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The synergy complement control approach 
for seamless limb-driven prostheses
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Limb-driven control allows for direct control by using residual limb 
movements rather than unnatural and complex muscle activation. 
Existing limb-driven methods simultaneously learn a variety of possible 
motions, ranging from a residual limb to entire arm motions, from 
human templates by relying on linear or nonlinear regression techniques. 
However, the map between a low-dimensional residual limb movement 
and high-dimensional total limb movement is highly underdetermined. 
Therefore, this complex, high-dimensional coordination problem cannot 
be accurately solved by treating it as a data-driven black box problem. 
Here we address this challenge by introducing the residual limb-driven 
control framework synergy complement control. Firstly, the residual 
limb drives a one-dimensional phase variable to simultaneously control 
the multiple joints of the prosthesis. Secondly, the resulting prosthesis 
motion naturally complements the movement of the residual limb by its 
synergy components. Furthermore, our framework adds information on 
contextual tasks and goals and allows for seamless transitions between 
these. Experimental validation was conducted using subjects with 
preserved arms employing an exo-prosthesis setup, and studies involving 
participants with and without limb differences in a virtual reality setup. The 
findings affirm that the restoration of lost coordinated synergy capabilities 
is reliably achieved through the utilization of synergy complement control 
with the prosthesis.

Humans have replaced lost or non-developed body limbs for millennia 
with technical counterparts, namely prostheses. The first powered 
upper limb prosthesis dates back to a patent from Germany in 1915  
(refs. 1,2). Since then, many powered mechanical systems have been 
developed to replace limbs that have been amputated, and the mechan-
ics of these systems have continuously been improved. Since the emer-
gence of myoelectric upper limb prostheses around 1950 (refs. 3–5), 
substantial efforts have been made to improve and enhance the oper-
ability of such systems6 by using myoelectric controls with sequen-
tial control (SEQ), which meet today’s commercial standards7–12. SEQ 
often involves a finite state machine, which allows the user to select and 

control one joint at a time using direct electromyography (EMG)-based 
proportional control. The joints that are not in use are locked, and 
a muscle co-contraction causes the change to the next joint13. How-
ever, due to the limitations of myoelectric control, such as muscle 
fatigue, electrode displacement and difficulties in decoding complex 
patterns or dealing with coordinated joint movements14, an interest in 
limb-driven control concepts has emerged. Here, the residual limb (RL) 
movement, rather than muscle activation measurements, is used as a 
continuous control input for the device. Several RL-driven methods 
exist for upper limb prostheses that are still considered to be basic and 
primarily focus on simulation, virtual reality (VR) or single degrees of 
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prosthesis movement to the RL movement. The synergy complements 
are controlled by a single-dimensional phase variable, which is driven 
by the RL, and together result in a natural motion corresponding to an 
unimpaired limb. SCC can inherently deal with complex motions that 
have multiple d.f., and it can process changes in tasks and target loca-
tions utilizing proper intention detection. Figure 1 shows the workflow 
of the SCC method.

Results
RL–prosthesis coordination
In this paragraph, we illustrate how SCC works on the basis of the results 
of an unimpaired participant using an exo-prosthesis28 (Supplemen-
tary Fig. 5). Figure 2 shows an image sequence with the corresponding 
time series for the RL–prosthesis coordination while it performed an 
exemplar reaching movement. The movement was computationally 
designed. For explanation purposes, we divided the time series into six 
periods. In period 1, the user sat in the pose and did not move (Fig. 2, 
period 1). In period 2, the RL moved forwards (cf. measured RL posi-
tion lx) while the phase variable ψ started to drop. Consequently, the 
end effector adapted its position py and orientation αx to follow the 
synergy complementary motion. In period 3, the user stopped moving 
the RL, which caused ψ, py and αx to remain constant (Fig. 2). This shows 
that only the RL drove the prosthesis movement. In period 4, the user 
continued to move the RL, leading to a further drop in ψ. Correspond-
ingly, the prosthesis was lifted and rotated until it finally reached the 

freedom (d.f.) elbow coordination (for example, refs. 15–17). These 
methods share one fundamental idea at their core: learning the coor-
dination between the upper and lower arm for a wide variety of pos-
sible motions based on captured human templates into a single model 
instead of multiple models. To accomplish this, regression techniques 
are applied. These techniques involve linear regression such as princi-
pal components analysis17–19 or nonlinear regression such as artificial 
neural networks, radial basis function networks or locally weighted 
regression15–17,19–27. However, the map between a low-dimensional 
upper arm movement and high-dimensional total limb movement is 
highly underdetermined, which results in accuracy problems and may 
even lead to jerky prosthetic motions17. The authors in ref. 17 revealed 
another critical limitation of current approaches, which is the lack of 
environmental context. With some exceptions such as ref. 27, current 
approaches are not able to systematically deal with changing tasks 
or targets. More context and autonomy are required for limb-driven 
methods to be useful for amputated participants. Therefore, there is 
still a need for alternative methods17.

