Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic and epigenomic mapping of leptin-responsive neuronal populations involved in body weight regulation

An Author Correction to this article was published on 01 March 2024

This article has been updated

Abstract

Genome-wide association studies in obesity have identified a large number of non-coding loci located near genes expressed in the central nervous system. However, due to the difficulties in isolating and characterizing specific neuronal subpopulations, few obesity-associated single-nucleotide polymorphisms have been functionally characterized. Leptin-responsive neurons in the hypothalamus are essential in controlling energy homoeostasis and body weight. Here, we combine fluorescence-activated cell sorting of leptin-responsive hypothalamic neuron nuclei with genomic and epigenomic approaches (RNA sequencing, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing) to generate a comprehensive map of leptin response-specific regulatory elements, several of which overlap obesity-associated genome-wide association study variants. We demonstrate the usefulness of our leptin response neuron regulome, by functionally characterizing an enhancer near Socs3, a leptin response-associated transcription factor. We envision our data to serve as a useful resource and a blueprint for functionally characterizing obesity-associated single-nucleotide polymorphisms in the hypothalamus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolation of LepRb-GFP+ nuclei.
Fig. 2: The LepRb-GFP+ nuclei transcriptome.
Fig. 3: Leptin-responsive transcriptome.
Fig. 4: The LepRb-GFP+ regulome.
Fig. 5: Functional characterization of a Socs3 enhancer.
Fig. 6: Obesity GWAS loci.

Similar content being viewed by others

Data availability

The RNA-seq data are available in NCBI BioProject PRJNA439388. ChIP-seq and ATAC-seq data are available in NCBI Bioproject PRJNA439388. The data that support the findings of this study are available from the corresponding author upon request.

Change history

References

  1. Must, A. et al. The disease burden associated with overweight and obesity. JAMA 282, 1523–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Ogden, C. L., Carroll, M. D., Fryar, C. D. & Flegal, K. M. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 219, 1–8 (2015).

    Google Scholar 

  4. Swinburn, B. A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    Article  PubMed  Google Scholar 

  5. Stunkard, A. J., Foch, T. T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51–54 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Stunkard, A. J. et al. An adoption study of human obesity. New Engl. J. Med. 314, 193–198 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Silventoinen, K., Rokholm, B., Kaprio, J. & Sørensen, T. I. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int. J. Obesity (Lond.) 34, 29–40 (2010).

    Article  CAS  Google Scholar 

  8. Albuquerque, D., Stice, E., Rodríguez-López, R., Manco, L. & Nóbrega, C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol. Genet. Genomics 290, 1191–1221 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Münzberg, H. & Myers, M. G. Jr. Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 8, 566–570 (2005).

    Article  PubMed  Google Scholar 

  10. Turcot, V. et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat. Genet. 50, 26–41 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghosh, S. & Bouchard, C. Convergence between biological, behavioural and genetic determinants of obesity. Nat. Rev. Genet. 18, 731–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Dermitzakis, E. T. From gene expression to disease risk. Nat. Genet. 40, 492–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome. Genome Res. 22, 1748–1759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leshan, R. L., Björnholm, M., Münzberg, H. & Myers, M. G. Jr. Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring) 14, 208S–212S (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Mo, A. et al. Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86, 1369–1384 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cady, G. et al. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Mol. Metab. 6, 393–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allison, M. B. et al. TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol. Metab. 4, 299–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allison, M. B. et al. Defining the transcriptional targets of leptin reveals a role for Atf3 in leptin action. Diabetes 67, 1093–1104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Howard, J. K. & Flier, J. S. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrin. Met. 17, 365–371 (2006).

    Article  CAS  Google Scholar 

  25. Schick, N., Oakeley, E. J., Hynes, N. E. & Badache, A. TEL/ETV6 is a signal transducer and activator of transcription 3 (Stat3)-induced repressor of Stat3 activity. J. Biol. Chem. 279, 38787–38796 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Valentino, M. A. et al. A uroguanylin-GUCY2C endocrine axis regulates feeding in mice. J. Clin. Invest. 121, 3578–3588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Machanick, P. & Bailey, T. L. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27, 1696–1697 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nazarians-Armavil, A., Chalmers, J. A., Lee, C. B., Ye, W. & Belsham, D. D. Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. J. Endocrinol. 220, 13–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  ADS  CAS  Google Scholar 

  33. Olza, J. et al. Leptin receptor gene variant rs11804091 is associated with BMI and insulin resistance in Spanish female obese children: a case-control study. Int. J. Mol. Sci. 18, E1690 (2017).

    Article  Google Scholar 

  34. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  35. Kublaoui, B. M., Gemelli, T., Tolson, K. P., Wang, Y. & Zinn, A. R. Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol. Endocrinol. 22, 1723–1734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kublaoui, B. M., Holder, J. L. Jr., Tolson, K. P., Gemelli, T. & Zinn, A. R. SIM1 overexpression partially rescues agouti yellow and diet-induced obesity by normalizing food intake. Endocrinology 147, 4542–4549 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Beuckmann, C. T. et al. Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat. J. Neurosci. 24, 4469–4477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dennis, G. Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3 (2003).

    Article  PubMed  Google Scholar 

  41. Fresno, C. & Fernández, E. A. RDAVIDWebService: a versatile R interface to DAVID. Bioinformatics 29, 2810–2811 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  ADS  PubMed  Google Scholar 

  50. Battle, A., Brown, C. D., Engelhardt, B. E. & Montgomery, S. B. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Tollkuhn (CSHL) for critical advice and M. Myers (University of Michigan) for sharing the LepRb TRAP-seq data. We also thank A. Hardin and S. Rattanasopha for help with the dissections and M. Cavrois and M. Maiti for assistance with FACS. This article was supported in part by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (grant no. 1R01DK090382 to N.A. and C.V.) and the University of California, San Francisco Nutrition Obesity Research Center funded by the National Institute of Health (grant no. P30DK098722). N.A. is also supported by grants from the National Human Genome Research Institute (NHGRI) and Division of Cancer Prevention, National Cancer Institute grant no. 1R01CA197139, National Institute of Mental Health grant no. 1R01MH109907, National Institute of Child and Human Development grant no. 1P01HD084387, NHGRI grant no. 1UM1HG009408 and National Heart, Lung, and Blood Institute grant no. 1R01HL138424. The Gladstone Institute Flow Cytometry Core is supported by National Institutes of Health (NIH) grant no. P30 AI027763 for using LSR2, Calibur, VYB, Aria, HTFC and ImageStream, NIH grant no. S10 RR028962 and the James B. Pendleton Charitable Trust for using the FACSAria cell sorter, and Department of Defense grant no. W81XWH-11-1-0562 for using ImageStream.

Author information

Authors and Affiliations

Authors

Contributions

F.I., C.V. and N.A. conceived and designed the study. F.I. performed the mouse, genomic and enhancer experiments. K.K.M. and N.M. helped with the mouse dissections. Y.W. carried out the immunostaining and W.L.E. performed the computational analyses. F.I., W.L.E., C.V. and N.A. analysed the data. C.V. and N.A. provided resources and critical suggestions. F.I., W.L.E., C.V. and N.A. wrote the manuscript.

Corresponding authors

Correspondence to Christian Vaisse or Nadav Ahituv.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6 and Supplementary Tables 1 and 4

Reporting Summary

Supplementary Table 2

Transcription factor binding site analyses of H3K27ac ChIP-seq and ATAC-seq peaks

Supplementary Table 3

Obesity GWAS SNPs overlapping mouse ChIP-seq and ATAC-seq lifted-over peak regions

Supplementary Data 1

RNA-seq results. This file contains a table of RNA-seq results for all genes in the Ensembl annotation and all lncRNAs, including gene annotation information, location, average expression, expression per sample and differential expression test results for all comparisons.

Supplementary Data 2

ChIP-seq and ATAC-seq results. This file contains a table of ChIP-seq and ATAC-seq results for all peaks including annotation information, location, average enrichment, enrichment per sample and differential expression test results for all comparisons.

Supplementary Data 3

eQTL analyses of H3K27ac ChIP-seq and ATAC-seq peaks. This file contains a table of ChIP-seq and ATAC-seq results for all peaks and includes nearest gene annotation information, and obesity-associated variant overlap information, plus peak location, average enrichment, enrichment per sample and differential expression test results for all comparisons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, F., Eckalbar, W.L., Wang, Y. et al. Genomic and epigenomic mapping of leptin-responsive neuronal populations involved in body weight regulation. Nat Metab 1, 475–484 (2019). https://doi.org/10.1038/s42255-019-0051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-019-0051-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research