Alpes françaises. La Houille Blanche 102, 12–20 (2016).

    Article  Google Scholar 

  149. Součková, M. et al. What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia? Nat. Hazards Earth Syst. Sci. 22, 3501–3525 (2022).

    Article  Google Scholar 

  150. Pielmeier, C., Techel, F., Marty, C. & Stucki, T. Wet snow avalanche activity in the Swiss Alps — trend analysis for mid-winter season. In Proc. International Snow Science Workshop, Grenoble and Chamonix 1240–1246 (Hal, 2013).

  151. Baggi, S. & Schweizer, J. Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat. Hazards 50, 97–108 (2009).

    Article  Google Scholar 

  152. Bellaire, S., van Herwijnen, A., Mitterer, C. & Schweizer, J. On forecasting wet-snow avalanche activity using simulated snow cover data. Cold Reg. Sci. Technol. 144, 28–38 (2017).

    Article  Google Scholar 

  153. Martin, E., Giraud, G., Lejeune, Y. & Boudart, G. Impact of a climate change on avalanche hazard. Ann. Glaciol. 32, 163–167 (2001).

    Article  Google Scholar 

  154. Laute, K. & Beylich, A. A. Potential effects of climate change on future snow avalanche activity in western Norway deduced from meteorological data. Geogr. Ann. A 100, 163–184 (2018).

    Article  Google Scholar 

  155. Le Roux, E. et al. Projection of snowfall extremes in the French Alps as a function of elevation and global warming level. Cryosphere 17, 4691–4704 (2023).

    Article  Google Scholar 

  156. Naaim, M., Durand, Y., Eckert, N. & Chambon, G. Dense avalanche friction coefficients: influence of physical properties of snow. J. Glaciol. 59, 771–782 (2013).

    Article  Google Scholar 

  157. Casassa, G., Narita, H. & Maeno, N. Measurements of friction coefficients of snow blocks. Ann. Glaciol. 13, 40–44 (1989).

    Article  Google Scholar 

  158. Fischer, J., Kaitna, R., Heil, K. & Reiweger, I. The heat of the flow: thermal equilibrium in gravitational mass flows. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079585 (2018).

  159. Köhler, A. et al. Cold-to-warm flow regime transition in snow avalanches. Cryosphere 12, 3759–3774 (2018).

    Article  Google Scholar 

  160. Li, X., Sovilla, B., Jiang, C. & Gaume, J. The mechanical origin of snow avalanche dynamics and flow regime transitions. Cryosphere 14, 3381–3398 (2020).

    Article  Google Scholar 

  161. Ligneau, C., Sovilla, B. & Gaume, J. Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes. PLoS ONE 17, e0264033 (2022).

    Article  CAS  Google Scholar 

  162. Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B. & Lehning, M. Granulation of snow: From tumbler experiments to discrete element simulations: GRANULATION OF SNOW. J. Geophys. Res. Earth Surf. 120, 1107–1126 (2015).

    Article  Google Scholar 

  163. Baroudi, D., Sovilla, B. & Thibert, E. Effects of flow regime and sensor geometry on snow avalanche impact-pressure measurements. J. Glaciol. 57, 277–288 (2011).

    Article  Google Scholar 

  164. Kyburz, M. L., Sovilla, B., Gaume, J. & Ancey, C. Decoupling the Role of Inertia, Friction, and Cohesion in Dense Granular Avalanche Pressure Build‐up Obstacles. J. Geophys. Res. Earth Surf. 125, 1–18 (2020).

    Article  Google Scholar 

  165. Kyburz, M. L., Sovilla, B., Gaume, J. & Ancey, C. Physics-based estimates of drag coefficients for the impact pressure calculation of dense snow avalanches. Eng. Struct. 254, 113478 (2022).

    Article  Google Scholar 

  166. Sovilla, B. et al. Gravitational wet avalanche pressure on pylon-like structures. Cold Reg. Sci. Technol. 126, 66–75 (2016).

    Article  Google Scholar 

  167. Salm, B. A short and personal history of snow avalanche dynamics. Cold Reg. Sci. Technol. 39, 83–92 (2004).

    Article  Google Scholar 

  168. Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8, 808–812 (2018).