In this Article, we present a new RL-driven method called synergy 
complement control (SCC) that is based on a whole new hypothesis 
and overcomes the issues of previous methods: amputated subjects 
are able to control a task-dependent, multi-dimensional coordinated 
prosthesis motion via a low-dimensional motion phase and together 
with task and target detection. Concretely, we introduce synergy 
complements, which we define as the synergistic-complementary 
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goal pose in period 5 (Fig. 2, period 5). In contrast, we show the final 
configuration with the SCC turned off (Fig. 2, top right) In period 6, the 
movement was reversed. The RL moved backward, causing ψ to increase 
again, which drove the prosthesis back to the initial configuration. In 
period 6, the user pulled the RL beyond its initial position. In this case, 
the phase variable remained at ψ = 1. This ensured that the prosthesis 
would stay in its initial position.

Reaching and reach-and-grasp tasks
In this paragraph, we present the results of three unimpaired par-
ticipants using an exo-prosthesis to accomplish reaching and 
reach-and-grasp tasks (see Methods for more details). We used the 
SCC method in two purely reaching tasks (intransitive tasks) (Fig. 3) and 
three reach-and-grasp tasks, the latter of which involve hand–object 
interaction (transitive tasks) (Fig. 4). All movements were learned from 
human templates.

Figure 3 shows an image sequence for the template movement 
and the corresponding ‘cyborg’ movement in each reaching task. The 
first image shows the starting pose, the third image shows the final 
pose and the second image shows an intermediate state. The ‘block 
light source’ goal (Fig. 3a) is to protect the eyes from the centre light, 
which originates from direction o while the hand keeps a distance of 
~0.1 m from the face. This task was reliably executed with a 100% success 
rate (four out of four trials) at a duration that was close to an average 
human’s duration (Fig. 5a). The ‘stop gesture’ goal (Fig. 3b) sends a 
signal to an agent, which approaches at velocity v, to stop by extend-
ing the arm and presenting the palm in his direction. This task was 
also reliably executed with a 100% success rate (four out of four trials)  
at a duration that was close to an average human’s duration (Fig. 5a).  

This shows that, with the proposed SCC method, lost reaching abilities 
can be reliably recovered. Note that the reaching tasks were pre-selected 
before execution and did not involve intention recognition.

Figure 4 shows an image sequence for the template movement 
and the corresponding representative ‘cyborg’ movement for each 
reach-and-grasp task. The goal of all three tasks was for the subject 
to reach and grasp the object (that is, the apple (Fig. 4a), the bottle 
(Fig. 4b) or the book (Fig. 4c)) at location xg from direction o without 
colliding with the table. All three objects were reliably grasped, each 
with a 100% success rate (four out of four trials). The durations are 
shown in Fig. 5a. This shows that, based on the proposed SCC method, 
more complex grasping tasks can be reliably achieved. The accompany-
ing video attachment shows the full experiment of representative trials.

Inter-task transitioning
In this subsection, we show the behaviour of inter-task transitioning, 
which we tested with an unimpaired participant (see Methods for more 
details). Supplementary Fig. 2 shows the experimental setup, the task 
sequence and the time series for the inter-task transition experiment. 
The ‘cyborg’ was seated in front of a table. A book (task 1), an apple (task 2)  
and a bottle (task 3) were placed on top of the table. The cyborg had to 
grasp these objects. We applied the same template motions as in Fig. 4. 
We used eye-tracking glasses to track the cyborg’s gaze, and a motion 
tracking system to keep track of the objects. The user was instructed 
to grasp the objects in any order by following the task sequence (Sup-
plementary Fig. 2, bottom box). The user could activate a task transi-
tion request (TTR) by looking at the desired object for 1 s. A TTR was 
only accepted in this work if the RL was in the starting position (that is,  
phase variable ψ = 1). A valid TTR triggered a context transition in which 
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both the task-related RL reference motion and the task-related dynamic 
movement primitive (DMP) with the goal pose pg were loaded.

For explanation purposes, the procedure was divided into five 
periods. In period 1, the cyborg was in the starting pose and did not 
move. He then moved his gaze onto the book, which caused a TTR to 
grasp the book. In period 2, he reached for the book. This caused the 
phase variable ψ to drop, and the end effector adapted its position py 
and orientation αx accordingly. In period 3, the user closed the pros-
thetic hand via the myo armband, which was attached to his lower left 
arm (see Methods for more details). In period 4, he returned to the 
starting pose while holding the book with his prosthetic hand. In period 
5, he placed the book back in its original location and returned to the 
starting pose to complete the task sequence. Next, he focused on the 
apple, repeating the same procedure. All three objects were reliably 
grasped following this sequence, and each had a 100% success rate 
(four out of four trials). The durations are shown in Fig. 5b. The results 
show that the proposed SCC method allows users to transition between 
different tasks seamlessly.