    Article  Google Scholar 

  169. Einhorn, B. et al. Climate change and natural hazards in the Alps: observed and potential impacts on physical and socio-economic systems. J. Alp. Res. https://doi.org/10.4000/rga.2878 (2015).

    Article  Google Scholar 

  170. Price, M. F. et al. The International Mountain Conference, Innsbruck, Austria, September 2019 (IMC2019): a synthesis with recommendations for research. Mt. Res. Dev. https://doi.org/10.1659/MRD-JOURNAL-D-21-00027.1 (2022).

  171. Hétu, B., Fortin, G. & Brown, K. Climat hivernal, aménagement du territoire et dynamique des avalanches au Québec méridional: une analyse à partir des accidents connus depuis 1825. Can. J. Earth Sci. 52, 307–321 (2015).

    Article  Google Scholar 

  172. Giacona, F. et al. Avalanche activity and socio-environmental changes leave strong footprints in forested landscapes: a case study in the Vosges medium–high mountain range. Ann. Glaciol. 59, 111–133 (2018).

    Article  Google Scholar 

  173. Bruno, A. Tumbling snow: vulnerability to avalanches in the Soviet North. Environ. History 18, 683–709 (2013).

    Article  Google Scholar 

  174. Eckert, N., Naaim, M. & Parent, E. Long-term avalanche hazard assessment with a Bayesian depth-averaged propagation model. J. Glaciol. 56, 563–586 (2010).

    Article  Google Scholar 

  175. Keiler, M. et al. Avalanche risk assessment — a multi-temporal approach, results from Galtür, Austria. Nat. Hazards Earth Syst. Sci. 6, 637–651 (2006).

    Article  Google Scholar 

  176. Jones, P. D. et al. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19, 3–49 (2009).

    Article  Google Scholar 

  177. Tingley, M. P. & Huybers, P. A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: Development and applications to paleoclimate reconstruction problems. J. Clim. 23, 2759–2781 (2010).

    Article  Google Scholar 

  178. Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article  CAS  Google Scholar 

  179. Wikle, C. K. HIerarchical Bayesian models for predicting the spread of ecological processes. Ecology 84, 1382–1394 (2003).

    Article  Google Scholar 

  180. Evin, G. et al. Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation. J. Clim. 32, 2423–2440 (2019).

    Article  Google Scholar 

  181. Naveau, P., Hannart, A. & Ribes, A. Statistical methods for extreme event attribution in climate science. Annu. Rev. Stat. Appl. 7, 89–110 (2020).

    Article  Google Scholar 

  182. Gaume, J., Gast, T., Teran, J., van Herwijnen, A. & Jiang, C. Dynamic anticrack propagation in snow. Nat. Commun. 9, 3047 (2018).

    Article  CAS  Google Scholar 

  183. Eckert, N., Parent, E., Naaim, M. & Richard, D. Bayesian stochastic modelling for avalanche predetermination: from a general system framework to return period computations. Stoch. Env. Res. Risk Assess. 22, 185–206 (2008).

    Article  Google Scholar 

  184. Fischer, J.-T. et al. Bayesian inference in snow avalanche simulation with r.avaflow. Geosciences 10, 191 (2020).

    Article  Google Scholar 

  185. Eckert, N. et al. Repenser les fondements du zonage règlementaire des risques en montagne «récurrents». La. Houille Blanche 104, 38–67 (2018).

    Article  Google Scholar 

  186. Salas, J. D. & Obeysekera, J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J. Hydrol. Eng. 19, 554–568 (2014).

    Article  Google Scholar 

  187. Coles, S., Bawa, J., Trenner, L. & Dorazio, P. An Introduction to Statistical Modeling of Extreme Values Vol. 208 (Springer, 2001).

  188. Ancey, C. Are there ‘dragon-kings’ events (i.e. genuine outliers) among extreme avalanches? Eur. Phys. J. Spec. Top. 205, 117–129 (2012).

    Article  Google Scholar 

  189. Favier, P., Eckert, N., Faug, T., Bertrand, D. & Naaim, M. Avalanche risk evaluation and protective dam optimal design using extreme value statistics. J. Glaciol. 62, 725–749 (2016).

    Article  Google Scholar 

  190. Bormann, K. J., Brown, R. D., Derksen, C. & Painter, T. H. Estimating snow-cover trends from space. Nat. Clim. Change 8, 924–928 (2018).

    Article  Google Scholar 

  191. Heredia, M. B., Prieur, C. & Eckert, N. Nonparametric estimation of aggregated Sobol’ indices: application to a depth averaged snow avalanche model. Reliab. Eng. Syst. Saf. 212, 107422 (2021).

    Article  Google Scholar 

  192. Strapazzon, G. et al. Effects of climate change on avalanche accidents and survival. Front. Physiol. 12, 639433 (2021).

    Article  Google Scholar 

  193. SLF. Long-term statistics: avalanche victims since 1936. www.slf.ch/en/avalanches/avalanches-and-avalanche-accidents/long-term-statistics/ (SLF, accessed 31 January 2024).

  194. Perla, R. in Dynamics of Snow and Ice Masses, 397–462 (Elsevier, 1980).

  195. van Herwijnen, A. & Heierli, J. Measurement of crack-face friction in collapsed weak snow layers. Geophys. Res. Lett. 36, L23502 (2009).

    Google Scholar 

  196. Duvillier, C., Eckert, N., Evin, G. & Deschâtres, M. Development and evaluation of a method to identify potential release areas of snow avalanches based on watershed delineation. Nat. Hazards Earth Syst. Sci. 23, 1383–1408 (2023).

    Article  Google Scholar 

  197. Schweizer, J., Mitterer, C., Techel, F., Stoffel, A. & Reuter, B. On the relation between avalanche occurrence and avalanche danger level. Cryosphere 14, 737–750 (2020).

    Article  Google Scholar 

  198. Mitterer, C. & Schweizer, J. Analysis of the snow–atmosphere energy balance during wet-snow instabilities and implications for avalanche prediction. Cryosphere 7, 205–216 (2013).

    Article  Google Scholar 

  199. van Herwijnen, A., Heck, M. & Schweizer, J. Forecasting snow avalanches using avalanche activity data obtained through seismic monitoring. Cold Reg. Sci. Technol. 132, 68–80 (2016).

    Article  Google Scholar 

  200. Leitinger, G. et al. Spatial evaluation of snow gliding in the Alps. Catena 165, 567–575 (2018).

    Article  Google Scholar 

  201. Hestnes, E. Slushflow hazard — where, why and when? 25 years of experience with slushflow consulting and research. Ann. Glaciol. 26, 370–376 (1996).

    Article  Google Scholar 

  202. Steinkogler, W., Sovilla, B. & Lehning, M. Influence of snow cover properties on avalanche dynamics. Cold Reg. Sci. Technol. 97, 121–131 (2014).

    Article  Google Scholar 

  203. Takeuchi, Y., Torita, H., Nishimura, K. & Hirashima, H. Study of a large-scale dry slab avalanche and the extent of damage to a cedar forest in the Makunosawa valley, Myoko, Japan. Ann. Glaciol. 52, 119–128 (2011).

    Article  Google Scholar 

  204. Kern, H. et al. Brief communication: Weak control of snow avalanche deposit volumes by avalanche path morphology. Cryosphere 15, 4845–4852 (2021).

    Article  Google Scholar 

  205. McClung, D. M. & Schaerer, P. A. Snow avalanche size classification. in Vol. 3, 12–30 (1980).

  206. Easterling, D. R. Recent changes in frost days and the frost-free season in the United States. Bull. Am. Meteorol. Soc. 83, 1327–1332 (2002).

    Article  Google Scholar 

  207. Pohl, B. et al. Huge decrease of frost frequency in the Mont-Blanc Massif under climate change. Sci. Rep. 9, 4919 (2019).

    Article  Google Scholar 

  208. You, Q. et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences. Earth Sci. Rev. 217, 103625 (2021).

    Article  Google Scholar 

  209. Song, S. & Bai, J. Increasing winter precipitation over arid Central Asia under global warming. Atmosphere 7, 139 (2016).

    Article  Google Scholar 

  210. Ménégoz, M. et al. Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010. Hydrol. Earth Syst. Sci. 24, 5355–5377 (2020).