Goal changes within a task
The following experiments are performed with a subject with pre-
served arm wearing an exo-prosthesis (more details can be found in 

Methods). Supplementary Fig. 3 shows the experimental setup, task 
sequence and time series for this experiment. The experimental setup 
was the same as in the inter-task transitioning experiment. Another 
human template motion was used in this experiment: a ball was grasped 
from the table. The red-coloured ball was placed at the default goal 
xg,def. The blue- and yellow-coloured balls were placed at different goals 
(xg1 and xg2, respectively). The positions were measured by a motion 
capture system in a global frame, and by computation subsequently 
transformed to the exo-prosthetic base frame (see Supplementary 
Information for details). For explanation purposes, the procedure 
was divided into five periods. In period 1, the cyborg was in the start-
ing pose and did not move. He then moved his gaze onto the red ball, 
which caused a TTR (that is, the corresponding RL reference motion 
uref and the DMP with the goal pose xg,def were loaded). In period 2, the 
user reached for the red ball, causing the phase variable ψ to drop, and 
the prosthesis reached the default goal position. In period 3, the user 
grasped the ball with the prosthetic hand. In period 4, he placed the 
ball in the ball bucket, and then he returned to the starting position 
(period 5). Next, he focused on the blue ball (located in the middle). 
The goal was updated to xg1, and the procedure was repeated. This 
experiment shows that the proposed SCC method can be generalized 
to new goal poses.
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User study in VR
We conducted a confirmatory study with a participant with limb differ-
ence and six unimpaired participants in an extended VR setup (more 
details can be found in Supplementary Information). The participants 
were asked to grasp an apple on the table, grasp a bottle on the table, 
grasp a book with goal pose 1 (horizontally on the shelf), grasp a book 
with goal pose 2 (right to goal pose 1 and vertically on the shelf), grasp 
a hat on the table, perform a greet gesture, grasp a plate on the table 
and perform a stop gesture.

For quantitative performance assessment and comparison 
between SCC and SEQ, we evaluate three metrics:

•	 The ‘time to completion’ measures the task completion speed; that 
is, the lower its value, the faster the task is completed.

•	 The ‘gaze focus index’ indicates the level of a participant’s gaze 
focus. The lower its value, the higher the gaze focus.

•	 The ‘torso tilting magnitude’ captures the extent of torso move-
ments. The higher this value, the more pronounced the torso tilts.

The metrics are calculated for each task repetition performed with 
both control methods (Fig. 6a (participant with limb difference) and 
Fig. 6b (unimpaired participants)).

In general, tasks were completed substantially faster with SCC 
than with SEQ, where one exception task ‘hat’ shows comparable per-
formance. Additionally, SCC exhibits notably improved gaze focus 
across all tasks compared with SEQ, with one exception task ‘apple’ 
that exhibits a similar value for both SCC and SEQ. Moreover, SCC 
demonstrated lower torso tilting magnitude than SEQ across various 
tasks, except for task ‘hat’. The reason for similar performance is that 
the hat was located at the farthest distance the participants may reach, 
while only minimal joint switching was required in SEQ.

Noticeably, the participant with limb difference exhibits lower 
variability among task repetitions with SEQ than the unimpaired par-
ticipants as she has been an experienced user of a state-of-the-art 
prosthesis. It is also worth noting that an unimpaired participant faced 
challenges using SEQ and has managed only ~2.5 repetitions with SEQ. 
In Fig. 6b, one is able to see that several data points in SEQ’s time to 
completion are located far away from the 75th percentile, indicating 
very long time duration; this reflects the challenges that this partici-
pant faced. In contrast to the large variability and unreliability of SEQ,  

the performance variations among task repetitions are much smaller 
with SCC. This demonstrates the SCC’s capability of maintaining con-
sistent performance. These facts suggest that SCC requires little learn-
ing to use and, therefore, the difference in individual’s learning abilities 
does not play an essential role in using SCC.

Discussion
Existing limb-driven methods simultaneously learn a wide range of 
possible motions, ranging from an RL to entire arm motions, from 
human templates by relying on linear or nonlinear regression tech-
niques15–17,19–26. However, the map between a low-dimensional RL 
movement and high-dimensional total limb movement is highly under-
determined. Thus, these methods often result in inaccurate, jerky pros-
thetic motions that are unnatural and often delayed. Moreover, most 
approaches lack contextual information. In this work, we introduced 
the SCC framework, which is based on a whole new hypothesis and 
fundamentally overcomes these problems: amputated subjects are able 
to control a task-dependent, multi-dimensional coordinated prosthesis 
motion via low-dimensional limb motion using a single-dimensional 
motion phase and together with task and target detection.

Results on the exemplar reaching movement showed that the RL 
purely drives the prosthetic movement. EMG-based control, which is 
accompanied by non-robust EMG measurements14, was omitted for 
prosthetic arm motion generation. However, this does not mean that 
EMG measurements are or should be avoided entirely. For example, 
in this work, the prosthetic hand was able to grasp objects as a result 
of an EMG measurement (Supplementary Table 1). Although the SCC 
framework focused on trajectory tracking, future work shall extend 
SCC to adapt the impedance setting of the prostheses and the grasping 
force. EMG measurements will play a central role here29.

The unimpaired participants solved the reaching tasks using SCC 
with a 100% success rate at a duration that was close to human perfor-
mance (Figs. 5a,b and 6b). When SCC is used, the accuracy problem is 
reduced to a simple tracking problem and fully governed by controller 
performance. Therefore, SCC is more accurate than existing methods 
that output inaccurate prosthetic positions because of the inherent 
underdetermination in the learning approach. Moreover, in contrast 
to current approaches, SCC introduces no control delay between RL 
movement and the complementary prosthesis motion generation. 
The RL position directly controls the prosthesis motion only with 
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the dynamics of the DMP in between. The unimpaired participants 
solved all reach-and-grasp tasks with a 100% success rate. It is crucial 
to note that the trajectory generated by SCC is twice differentiable, 
as explicitly outlined in equations (21) and (23). On the other hand, 
the trajectory generated by SEQ is only once differentiable, as shown 
in equation (29) in Supplementary Information. This confirms that 
the SCC method reliably generates smooth complementary synergy 
movements in complex grasping tasks. However, the unimpaired par-
ticipants reached objects (Fig. 5a) and completed whole tasks (Fig. 5b) 
slower than they would do naturally. The bulky exo-prosthetic system 
may have prevented the subjects from performing the reaching move-
ment more quickly. The longer time taken to complete the whole task 
may be also explained by the time-consuming grasping procedure 
(see the accompanying video attachment). Extended algorithms that 

result in faster task completion should be implemented in the future. 
A further key advantage of SCC is that it can adapt to changing goals 
and transitions between tasks, as is shown in Fig. 6a,b. The comparison 
with the SEQ mode indicates that reaching tasks and reach-and-grasp 
tasks can be solved much faster with SCC. In case of the ‘grasp apple’ 
task with the SEQ method, the time for the ‘start-to-object’ (Fig. 5a) 
is similar to other control modes, but higher for the entire task. This 
is because our participants’ strategy was to first move the prosthesis 
near the object (as the starting configuration of the prosthesis allowed 
this) and then to position the prosthesis to grasp the object using the 
time-consuming SEQ approach.

Furthermore, the pilot study with the amputated participant 
(Supplementary Fig. 4) confirms that the SCC method also works 
with potential users. The higher standard deviation in case of the 
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‘grasp apple’ tasks is probably due to the hand-on-object detection 
algorithm and the handling of the amputated participant with the 
VR system (Fig. 5a). The time was stopped as soon as the distance 
between the heel of the virtual prosthesis hand and the centre of 
the object fell below a certain threshold. In the case of the apple, the 
subject found this threshold at different rates. We note that a coloured 
marking of the heel of the virtual prosthesis might have facilitated 
the participant’s coordination. In the case of the book task, however, 
the performance remained almost constant. The confirmatory study 
revealed a small variability of SCC among task repetitions (Supple-
mentary Figs. 4 and 6). This demonstrates the SCC’s capability of 
maintaining consistent performance.

Torso tilting is a crucial factor when reaching for objects beyond 
one’s natural reach. Notably, the preservation of a focused gaze on 
the target object, despite torso movement, underscores the adapt-
ability and efficacy of our control approach in real-world scenarios. 
Furthermore, the findings derived from the confirmatory study high-
light a notable distinction (Fig. 6a,b): the scattering of torso tilting 
magnitude exhibits a considerably higher magnitude for the SEQ 
method when compared with our SCC. This observation accentuates 
the efficacy of SCC in streamlining the reach-and-grasping process 
for users, also achieved through a reduction in torso movements 
and, thus, the user’s physical effort. Moreover, the participants’ gaze 
focus was improved by SCC compared with SEQ, as told by the con-
firmatory study (Fig. 6a,b). This signifies that SCC facilitates users to 
focus on tasks.

A limitation of all RL-driven prosthetic control methods is that 
the prosthesis cannot be controlled if no RL motion is involved. For 
example, the lower arm cannot be positioned without moving the RL.  
In such situations, the probably simplest solution would be using 
classical SEQ mode based on EMG as a default. Alternatively, we could 
leverage EMG signals to be fused with RL motion and thus have kinody-
namic and muscle input, which could substantially improve as both the 
causal muscle input and motion output would be used for driving the 
prosthesis. This might also apply for the situations where the intention 
recognition does not work. In future work, SCC shall be validated on 
amputated participants wearing a prosthesis to investigate whether 
the physical impacts of the prosthesis to the limb influence the overall 
results. Furthermore, the intention detection remains a challenge 
not only for intransitive tasks but also for unstructured and cluttered 
environments. In future work, the intention recognition algorithms 
will be extended with three-dimensional vision-based scene under-
standing and other sensing interfaces30, and their performance will 
be evaluated for practical life situations. Moreover, the SCC method 
will be extended to manipulate more modalities such as impedance29. 
Also DMP’s feature of adjusting the starting pose will be evaluated in 
future experiments.

In summary, this work has presented a new, robust RL-driven 
control method, called SCC, that can cope with the disadvantages of 
existing methods. We experimentally validated the key advantages 
of SCC, such as its reliability (that is, its high success rates when per-
forming tasks) and its ability to adapt to goal updates, using a novel 
prosthesis with four d.f. Furthermore, a pilot and confirmatory study 
with amputated participants and unimpaired participants indicate that 
this method is beneficial for prosthesis wearers in the future.

Methods
This section focuses on explaining the functionality of SCC and 
delves into the general and fundamental concepts of experimental 
user studies. Detailed implementations of SCC and experimental 
setup, along with accompanying data, can be found in Supplementary 
Information, which includes Supplementary Figs. 1–6 and Supple-
mentary Table 1 for visual reference. Additionally, cross-references 
within the text direct readers to relevant sections containing further 
explanations and details.

Concept
SCC can be explained in seven steps, which are shown in Fig. 1. In the 
first step, we use a full hand–arm motion xH(t) for task T that was gener-
ated from experiments with unimpaired subjects that perform daily 
living tasks. In this work, we set two intransitive tasks in which the 
subjects had to lift their right arm to perform a ‘stop’ and ‘block light 
source’ gesture. Furthermore, we included three transitive tasks that 
involved hand–object interactions such as grasping an apple, a book 
and a bottle. In the second step, we divide the intact motion xH(t) into 
amputation-specific motions xA(t) and xB(t) such that

xH(t) = xA(t) ⊕ xB(t), (1)

where the operator ⊕ denotes the tensor product. Thus, we obtain a 
motion corresponding to the RL xA(t) and the corresponding synergy 
complement xB(t). Throughout this work, we demonstrate our 
method for the case of transhumeral amputation. However, our 
method can also be transferred to other amputation degrees and 
limbs such as legs. In the third step, motions xA(t) and xB(t) are scaled 
to the individual cyborg via the scaling program S, resulting in the 
individualized motions xA,s(t) and xB,s(t). In the fourth step, the indi-
vidualized reference motion xB,s(t) is decoded into a phase-based 
prosthetic motion program p(ψ) in which ψ is the phase variable. 
Furthermore, ψ(t) is anchored to the RL reference motion xA,s(t)  
by sample-based allocation resulting in u′ref ∈ { f |xA,s(t) ≡ f(ψ(t)), ∀t} . 
The resulting ‘cyborg’ motion is

xc(ψ) = u′ref ⊕ p(ψ). (2)

The goal is to minimize the error

e(t) = xH − S−1xc(ψ) (3)

based on a policy optimizer. For the specific implementation, we use 
DMP equations (19) and (21). A DMP is a differential equation system 
that can be used to model trajectories. In the fifth step, the measured 
RL position u′ ∶= l(m(t)) ∈ ℝ3  (which depends on muscle activation 
m(t)) is matched to the task-specific reference trajectory u′ref  online, 
and a continuous phase variable ψ(u′) ∈ [0, 1] (equation (15)) is gener-
ated online. A value of ψ = 1 means that u′ corresponds to the starting 
position of u′ref, while ψ = 0 means that u′ reached the end position of 
u′ref . The task-specific prosthetic motion program p(ψ) is generated 
online using the DMP, where ψ is the input. Thus, p(ψ) is fully driven by 
l(m(t)). We further consider an intention decoder for seamless transi-
tion between tasks. In step 6, the user’s intention is decoded on the 
basis of measurements such as eye tracking and motion tracking. It 
outputs the task that is intended to be solved as well as the goal pose 
that is related to the corresponding object. If the user switches to a 
different task or goal, the corresponding reference motion u′ref  and 
DMP are loaded. In summary (step 7), this framework leads to a cyborg 
movement xC that corresponds to a natural synergistically coordinated 
movement of an entire arm.

Synergy dataset
We took the human template motions from the dataset in ref. 31. 
This dataset contains multi-modal measurements such as the Car-
tesian marker trajectories of shoulder–arm movements from six 
right-handed, male, unimpaired human subjects (age 30 ± 5.81 years). 
The subjects performed 30 table-top activities that would be useful in 
daily life (in ref. 32, we analysed this dataset for kinematic and muscular 
synergies). In this work, we used two intransitive tasks (in which no 
objects were involved) and three transitive tasks (that involved hand–
object interactions) for validation purposes. In the intransitive tasks, 
the subjects lifted their right arm from a relaxed pose on the table to 
perform common gestures (‘block light source’ and ‘stop gesture’). 
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The transitive tasks involved hand–object interactions such as ‘grasp 
an apple’, ‘grasp a bottle’ and ‘grasp a book from the shelf’. These tasks 
are suitable for demonstrating our proposed method for two reasons. 
First, they involve complex arm movements with multiple d.f. (includ-
ing the upper arm, forearm and wrist rotation). Second, the prosthetic 
hand can grasp objects (that is, an apple, a bottle and a book). We scale 
the captured template motions xA(t) and xB(t) (Supplementary Fig. 5) to 
individual subjects by using a parameterized kinematics model. In this 
work, we use arm segment length as the kinematic parameter. However, 
note that the parameterization step is not limited to arm lengths but 
can be extended to further modalities such as bone diameter.

SCC
Kinematic synergy identification. The core of kinematic synergy 
identification methods is to find a mapping from a given joint space ℝL 
to a more compact representation in a lower-dimensional space ℝL′ 
(ref. 32). For the sake of argument, let us consider the existence of a 
template human with measured joint state qt that can be consistently 
scaled to an arbitrary unimpaired human. For example, if the mathe-
matical tool for finding the synergy space is linear principal compo-
nents analysis, the goal is to find a transformation matrix W ∈ ℝL×L′ that 
maps the reference synergy coordinate vector vt ∈ ℝL′ to the joint angle 
vector qt ∈ ℝL such that

qt ≈ Wvt + q̄t, (4)

where q̄t = const. is the temporal mean of qt. Through this method it is 
possible to identify kinematic synergies across various tasks in unim-
paired subjects32 and even design controllers in the synergy space ℝL′ 
for robotic tools such as exoskeletons33.

Cyborg system. For an ideal cyborg system, the prosthesis shall com-
plement the RL motion to generate the synergistic arm motion of the 
template human such that

qc
!
≈qt ≈ Wvt + q̄t, (5)

where qc = [qlqp]
⊤

 denotes the joint vector of the cyborg system. This 
vector is composed of the RL joint vector ql and the matching joint 
vector of the prosthesis qp, that is, we assume that the reference human 
and the resulting cyborg system match at least regarding their 
kinematics.

Kinematic synergy complements. For the cyborg and the template 
human to be compatible with each other, let us assume that the tem-
plate human is divided into parts A and B, corresponding to the junction 
between residual and prosthesis in the cyborg system, respectively. 
This allows to stack the motion states at the junction for the effective 
cyborg equation. In previous works on limb-driven prosthesis control, 
the control input u is assumed to be the RL position ql such as in ref. 21. 
The system can then be written as

(
ql =∶ u

qp
)

!
≈Wvt + q̄t =∶ (

WA

WB
)vt + (

q̄t,A

q̄t,B
) . (6)

With this, the human would be able to directly control the prosthesis 
configuration

qp(u)
!
≈WBW #

A u −WBW #
A q̄t,A + q̄t,B, (7)

as the joint-space synergy complement of ql = u. Herein, the superscript 
hash symbol denotes a pseudo-inverse of the respective matrix. How-
ever, since ql is not directly measurable, this approach is not applicable 
without external measurement devices such as exoskeletons or visual 
tracking systems. Therefore, we transform the problem into Cartesian 

space as follows. Differentiating equation (5) and left multiplication 
with the respective Jacobian Jc(qc) and Jt(qt) leads to

̇xc = Jc(qc) (
q̇l

q̇p
)

!
≈ ̇xt ≈ Jt(qt) (

WA

WB
) ̇vt. (8)

When stacking the equations of the Cartesian RL velocity ̇xl and equa-
tion (8), we get

(
u̇
′ = ̇xl
̇xc = ̇xp

) = (
Jl(ql)q̇l

Jc(qc)q̇c
)

!
≈ (

̇xA
̇xB
) = (

JA(qA)q̇A

Jt(qt)q̇t
) ≈ (

JA(qA)WA ̇vt
Jt(qt)W ̇vt

) , (9)

where the Cartesian space human-driven RL movement acts as control 
input u′ ∈ ℝ6. With this, we can deduce the Cartesian-level differential 
synergy complement of xl to be

̇xp(u̇
′)

!
≈ Jt(qt)WW #

A J
#
A (qA)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

PSCC

u̇, (10)

where PSCC = Jt(qt)WW #
A J

#
A (qA) denotes the according synergy comple-

ment projector, generating prosthesis motions directly from com-
manded limb movements. However, we can identify at least four 
challenges that prevent us from applying equation (10). First, its dif-
ferential nature requires the template Jacobian Jt(qt) to be coupled to 
the control input u so that the full synergy complement ̇xp can be cal-
culated online. Second, the choice of the pseudo inverses makes this 
approach dependent on interpretation. Third, synergies cannot gen-
eralize per se to new goals and do not allow for dynamic trajectory 
generation. Fourth, the static nature of the presented synergy formal-
ism so far makes transition between tasks during execution impossible. 
In turn, we propose to extend the useful, however, rather limited static 
synergy mappings in the sense of equation (4) and transform them to 
a dynamic and more flexible formulation. Specifically, we fuse a new 
SCC-based interpretation of synergies with state-of-the-art 
phase-based trajectory learning and generalization approaches.

Kinematic synergy sequencing. Our previous results32 indicate that, 
instead of coding all synergies into a single system in the sense of equa-
tion (4), one could reduce the number of necessary synergies to 
describe meaningful arm motions down to L′ = 1 . This deeper 
one-dimensional structure in the synergy space appears to be evident, 
when analysing one specific task class only. The L′ = 1 dimensional 
(task-aware) synergies exist in respective (sub-)manifolds and not in a 
single L-dimensional one. Task sequencing is then achieved by switch-
ing the weight vector wi along the task-encoding sequence (note that, 
in equation (6), W is a matrix). Therefore—in contrast to muscle syner-
gies34 that are mere anatomical properties or postural hand synergies35 
that were also used for robot hand design36,37 and control38—sequencing 
of joint-level motion segments driven by one-dimensional segment 
synergies can be used to encode entire tasks such as drinking from a 
bottle. For static synergies a single motion segment driven by a par-
ticular segment synergy becomes

qt,i ≈ wivt,i + q̄t,i = wiψ + q̄t,i, (11)

where the ith synergy coordinate vt,i ∈ ℝ essentially takes the role of 
an independent phase variable ψ ∈ [0, 1]. To transition from one motion 
segment to the next, the weight vector wi is then simply switched syn-
chronously to the limit cycle of ψ and q̄t,i is updated accordingly.

Analogue to equation (6), the phase-based reinterpretation is 
brought into the SCC representation

(
u

qp
)

!
≈wvt + q̄t =∶ (

wA

wB
)ψ + (

q̄t,A

q̄t,B
) , (12)
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allowing one to express the coupling between the residual input u and 
the according prosthesis motion through ψ as

qp = wBψ + q̄t,B, (13a)

ψ = w−1
A (u − q̄t,A) . (13b)

Now, due to the first and second challenge, we bring equation (13b) to 
the Cartesian level using the forward kinematics map t(⋅) ∈ SE(3) and 
u′ = t(u).

xp = t (wBψ + q̄t,B) , (14a)

ψ = w−1
A (t−1(u′) − q̄t,A) . (14b)

Solving equation (14b) requires knowing the synergy submatrices wA 
and wB and the inverse kinematics map t−1(u′), which is hardly achiev-
able under real conditions and real humans.

In contrast, we leverage the known human template motion xA(t) 
as follows: First, it is encoded into an SCC-compatible phase-based 
representation xA(Ψ). Then, instead of using equation (14b), ψ is esti-
mated by solving the optimization problem

ψ∗ = argmin
Ψ

∥ xA(Ψ ) − u′∥2, subject to 0 ≤ Ψ ≤ 1. (15)

Equation (15) can be efficiently solved even in real time from the 
phase-parameterized template human xA(Ψ) and the Cartesian-level 
measurement of the RL u′, then finally driving the prosthesis position 
xp(ψ∗(u′)).

However, the third and fourth challenge remain unsolved yet. 
Neither are velocity or acceleration encoded, nor is it possible to change 
the goal or even a task online. For this, we generalize the encoding 
process beyond the static version discussed so far. Specifically, we fall 
back on the well-known idea of encoding originally time-series data 
into a phase-based dynamical system. As a well-known implementation 
we chose DMPs39 to encode the human template complement xB(t) into 
its matching phase-based DMP representation xB(ψ∗(u′)), driven by the 
human residual motion u′. Finally, we arrive at the dynamic reference 
for the prosthesis (xp(t), ̇xp(t), ẍp(t)) = (xB(ψ∗(u′)), ̇xB(ψ∗(u′)), ẍB(ψ∗(u′))  
driving the underlying motion control system described next. As shown 
in equations (19) and (21), we also employ DMPs’ well-known ability to 
generalize to new goals or transfer between task instances.

Motion control. The prosthesis hand pose is defined as

p ∶= xp = [rpΦP] , (16)

where rp ∈ ℝ3 denotes the position vector and Φ ∈ SE(3) the orientation 
vector. The prosthesis motion control law is defined as a basic opera-
tional space controller on joint torque-level

τm,p = J⊤(q) (
Kt(rP,d − rP)

J−⊤ω (ϕ)Krϕ
) +Dq̇p + ĝp + τ̂f,p, (17)

where rP,d denotes the desired Cartesian position of the prosthetic hand 
(cf. Supplementary Fig. 1b), respectively. ϕ ∈ ℝ3 is the orientation dif-
ference in the Euler angle representation, and Jω ∈ ℝ3×3 is the Jacobian 
between the Euler angle velocities and the angular velocities40. The 
diagonal matrices Kt and Kr ∈ ℝ3×3 denote the translational and rota-
tional stiffness matrices, respectively. D ∈ ℝ4×4 is the damping matrix. 
Furthermore, ĝp and τ̂f,p denote the gravitational effect estimate and 
the frictional effect estimate, respectively.

The exoskeleton compensated for its own weight as well as the 
weight of the prosthesis. The feed-forward control law, which was 
applied to the exoskeleton, is defined as

τm,exo = ĝexo(θ) + τ̂f,exo, (18)

where ĝexo(θ) and τ̂f,exo denote the gexo(θ) estimates and the τf,exo esti-
mates, respectively.

In the experiments with SCC, the exoskeleton was controlled in 
gravity compensation mode (equation (18)), and the prosthesis fol-
lowed the control law that is defined in equation (17). The control 
parameters of equation (17) were empirically determined on the basis 
of a full simulation of the exo-prosthetic system. They were chosen to 
be Kt = 125 N/mI3×3 and Kr = 25 N/radI3×3, where I3×3 ∈ ℝ3×3  denotes a 
identity matrix.

Human template encoding. For the specific implementation, we used 
the DMP framework from refs. 39,41 to generate a desired position 
rP,d(t) ∈ ℝ3  and orientation a(t) (which is expressed as a quaternion 
throughout this manuscript) to feed the controller in equation (17). A 
DMP is essentially a nonlinear system that can be written as39

̈rP,d = Ap(rg − rP,d) − Bp ̇rP,d − Ap(rg − r0)ψ + Apfp(ψ), (19)

where r0 and rg ∈ ℝ3 are the starting position and goal position, respec-
tively. The positive definite and diagonal matrices Ap and Bp ∈ ℝ3×3  
denote the stiffness and damping, respectively. A forcing term is 
defined as

fp(ψ) =
∑kΩk(ψ)ξk
∑kΩk(ψ)

ψ, (20)

where Ωk(ψ) = exp(−hk(ψ − ck)
2) is a Gaussian function. hk and ck are the 

Gaussian function’s width and centre, respectively. The parameter 
vector ξk ∈ ℝ3 is learned for a desired trajectory based on linear regres-
sion (cf. ref. 39). In this work, the hand position trajectories rB,s of task 
T (rB,s were the positional component of xB,s in Fig. 1), and they were 
extracted from the synergy dataset (‘Synergy dataset’ section).

The quaternion-based orientational DMP can be written as39,41

ω̇ = 2AoΔ (log(ag × ā)) − Boω − 2AoΔ (log(ag × ā0))ψ + Aofo(ψ), (21)

̇a = 1
2∇(ωωω) × a, (22)

where the output orientation is expressed as the unit quaternion 
a = a0 + na1 + ma2 + ka3, and 1, n, m and k denote the quaternion basis. 
The starting quaternoin and the goal quaternion are denoted by a0 and 
ag, respectively. The positive, definite, and diagonal stiffness and damp-
ing matrices are denoted by Ao and Bo ∈ ℝ3×3 , respectively. ω ∈ ℝ3  
denotes the angular velocity, and fo(ψ) (cf. equation (20)) is a nonlinear 
forcing term. The operators �̄, *, log(⋅) and exp(⋅) denote the quaternion 
conjugation, product, logarithm and exponential function, respec-
tively. Furthermore, we introduced the following operators:

Δ(b) ∶= (b1,b2,b3)
⊤ (23)

∇ (zzz) = 0 +mz1 + nz2 + kz3, (24)

where b = 0 + mb1 + nb2 + kb3 denotes a non-real quaternion, and 
z = (z1, z2, z3)

⊤ . To integrate equation (22), we used the following 
formula41

a(t + δt) = exp ( 12δt∇(ωωω)) × a(t), (25)

where δt denotes the time step. Corresponding to the learned position, 
the orientation of the hand’s trajectory aB,s in task T is learned (aB,s is 
the orientation component of xB,s in Fig. 1).
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We note that, on the policy level, the accuracy corresponds to 
the offline learning stage performance of a DMP, that is, how good are 
the trajectories of the intact hand–arm approximated by the DMP. On 
the task level, the accuracy only depends on the identification of the 
actual goal (ag and rg). Another potential source of accuracy errors may 
arise if the prosthesis user deviates from the template motion, as seen 
in upper arm or torso movements (refer to Supplementary Video 2 at 
02:48 min). In such instances, SCC can effectively compensate for local 
inaccuracies. However, if there are substantial global deviations, such 
as the upper arm moving in a completely different direction, this may 
be interpreted as the user’s intentional choice not to execute the task 
and decide for another task. However, the systematic analysis of this 
dynamic cognitive process and its interplay with SCC would need to 
be handled by appropriate online intention decoding and adaptation, 
which is beyond the scope of this work.

Participants and experimental protocol
We conducted two studies. In study 1, one female subject aged 58 years 
with transradial arm amputation of the right arm (>1 year) and three 
male subjects aged 33.3 ± 0.58 (mean ± standard deviation) years with 
preserved arm participated in the experiments. In study 2, one female 
participant, 23 years old, born with an undeveloped right forearm, 
and seven male participants aged between 22 and 32 years, without 
limb differences participated in the experiments. All subjects gave 
their written informed consent before participation. No participant 
received financial or other compensation. The experiments took place 
at the Munich Institute of Robotics and Machine Intelligence at the 
Technical University Munich. All the experiments were conducted 
according to the principles in the Declaration of Helsinki. Guidelines 
for study procedures were provided by the Ethic Commission of the 
Technical University Munich. The experimental protocol can be found 
in Supplementary Information. Note for data collection we have uti-
lized Simulink 2017b, EtherLab 1.5 and Vicon Nexus 2.15, while MATLAB 
2017b and 2021a was used for data analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All experimental data collected during the user study in virtual 
reality can be accessed for download at https://doi.org/10.6084/
m9.figshare.25368253 (ref. 42).

Code availability
We have included MATLAB scripts to reproduce Fig. 6 in this man-
uscript, as well as relevant Supplementary Figs. 1–6 in Supple-
mentary Information. Additionally, a ‘Read me’ file is provided for 
additional guidance. These can be accessed for download at https://
doi.org/10.6084/m9.figshare.25368253 (ref. 42).
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