    Article  Google Scholar 

  211. Sun, Q., Zhang, X., Zwiers, F., Westra, S. & Alexander, L. V. A global, continental, and regional analysis of changes in extreme precipitation. J. Clim. 34, 243–258 (2021).

    Article  Google Scholar 

  212. Marty, C. Regime shift of snow days in Switzerland. Geophys. Res. Lett. 35, 1–5 (2008).

    Article  Google Scholar 

  213. Nicolet, G., Eckert, N., Morin, S. & Blanchet, J. Decreasing spatial dependence in extreme snowfall in the French Alps since 1958 under climate change. J. Geophys. Res. Atmos. 121, 8297–8310 (2016).

    Article  Google Scholar 

  214. Kunkel, K. E. et al. Trends in twentieth-century U.S. extreme snowfall seasons. J. Clim. 22, 6204–6216 (2009).

    Article  Google Scholar 

  215. Takahashi, H. G. Long‐term trends in snowfall characteristics and extremes in Japan from 1961 to 2012. Intl J. Climatol. 41, 2316–2329 (2021).

    Article  Google Scholar 

  216. Whetton, P. H., Haylock, M. R. & Galloway, R. Climate change and snow-cover duration in the Australian Alps. Clim. Change 32, 447–479 (1996).

    Article  Google Scholar 

  217. Schöner, W., Auer, I. & Böhm, R. Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrol. Process. 23, 1052–1063 (2009).

    Article  Google Scholar 

  218. Falarz, M. Variability and trends in the duration and depth of snow cover in Poland in the 20th century. Int. J. Climatol. 24, 1713–1727 (2004).

    Article  Google Scholar 

  219. Wakazuki, Y. et al. Effect of climate change on the snow disappearance date in mountainous areas of central Japan. Hydrol. Res. Lett. 9, 20–26 (2015).

    Article  Google Scholar 

  220. Fassnacht, S. R., Cherry, M. L., Venable, N. B. H. & Saavedra, F. Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere 10, 329–339 (2016).

    Article  Google Scholar 

  221. Nicolet, G., Eckert, N., Morin, S. & Blanchet, J. Assessing climate change impact on the spatial dependence of extreme snow depth maxima in the French Alps. Water Resour. Res. 54, 7820–7840 (2018).

    Article  Google Scholar 

  222. Le Roux, E., Evin, G., Eckert, N., Blanchet, J. & Morin, S. Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards. Nat. Hazards Earth Syst. Sci. 20, 2961–2977 (2020).

    Article  Google Scholar 

  223. Kunkel, K. E. et al. Trends and extremes in Northern Hemisphere snow characteristics. Curr. Clim. Change Rep. 2, 65–73 (2016).

    Article  Google Scholar 

  224. Matiu, M. et al. Observed snow depth trends in the European Alps: 1971 to 2019. Cryosphere 15, 1343–1382 (2021).

    Article  Google Scholar 

  225. Verfaillie, D. et al. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps. Cryosphere 12, 1249–1271 (2018).

    Article  Google Scholar 

  226. Le Roux, E., Evin, G., Eckert, N., Blanchet, J. & Morin, S. A non-stationary extreme-value approach for climate projection ensembles: application to snow loads in the French Alps. Earth Syst. Dynam. 13, 1059–1075 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

N.E. was supported by the French National Research Agency through the Statistical Modelling for the Assessment and Mitigation of Mountain Risks in a Changing Environment — SMARTEN programme under grant agreement ANR-20-Tremplin-ERC8-0001. N.E., F.G. and P.H. are members of Grenoble RISK Institute https://risk.univ-grenoble-alpes.fr/fr. IGE and CNRM are members of LabEx OSUG.

Author information

Authors and Affiliations

Authors

Contributions

N.E. designed the Review. C.C. analysed references to existing records on past snow avalanche activity. F.G., C.C., J.G., S.M. and N.E. produced the illustrations. N.E. drafted the first version of the manuscript based on the inputs of all co-authors. All authors edited the manuscript.

Corresponding author

Correspondence to Nicolas Eckert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Markus Eckerstorfer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckert, N., Corona, C., Giacona, F. et al. Climate change impacts on snow avalanche activity and related risks. Nat Rev Earth Environ (2024). https://doi.org/10.1038/s43017-024-00540-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-024-00540-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing