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Reconstructing unstable heavy particles requires sophisticated techniques to sift through the large
number of possible permutations for assignment of detector objects to the underlying partons. An
approach based on a generalized attention mechanism, symmetry preserving attention networks
(SPA-NET), has been previously applied to top quark pair decays at the Large Hadron Collider which
produceonly hadronic jets.Hereweextend theSPA-NETarchitecture to considermultiple input object
types, such as leptons, aswell as global event features, such as themissing transversemomentum. In
addition, we provide regression and classification outputs to supplement the parton assignment. We
explore theperformance of the extendedcapability of SPA-NET in the context of semi-leptonic decays
of top quark pairs as well as top quark pairs produced in association with a Higgs boson. We find
significant improvements in thepowerof three representative studies: a search for t�tH, ameasurement
of the top quark mass, and a search for a heavy Z0 decaying to top quark pairs. We present ablation
studies to provide insight on what the network has learned in each case.

Event reconstruction is a crucial problem at the Large Hadron Collider
(LHC), where heavy, unstable particles such as top quarks, Higgs bosons,
and electroweak W and Z bosons decay before being directly measured
by the detectors. Measuring the properties of these particles requires
reconstructing their four-momenta from their immediate decay pro-
ducts, which we refer to as partons. Since many partons leave indis-
tinguishable signatures in detectors, a central difficulty is assigning the
observed detector objects to each parton. As the number of partons
grows, the combinatorics of the problem becomes overwhelming, and the
inability to efficiently select the correct assignment dilutes valuable
information.

Previously, methods such as χ2 fits1 or kinematic likelihoods2 have
provided analytic approaches forperforming this task.These approaches are
limited, however, by the requirement of exhaustively building each possible
permutation of the event and by the limited amount of kinematic infor-
mation that can be incorporated. Particularly at high-energy hadron colli-
ders such as the LHC, events often contain many extra objects from
additional activity as well as the particles originating from the hard

scattering event, which can cause the performance of permutation-based
methods to degrade substantially.

In recent years, modern machine learning tools such as graph neural
networks and transformers3 have been broadly applied tomanyproblems in
high-energy physics. For example, the problem of identifying the origin of
single, large-radius jets has been closely studied4–14 using such techniques.
Some of these have incorporated symmetry considerations11,12,14 to aid
performance. Implementations of such strategies to event-level recon-
struction have been limited so far to single object permutation
assignment15–17 or direct regression18.

This work presents a complete machine learning approach to multi-
object event reconstruction and kinematic regression at the LHC, named
SPA-NET owing to its use of a symmetry-preserving attentionmechanism,
designed to incorporate all of the symmetries present in the problem. It was
first introduced15,16 in the context of reconstruction of the all-hadronic final
state in which only one type of object is present. In this work, we extend and
complete themethodby generalizing to arbitrarynumbers of object types, as
well as addingmultiple capabilities that can aid the application of SPA-NET
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in LHC data analysis, including signal and background discrimination,
kinematic regression, and auxiliary outputs to separate different kinds of
events.

To demonstrate the new capacity of the technique, we study its per-
formance in final states containing a lepton and a neutrino. The method is
compared to existing baseline approaches and demonstrated to provide
significant improvements in threeflagshipLHCphysicsmeasurements: t�tH
cross-section, top quark mass, and a search for a hypothetical Z0 boson
decaying to top quarkpairs. These examplesdemonstrate various additional
features, such as kinematic regression and signal versus background dis-
crimination. The method can be applied to any final state at the LHC or
other particle collider experiments, and may be applicable to other set
assignment tasks in other scientific fields.

Methods
SPA-NET extensions
We present several improvements to the base SPA-NET architecture15,16 to
tackle the additional challenges inherent to events containing multiple
reconstructed object classes and to allow for a greater variety of outputs for
an array of potential auxiliary tasks. Thesemodifications allow SPA-NET to
be applied to essentially any topology and allow for the analysis of many
additional aspects of events beyond the original jet-parton assignment task.

Base SPA-NET overview. For context, we first provide a brief overview
of the original SPA-NET architecture15,16. These components are those
which are presented with black boxes and lines in Fig. 1. The jets, repre-
sented by their kinematics, are first embedded into a high dimensional
latent space and subsequently processed by a central transformer encoder3

with the goal of providing contextual information to the jets. We note that
the architecture of this transformer encoder follows the original definition3,
with one major exception: we omit the positional encoding to prevent
introducing ordering over our input. As the jets are presented as a set of
momentum vectors, with no obvious order, we want the network to
remain permutation equivariant with respect to the input order. We
replicate the architecture for the particle transformers, now applying
individually trained transformers for every resonance particle in our event.

Finally, to extract the joint distribution over jets for each resonance
particle, we apply a symmetric tensor attention layer defined in Section 3 of
our previous work16. This layer applies a generalized form of attention,
modified by a symmetry group over assignments, to produce a symmetric
joint distribution over jets describing the likelihood of assigning said jets to
the resonance particle. This split architecture, with individual branches for
every resonance particle, allows us to avoid computing a full permutation
over all possible assignments and reduced the runtime from combinatorial
w.r.t the number of jets, OðN!Þ, to OðNkp Þ where kp is the number of
daughter particles produced by a resonance particle.

Input observables. While the original SPA-NET15,16 studies con-
centrated on examples where all objects have hadronic origins, we focus
here on the challenges of semi-leptonic topologies. These events contain
several different reconstructed objects, including the typical hadronic jets
as well as leptons and missing transverse momentum (Emiss

T ) typically
associated with neutrinos. Unlike jets or leptons, this Emiss

T is a global
observable, and its multiplicity does not vary event by event.

We accommodate these additional inputs by training individual
position-independent embeddings for each class of input. This allows the
network to adjust to the various distributions for each input type, and allows
us to define sets of features specific to each type of object. We parameterize
jets using the fM; pT; η; sin ϕ; cos ϕ; b�tagg representation, whereM is the
jet mass, pT is the jet momentum transverse to the incoming proton beams,
and ϕ is the azimuthal angle around the detector, represented by its trigo-
nometric components to avoid the boundary condition at ϕ = ± π. η is the
pseudo-rapidity19 of the jet, the standardmeasure of the polar angle between
the incoming proton beam and the jet commonly used in particle physics
due to its Lorentz-invariant quantities. Leptons are similarly represented
using fM; pT; η; sin ϕ; cos ϕ; flavorgwhere flavor is 0 for electrons and 1 for
muons. Finally, Emiss

T is represented using two scalar values, the magnitude
and azimuthal angle, and is treated as an always-present jet or lepton. The
individual embedding layers map these disparate objects with different
features into a unified latent space which may be processed by the central
transformer.

The global inputs, such as Emiss
T , need to be treated differently than the

jets and leptons, as they do not have associated parton assignments.
Therefore, after computing the central transformer, we do not include the
extra global Emiss

T vector in the particle transformers. This allows the
transformer to freely share the Emiss

T information with the other objects
during the central transformer stepwhile preventing it frombeing chosen as
a reconstruction object for jet-parton assignment.

Secondary outputs. Beyond jet-parton assignment, we are interested in
reconstruction of further observables, such as the unknownneutrino η, or
differentiation of signal events from background. These observables are
defined at event level, and are independent of the jet multiplicity, so we
must construct a way of summarizing the entire event in a single vector to
predict these values.

To accomplish this, we add additional output heads to the central
transformer, presentedwith blue boxes and lines on the right inFig. 1, which
are trained end-to-end simultaneously with the base reconstruction task.
We extract an event embedding from the central transformer by including a
learnable event vector in the inputs to the transformer. We append this
learned event vector EE 2 RD to the list of embedded input vectors: E ¼
fE1; E2; . . . ; En; EL; EG; EEg prior to the central transformer (Fig. 1). This
allows the central transformer to process this event vector using all of the
information available in the observables.

We extract the encoded event vector after the central transformer and
treat it as a latent summary representation of the entire event zE. We can
then feed these latent features into simple feed-forward neural networks to
perform signal vs background classification, S=BðzEÞ, neutrino kinematics
regression, ην(zE), or any other downstream tasks. These tasks may addi-
tionally be learned after themain SPA-NET training as zEmaybe computed
used a fixed set of SPA-NET weights and then used for other downstream
tasks without altering the original SPA-NET.

These additional feed-forward networks are trained using their
respective loss, either categorical log-likelihood or mean squared
error (MSE). These auxiliary losses are simply added to the total SPA-NET
loss, weighted by their respective hyperparameter αi. With the parton
reconstruction loss, Lreconstruction defined as the masked minimum permu-
tation loss from Equation 6 of our previous work16, the SPA-NET loss
becomes:

L ¼ αrecoLreconstruction þ αclasLclassification þ αregrLregression: ð1Þ

Fig. 1 | Extended diagram of the new SPA-NET architecture. The diagram flows
left to right, with inputs denoted by Ei , assignment outputs denoted by Pj, regression
outputs ην and mt�t , and classification output S=B. Black blocks show components
common to our previous works15,16, with new components shown in blue.
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Particle detector. In our previous work16, we introduced the ability to
reconstruct partial events by splitting the reconstruction task based on
the event topology. This is a powerful technique that is particularly useful
in complex events, where it is very likely that at least one of the partons
will not have a corresponding detector object.

However, the assignment outputs are trained only on examples in
which the event contains all detector objects necessary for a correct parton
assignment.We refer to the reconstruction target particles in these examples
as reconstructable. We must train this way because only reconstructable
particles have truth-labeleddetector objects, which are required for training,
and we ignore non-reconstructable particles via the masked loss defined in
Equation 6 of our previous work16. As a result of this training procedure, the
SPA-NET assignment probability Pa only represents a conditional assign-
ment distribution over jet indices ji for each particle p given that the particle
is reconstructable:

Pað j1; j2; . . . ; jkp jp reconstructableÞ: ð2Þ

We use P(p reconstructable) = P(p) and P(p not reconstructable) = P( ¬ p)
for conciseness. To construct an unconditional assignment distribution, we
need to additionally estimate the probability that a given particle is recon-
structable in the event, Pd. This additional distribution may be used to
produce a pseudo-marginal probability for the assignment. While
Pað j1; j2; . . . ; jkp j:pÞ ¼ 0 is not a valid distribution, and therefore this
marginal probability is ill-defined, we may still use this pseudo-marginal
probability

Pð j1; j2; . . . ; jkp Þ ¼ Paðj1; j2; . . . ; jkp jpÞPdðpÞ ð3Þ

as an overall measurement of the assignment confidence of the network.
We aim to estimate this reconstruction probability, Pd(p), with an

additional output head of SPA-NET. We will refer to this output as the
detection output, because it is trained to detect whether or not a particle is
reconstructable in the event. We train this detection output in a similar
manner as the classification outputs but at the particle level instead of the
event level. That is, we extract a summary particle vector from each of the
particle transformer encoders using the samemethod as the event summary
vector from the central transformer.We then feed these particle vectors into
a feed-forward binary classification network to produce a Bernoulli prob-
ability for each particle. We have to also take into account the potential
event-level symmetries in a similar manner to the assignment reconstruc-
tion loss from Equation 6 of our previous work16. We train this detection
output with a cross-entropy loss over the symmetric particle masks:

Ldetection ¼ min
σ2GE

MσðpÞ log PdðpÞ þ ð1�MσðpÞÞ log 1� PdðpÞ
� �h i

: ð4Þ

The complete loss equation for the entire network can now be defined:

L ¼ αrecoLreconstruction þ αdetLdetection þ αclasLclassification þ αregrLregression:

ð5Þ
Baseline methods
We compare SPA-NET to two commonly used methods, the Kinematic
Likelihood Fitter (KLFitter)2, and a Permutation Deep Neural Network
(PDNN), which uses a fully connected deep neural network similar to
existing literature20. Both methods are permutation-based, meaning they
sequentially evaluate every possible permutation of particle assignments.
This results in a combinatorial explosion, with for example 5!/2 = 60 pos-
sible assignments of the jets in a semi-leptonically decaying t�t + jet event
(the reduction by a factor of two comes from the assignment symmetry
between the hadronically decayingW boson decay products). That is, there
are 60differentpossible permutations thatmust be evaluatedper event, even
before considering systematic uncertainty evaluation or further additional
jets. With typical analyses utilizing MC samples containing Oð106 � 108Þ

events, whichmust be evaluated forOð102Þ systematic variations, complex
events quickly become intractable or at least extremely computationally
expensive, even before considering the decreasing performance of such
methods as a function of object multiplicity. The performance of these
algorithms is compared to SPA-NET in all presented results.

KLFitter. KLFitter has been extensively used in top quark analyses21–29,
especially for semi-leptonic t�t events. Themethod involves building every
possible permutation of the event and constructing a likelihood score for
each. The permutation with the maximum likelihood is thus taken as the
best reconstruction for that event. The likelihood score, which has been
updated (https://github.com/KLFitter/KLFitter) since the original
publication2, is defined as

L ¼ B mq1q2q3
jmt ; Γt

� �
� B mq1q2

jmW ; ΓW

� �

×B mq4‘ν
jmt ; Γt

� �
� B m‘νjmW ; ΓW

� �

×
Q4

i¼1Wjet Emeas
jet;i jEjet;i

� �
�W‘ Emeas

‘ jE‘

� �

×Wmiss Emiss
x jpνx

� � �Wmiss Emiss
y jpνy

� �
;

ð6Þ

where B represents Breit-Wigner functions, mq1q2q3
, mq1 ;q2

, mq4‘ν
, mℓν are

invariant masses computed from the final state particle momenta. The
variablesmt(W) and Γt(W) are the masses and decay widths of the top quark
(W boson), respectively. The expressions EðmeasÞ

‘;jet represents the (measured)
energy of the leptons or jets, respectively, and the functionsWvar(varA∣varB)
are the transfer function for the variable varA from varB.

This method suffers from several limitations. Firstly, the requirement
to construct and test every possible permutation leads to a run-time that
grows exponentially with the number of jets or other objects in the event.
This quickly becomes a limiting factor in large datasets, which at the LHC
often contain millions of events that must be evaluated hundreds of times
each (once per systematic uncertainty shift). While semi-leptonic t�t can
largely remain tractable, it can significantly slow down analyses due to the
heavy computing cost, and it is typical to limit the evaluation to only a subset
of the reconstructed objects in order to reduce this burden, which restricts
the number of events that can be correctly reconstructed. More complex
final states, for example t�tH production, require even more objects to be
reconstructed and thus take even longer to compute, severely limiting the
usability of the method in such channels.

A second limitation of the method is its treatment of partial events,
which the likelihood is not designed to handle, and thus performance in
these events is significantly degraded. Finally, themethod does not take into
account any correlations between the decay products of the target particles
and the rest of the event, since only the particles hypothesized as originating
from the targets are included in the likelihood evaluation. An advantage of
the method is the use of transfer functions to represent detector effects, but
these must be carefully derived for each detector to achieve maximum
performance, which can be a difficult and time-consuming endeavor.

There are two variations of the KLFitter likelihood of interest in our
studies: one inwhich the top quarkmass is given an assumed value, and one
in which it is not. Specifying the assumed mass leads to improved recon-
struction efficiency at the expense of biasing towards permutations at this
mass, causing sculpting of backgrounds and other undesirable effects. In the
analyses presented in t�tH and Z0 analyses, the top quark mass is fixed to a
value of 173 GeV, since this biasing is less important than overall recon-
struction efficiency. In contrast, the top quark mass measurement must
avoid biasing towards a specificmass value, and thus themass is not fixed in
the likelihood for this analysis.

PDNN. The PDNNuses a fully connected deep neural network that takes
the kinematic and tagging information of the reconstructed objects as
inputs, similar to the method described in existing literature20. Again,
each possible permutation of the event is evaluated, and the assignment
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with the highest network output score is taken as the best reconstruction.
Training is performed as a discrimination task, in which the correct
permutations are marked as signal, and all of the other permutations are
marked as background.

This method also suffers from several limitations, including the same
exponentially growing run-time due to the permutation-based approach,
the inability to adequately handle partial events, and the lack of inputs
related to additional event activity. Further, the method does not incorpo-
rate the symmetries of the reconstruction problem due to the way in which
input variables must be associated with the hypothesized targets. Recently,
message-passing graph neural networks were applied to the all-hadronic t�t
final state17, but as all studies presented here are performed in the lepton
+jets channel, no comparison is made to such methods.

Datasets and training
Several datasets of simulated collisions are generated to test a variety of
experimental analyses and effects. All datasets are generated at a center-of-
mass energy of

ffiffi
s

p ¼ 13 TeV using MADGRAPH_AMC@NLO30 (v3.2.0,
NCSA license) for thematrix element calculation, PYTHIA831 (v8.2,GPL-2)
for the parton showering and hadronisation, andDELPHES32 (v3.4.2, GPL-
3) using the default CMS detector card for the simulation of detector effects.
For all samples, jets are reconstructed using the anti-kT jet algorithm

33with a
radius parameter of R = 0.5, a minimum transverse momentum of
pT > 25GeV, and an absolute pseudo-rapidity of ∣η∣ < 2.5. To identify jets
originating from b-quarks, a b-tagging algorithm with a pT-dependent
efficiency andmis-tagging rate is applied. Electrons andmuons are selected
with the same pT and η requirements as for jets.No requirement is placed on
the missing transverse momentum Emiss

T .
A large sample of simulated Standard Model (SM) t�t production is

generatedwith the top quarkmassmt = 173GeV, andused for initial studies
as well as the backgroundmodel in theZ0 studies. It contains approximately
11M events after a basic event selection of exactly one electron ormuon and
at least four jets of which at least two are b-tagged. We further produce
samples for the top mass analysis: ~0.2M events each at mass points of
mt = 170, 171, 172, 173, 174, 175, 176 GeV in order to build templates, as
well as a training sample of ~12M total t�t events produced in steps of

0.1 GeV to achieve anapproximatelyflatmtdistribution in the 166-176 GeV
range. This sample is used for all t�t reconstruction studies as well as the top
mass analysis. A final sample withmt = 171.9 GeVwas produced to be used
as pseudo-data for the topmass analysis. The value usedwas initially known
by only one member of the team to avoid bias in the final mass extraction.

A sample of simulated SM t�tH production, in which the Higgs boson
decays to a pair of b-quarks, is generated tomodel the signal process for the
t�tH analysis. This sample has the same event selection as applied to the t�t
samples, with an additional requirement of at least six jets due to the
additional presence of the Higgs boson. Training of SPA-NET is performed
using 10M t�tH events with at least two b-tagged jet, while the final mea-
surement is performed using a distinct sample where 0.2M of 1.1M events
satisfy themore stringent requirement of containing least four b-tagged jets.
Training with the two-tag requirement achieved better overall performance
than on the tighter four-tag selection, which follows themost recentATLAS
analyses in this channel34. The background in this analysis is dominated by
t�t þ b�b production, which is modeled using a simulated sample in which
the top and bottom pairs are explicitly included in the hard process gen-
erated by MADGRAPH_AMC@NLO; of the 1.3M events generated, 0.2M
survive the event selection.

Finally, we produce Beyond the Standard Model (BSM) events con-
taining a hypotheticalZ0 boson that decays to a pair of top quarks, using the
vPrimeNLO model35 in MADGRAPH_AMC@NLO. One sample of 0.2M
events is produced at each of mZ0 ¼ 500; 700; 900 GeV to evaluate search
sensitivity at a range of masses. A sample with an approximately flat mZ0

distribution is generated for network training by generating events in 1 GeV
steps between 400 and 1000 GeV. We match jets to the original decay

products of the top quarks and Higgs bosons using an exclusive ΔR ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕj � ϕdÞ2 þ ðηj � ηdÞ2

q
<0:4 requirement, such that only one decay

product can be matched to each jet and vice versa, always taking the closest
match. This method is adopted both in ATLAS and CMS analyses and
allows a crisp definition of the correct assignments as well as categorization
of events based uponwhich particles are reconstructable, as explained in the
Particle Detector subsection.

We train all models on a single machine with a AMDEPYC 7502 CPU
and4NVidia 3090GPUs for training. Eachmodelwas trained for a period of
24 hours on this machine, as we have found that to be sufficient time for
models to converge in training and validation loss. We use the same hyper-
parameters derived in our previous work16 as each event topology presented
here may be interpreted as a variation of the same event topologies.

The data generated for this study is available in the our online repo-
sitory (https://mlphysics.ics.uci.edu/data/2023_spanet/). The code used for
training is available on github (https://github.com/Alexanders101/
SPANet).

Results and discussion
Reconstruction and regression performance
We present the reconstruction efficiency for SPA-NET in semi-leptonic t�t
and t�tHðH ! b�bÞ events, compared to the performance of the benchmark
methodsKLFitter andPDNN.Efficiencies arepresented relative to all events
in the generated sample, aswell as relative to the subset of events inwhich all
top quark (andHiggs boson in the case of t�tH) daughters are truth-matched
to reconstructed jets, whichwe call Full Events.We also show efficiencies for
each type of particle, with tH the hadronically decaying top quark, tL the
leptonically decaying top quark, and H the Higgs boson. We present the
efficiencies in three bins of jet multiplicity as well as inclusively.

In Table 1, the efficiencies for accurate reconstruction of semi-leptonic
t�t events are shown. We find that SPA-NET outperforms both benchmark
methods in all categories. The performance ofKLFitter is substantially lower
than the other two methods everywhere, reaching only 12% for full-event
efficiency in full events with ≥6 jets. The PDNN performance is close to
SPA-NET in low jet multiplicity events, but the gap grows as the number of
jets in the event increases. This is expecteddue to the encoded symmetries in

Table 1 |Reconstruction efficiencies for hadronically decaying
(tH) and leptonically decaying (tL) top quarks, Higgs bosons
(H), and complete events (Ev.) for semi-leptonic t

--
t and

t
--
tHðH ! b

--
bÞ processes

Njets SPANet Eff. (%) PDNN Eff. (%) KLFitter Eff. (%)

Ev. tH tL H Ev. tH tL H Ev. tH tL H

=4 81 80 86 – 74 80 78 – 60 66 65 –

All t�t =5 74 72 84 – 68 69 79 – 32 37 47 –

Events ≥6 66 61 82 – 57 53 75 – 18 20 35 –

All 76 73 85 – 68 69 78 – 42 44 53 –

=4 84 84 90 – 83 83 89 – 71 71 77 –

Full t�t =5 73 74 87 – 69 71 84 – 28 39 52 –

Events ≥6 60 63 84 – 51 55 79 – 12 21 37 –

All 75 76 87 – 70 72 85 – 41 47 58 –

=6 43 54 69 50 33 48 57 43 31 36 55 43

All t�tH =7 39 48 68 49 31 43 58 43 16 25 47 29

Events ≥8 34 42 68 47 27 36 56 40 11 15 46 24

All 40 49 69 49 31 43 57 43 21 26 50 34

=6 54 65 73 62 49 60 68 58 38 49 60 48

Full t�tH =7 42 55 70 56 36 50 64 51 13 31 48 31

Events ≥8 33 47 69 52 28 42 60 46 05 17 46 24

All 45 57 71 57 39 52 64 52 19 33 52 35

The efficiencies highlighted in bold are inclusive of jet multiplicity.
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SPA-NET that allow it to more efficiently learn the high multiplicity, more
complex events, as well as the additional permutations that must be con-
sidered by the PDNN. SPA-NET is further suited to higher-multiplicity
events due to not suffering from the large run-time scaling of the permu-
tation based approaches. Results for t�tHðH ! b�bÞ events, also presented in
Table 1, show similar trends.

Regression performance. In semi-leptonic t�t decays, there is a missing
degree of freedom due to the undetected neutrino. The transverse com-
ponent and ϕ angle of the neutrino can be well-estimated from the
missing transverse momentum in the event, but the longitudinal com-
ponent (or equivalently, the neutrino η) cannot be similarly estimated at
hadron colliders due to the unknown total initial momentum along the
beam. A typical approach is to assume that the invariant mass of the
combined lepton and neutrino four-vectors should be that of the W
boson, mW = 80.37 GeV. This assumption leads to a quadratic formula
that can lead to an ambiguity if the equation has either zero or two real

solutions, and assumes on-shell W bosons and perfect lepton and Emiss
T

reconstruction. When the equation has two real solutions, the one with
the lower absolute value is adopted. If the solutions are complex, we take
the real component.

SPA-NET has been extended to provide additional regression outputs,
which can be used to directly estimate suchmissing components. In Fig. 2a,
b, distributions of truth versus predicted neutrino η show that the SPA-NET
regression is more diagonal than the traditional W-mass-constraint
method. Figure 2c, d shows the distributions and residuals of neutrino η,
making it clear that SPA-NET regression has improved resolution of this
quantity. However, Fig. 2e, f show that neither method is able to accurately
reconstruct the W-mass distribution. This distribution is not regressed
directly, but is calculated by combining the Emiss

T and lepton information
with the predicted value of η. The mass constraint method produces a large
peak exactly at theW-mass as expected,with a large tail at highmass coming
from events in which the quadratic solutions are complex. In contrast, the
SPA-NET regression,whichhasno informationon the expected value of the

Fig. 2 | Comparison of the regression of neutrino
pseudo-rapidity (η) by SPA-NET with the bench-
markW boson mass constraint method. a, b show
the true value on the x-axis versus predicted values
from the SPA-NET regression and W-mass con-
straint respectively on the y-axis, with the one-
dimensional distributions shown outside the axes.
c compares the neutrino η from SPA-NET regres-
sion (blue dotted),W-mass constraint (red dashed),
and the true distribution (black solid),
with (d) showing the residuals between truth and
SPA-NET regression (blue dotted) or W-mass
constraint (red dashed). e, f show the same dis-
tributions, this time for the reconstructed leptonic
W boson mass.
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W-mass, has a similar shape above mW, and a broad shoulder at lower
values. It may thus be useful to refine the regression step to incorporate
physics constraints, such as the W boson mass, to help the network learn
important, complex quantities such as this. Incorporating more advanced
regression techniques, such as this or combining with alternative methods
such as ν-Flows36,37, is left to future work.

Particlepresenceoutputs. The additional SPA-NEToutputs, described
in the Particle Detector subsection and shown in Fig. 3, can be very useful
in analysis. The KLFitter, PDNN, and SPA-NET event-level likelihoods
are shown in Fig. 3a–c. We note that the permutation methods only
provide event-level scores for the entire assignment, and that the scores
are highly overlapping with little separation between correctly and
incorrectly reconstructed events. Figure 3d–f shows the SPA-NET per-
particle marginal (pseudo)-probabilities, which are summed to calculate
the event-level likelihood. The distributions of the assignment prob-
ability, separated by events, which SPA-NET has predicted correctly or
incorrectly, are shown in Fig. 3g–i, and Fig. 3j–l shows the distribution of
the detection probability split by whether the particle is reconstructable
or not. All of the SPA-NET scores show clear separation between these
categories, and this separation can be used in a variety of ways, such as to

remove incomplete or incorrectlymatched events via direct cuts, separate
different types of events into different regions, or provide separation
power as inputs to an additional multivariate analysis. The top quark
mass and Z0 analyses both cut on these scores in order to remove
incorrect/non-reconstructable events and improve signal-to-
background ratio (S/B). In the t�tH analysis, these are used as inputs to
a BoostedDecisionTree (BDT) to classify signal and background, and are
found to provide a large performance gain.

Computational overhead. Performance tests are performed on anAMD
EPYC 7502 CPU with 128 threads and an NVidia RTX 3090 GPU.
Including all pre-initialization steps, we evaluate the average run time for
the three methods—KLFitter, PDNN, and SPA-NET—for both t�t and
t�tH events. We find that KLFitter averages 24 (2) events per second on t�t
(t�tH). The PDNN averages 2626 (51) events per second when run on a
CPU, and 3034 (101) events per second on aGPU,with the speed up from
GPU hardware minimal due to the fact that permutation building
dominates the computation time. In contrast, SPA-NET averages 705
(852) events per second on a CPU, and 4407 (3534) events per second on
a GPU, showing reduced scaling with the more complex t�tH events as
expected. We therefore conclude that inference of SPA-NET should not

Fig. 3 | Output distributions from SPA-NET and
baselinemethods. The KLFitter likelihood is shown
in (a), the Permutation Deep Neural Network
(PDNN) log-likelihood in (b), and the SPA-NET
event-level log-likelihood in (c), split by correctly
reconstructed events (blue), incorrect events
(orange), and non-reconstructable events (green).
Further, the SPA-NET marginal probabilities for
leptonic top, hadronic top, and Higgs are shown in
(d–f, respectively, grouped in the same way. g–i)
show the SPA-NET assignment probabilities,
grouped by correct (blue) and incorrect (orange)
events. Finally, the SPA-NET detection prob-
abilities, split by reconstructable (blue) and non-
reconstructable (orange), are shown in (j–l).
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be a bottleneck to analyses, as is often the case for methods like KLFitter.
These numbers are summarized in table form in Supplementary Table 1.

Ablation studies
In this section, we present several studies designed to reveal what the net-
works have learned.Wefind that training is, in general, very robust, showing
little dependence on details of inputs or hyperparameters. For example,
training performance is unchanged within statistical uncertainties when
representing particles using {M, pT, η, ϕ} or {px, py, pz, E} 4-vector repre-
sentations.Reconstructionperformancevariesby less than1% if the training
sample with a single top mass value is replaced by that with a flat mass
spectrum.

In addition, we find that the performance of the network in testing
depends on the kinematic range of the training samples in a sensible way.
For example, the performance of the network on independent testing events
varies with the top quark pair invariant mass, reflecting the mass distribu-
tion of the training sample. Figure 4 shows the testing performance versus
top quark pairmass for networks trained on the full range ofmasses, or only
events with invariant mass less than 600 GeV. The performance at higher
mass is degraded when high-mass samples are not included in the training,
as the nature of the task depends on the mass, which impacts the
momentum and collimation of the decay products. Furthermore, the net-
work performance is independent of the process (SM t�t or BSM Z0) used to
generate the training sample. The performance is reliable in the full range in
which training data is present. It is noteworthy that the SM training still
achieves similar performance up to ~1 TeV as the network trained on Z0

events, despite having fewer events at this value, indicating that the training
distribution need not be completely flat so long as some examples are
present in the full range.

To evaluate if the network is learning the natural symmetries of the
data, we perform two further tests. The first is to investigate the azimuthal

symmetry of the events, which we evaluate by applying the network to
events that are randomly rotated in the ϕ plane and/or mirrored across the
beam axis, which should have no impact on the nature of the reconstruction
task. We find that in 41% of test events, the difference in the marginal
probabilities is <1% and 84% of all events have a difference of less than 5%.
This implies that the network approximately learns the inherent rotational
and reflection symmetries of the task, without explicitly encoding this into
the the network architecture. The full residual distributions are shown in
Supplementary Fig. 1.

The impact of adding rotation invariance to the network has been
evaluated by employing an explicitly invariant attention architecture which
employs amatrix of relative Lorentz-covariant quantities between each pair
of particles, similar to existing literature18,38. We focus specifically on the
symmetry induced by rotations along the beam axis. We follow the covar-
iant transformer architecture18, and treat theϕ andη angles as covariant, and
compute the difference between these angles for all pairs of jets in the event.
The remaining features are treated as invariant and processed normally by
the attention. Figure 5a shows that employing the invariant attention
mechanism improves performance for small datasets, but does not lead to
higher overall performance. This observation is consistent with the findings
of existing literature.18,38. The explicit invariance does bring visible
improvement in training speed as seen in Fig. 5b. After fully training both
networks on various training data sizes, we examine the training log and
determine how many batches (gradient updates) were necessary before
achieving maximal validation accuracy. We see that the invariant attention
significantly reduces the number of updates needed to train the network.
The trade-off of this regime is to make each network larger and more
memory intensive, as the inputs must now be represented as pairwise
matrices of features instead of simple vectors. Since the overall performance
in the end is the same, and since we notice that a regular network already
learns to approximate this invariance, we proceed using the traditional
attention architecture, and this invariant network is not used for any further
studies presented here.

Search for t
--
tHðH ! b

--
bÞ

While the previous sections have detailed the per-event performance of
SPA-NET, in the following sections we demonstrate its expected impact on
flagship LHC physics measurements and searches.

The central challenge of measuring the cross-section for t�tH produc-
tion, in which theHiggs boson follows its dominant decaymode to a pair of
b-quarks, is separating the t�tH signal from the overwhelming t�t+b�b
background. Typically, machine learning algorithms such as deep neural
networks or boosted decision trees are trained to distinguish signal and
background using high-level event features34,39. Since the key kinematic
difference between the signal and background is the presence of a Higgs
boson, theperformanceof this separation is greatlydependenton thequality
of the event reconstruction, where improvements by SPA-NET canmake a
significant impact on the final result.

Fig. 4 | Performance of the networks in testing data, asmeasured by hadronic top
reconstruction efficiency, as a function of the top quark pair invariant mass.
Shown is the performance for three networks with distinct training samples:Z0 ! t�t
events with the full range of invariant masses (blue), Z0 ! t�t events with masses
<600 GeV (orange), and SM t�t with the full range of invariant masses (green).

Fig. 5 | A comparison between the regular trans-
former and the explicitly invariant transformer as
a function of training dataset size. Shown are (a)
reconstruction purity and (b) training speed, with
the regular transformer shown in dashed orange and
the explicitly invariant transformer18 in solid blue.
The uncertainty bars in (a) show the variation in
reconstruction purity across 16 separate trainings at
each dataset size.

https://doi.org/10.1038/s42005-024-01627-4 Article

Communications Physics |           (2024) 7:139 7



Reconstruction and background rejection. Event reconstruction is
performed with SPA-NET, KLFitter, and a PDNN. The reconstruction
efficiency for each of these methods is shown in Table 1, where it is
already clear that SPA-NET outperforms both of the baseline methods.

The reconstructed quantities and likelihood or network scores are then
used to train a classifier to distinguish between signal and background. The
full input list is shown in Supplementary Table 2, with most variable defi-
nitions taken from the latest ATLAS result34. A BDT is trained for each
reconstruction algorithm with the same input definitions and hyperpara-
meters using the XGBoost package40. Tests using a BDT trained on lower-
level information, i.e., the four-vectors of the predicted lepton and jet
assignments, found significantly weaker performance than these high-level
BDTs.We also compare the performance of the BDTs to two different SPA-
NET outputs that are trained to separate signal and background. The first,
which we call SPA-NET Pretraining, is an additional output head of the
primary SPA-NETnetwork,whichhas the objectiveof separating signal and
background events. The second, which we call SPA-NET Fine-tuning, uses
the same embeddings and central transformer as the formermethod, but the
signal versus background classification head is trained in a separate second
step after the initial training is complete. In this way, the network is able to
first learn the optimal embedding of signal events, and utilize this embed-
ding as the inputs to a dedicated signal vs background network. We have
implemented in the SPA-NET package an option to output directly the
embeddings from the network such that they can be used in this or other
ways by the end user.

The receiver operating curve for the various classification networks is
shown inFig. 6.Thebest separationperformance comes fromthefine-tuned
SPA-NET model, as expected. The BDT with kinematic variables recon-
structedwith the SPA-NET jet-parton assignment (SPA-NET+BDT setup)
is next, followed by the purely pre-trained model. All of these substantially
outperform both the KLFitter+BDT and PDNN+BDT baselines.

Impact on sensitivity. To estimate the impact of significantly improved
signal-background separation from SPA-NET reconstruction, we per-
form an Asimov fit to the network output distributions with the pyhf
package41,42. The signal is normalized to the SM cross-section of
0.507 pb43 and corrected for the branching fraction and selection

efficiency of our sample. The dominant t�t þ b�b background is normal-
ized similarly, using the cross-section calculated by MAD-
GRAPH_AMC@NLO of 0.666 pb. We further multiply the background
cross-section by a factor of 1.5, in line with measurements fromATLAS34

and CMS39 that found this background to be larger than the SM pre-
diction, rounded up to account also for the LO→NLO cross-section
enhancement. We neglect the sub-leading backgrounds. The distribu-
tions are binned according to the AutoBin feature44 preferred by ATLAS
in order to ensure no bias is introduced between the different methods
due to the choice of binning. Results normalized to 140 fb−1, the lumin-
osity of Run 2 of the LHC, using 5 bins and assuming an overall sys-
tematic uncertainty of 10% are presented in Table 2. The numbers in the
parentheses in Table 2 are results of an LHCRun 3 analysis normalized to
300 fb−1 of data using 8 bins with an overall systematic uncertainty
assumption of 7%. Although the Run 3 center-of-mass energy of the LHC
is

ffiffi
s

p ¼ 13:6 TeV, all results presented assume
ffiffi
s

p ¼ 13 TeV for
simplicity.

In both scenarios, the sensitivity tracks the signal-background
separation performance shown in Fig. 6, with SPA-NET fine-tuning
achieving the greatest statistical power. Neither of the benchmark methods
is able to reach the 3σ statistical significance threshold in the Run 2 analysis,
while both SPA-NET+BDT and fine-tuning reach this mark. Similarly,
these methods both reach the crucial 5σ threshold normally associated with
discovery, with the benchmark methods at only roughly 4σ.

SPA-NET thus provides a significant expected improvement over the
benchmark methods. While the full LHC analysis will require a more
complete treatment, including significant systematic uncertainties due to
the choice of event generators, previous studies have demonstratedminimal
dependence to such systematic uncertainties16.

Top mass measurement
The top quark massmt is a fundamental parameter of the Standard Model
that can only be determined via experimental measurement. These mea-
surements are critical inputs to global electroweak fits45, and mt even has
implications for the stability of the Higgs vacuum potential, which has
cosmological consequences46,47. Precision measurements of the top quark
mass are thus one of themost important piecesof the experimental program
of the LHC, with the most recent results reaching sub-GeV precision48–50.
Wedemonstrate in this section the improvement enabledby the use of SPA-
NET in a template-based top mass extraction.

We perform a two-dimensional fit to the invariant mass distributions
of the hadronic top quark andW boson as reconstructed by each method,
using the basic preselection described in the Datasets and Training sub-
section. We further truncate the mass distributions to 120 ≤mt ≤ 230 GeV
and 40 ≤ mW ≤ 120 GeV. The fraction of events with correct or incorrect
predictions for the top quark jets has a strong impact on the resolution with

Table 2 | Expected large hadron collider (LHC) Run 2 (Run 3)
sensitivity to t

--
tH as measured in a parameterized detector

model described in the text

Signal significance Upper cross-
section limit [pb]

Upper signal
strength limit

KLFitter BDT 2.4σ (4.1σ) 0.426 (0.248) 0.840 (0.489)

PDNN BDT 2.4σ (4.1σ) 0.421 (0.246) 0.831 (0.486)

SPA-NET BDT 3.0σ (5.2σ) 0.340 (0.196) 0.671 (0.387)

SPA-NET pre-
training

2.7σ (4.8σ) 0.371 (0.214) 0.732 (0.423)

SPA-NET fine-
tuning

3.1σ (5.7σ) 0.332 (0.179) 0.655 (0.353)

Shown is the expected statistical significance of the measurement as well as expected upper limits
on cross-section and signal strength using the output of classification networks trained on the
products of various reconstruction algorithms. The signal strength is defined as the ratio of the
Standard Model prediction to the measured cross-section.

Fig. 6 | Receiver operating curve for networks trained to distinguish t
--
tH from the

major background t
--
t þ b

--
b. Shown is signal efficiency versus background rejection

for several SPA-NET based set ups—SPA-NET fine-tuning (solid blue), SPA-NET
+Boosted Decision Tree (BDT) (dash-dot pink), and SPA-NET pretraining (dash-
dot green)—as well as BDTs based on outputs of traditional reconstruction tech-
niques Permutation Deep Neural Network (PDNN) (dotted red) and KLFitter (dot-
dash yellow).
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which themass can be extracted. Better reconstruction should thus improve
the overall sensitivity to the top quark mass.

Incorporation of the W-mass information in the 2D fit allows for a
simultaneous constraint on the jet energy scale uncertainty, often a leading
contribution to the total uncertainty, by also fitting a global jet scale factor
(JSF) to be applied to the pT of each jet. Further, events that do not contain a
fully reconstructable top quark are removed by cutting on the various scores
from each method. KLFitter events are required to have a log-likelihood
score >−70, PDNN events must have a network score of >0.12, and SPA-
NET events must have a marginal probability of >0.23, optimized in each
case tominimize the uncertainty on the extracted topmass.We additionally
compare each method to an idealized perfect reconstruction method, in
which all unmatched events are removed, and the truth-matched recon-
struction is used for all events. The perfect-matched method provides an
indication of the hypothetical limit of improvement achievable through
better event reconstruction. In all cases, we neglect background from other
processes, since these backgrounds tend to beon theorder of a fewpercent25,
and would be further suppressed by the network score cuts.

The top quark mass and JSF are extracted using a template fit from
Monte Carlo samples which have top quark masses in 1 GeV intervals
between 170 and 176GeV. Templates are constructed for varyingmass and
JSF hypotheses for both the top and W boson mass distributions.
These templates are built separately for each of the correct, incorrect,
and unmatched event categories as the sum of a Gaussian and a Landau
distribution, with five free parameters: the mean μ and the width σ of
each, as well as the relative fraction f. We found an approximately
linear relation between the template parameters as a function of the top
quark mass and JSF, allowing for linear interpolation between the mass
points. Finally, we validate the mass extracted by a template fit in hypo-
thetical similar experiments and find a small bias, for which we derive a
correction.

The impact of various reconstruction techniques can be bestmeasured
by the resulting uncertainty on the top quark mass and JSF. Figure 7 shows
the expected uncertainty ellipses for a dataset with luminosity of 140 fb−1

and assuming a JSF variation of ±4%. The final uncertainty on the topmass
is 0.193 GeV for KLFitter, 0.176 GeV for PDNN, and 0.165 GeV for SPA-
NET. This indicates a 15% improvement in top quark mass uncertainty
when using SPA-NET compared to the benchmarkmethods. The idealized

reconstruction technique achieves an uncertainty of 0.109 GeV, demon-
strating how much room for improvement remains. The dominant con-
tribution to the gap between the perfect and SPA-NET reconstruction
comes from the perfect removal of all unmatched events.

Search for Z 0 ! t
--
t

Many BSM theories hypothesize additional heavy particles which may
decay to t�t pairs, such as heavyHiggs bosons or new gauge bosons (Z0).We
investigate a generic search for such a Z0 particle, for which accurate
reconstruction of the t�t mass peak over the SM background plays a crucial
role. We compare the performance of the benchmark reconstruction
methods to that of various SPA-NET configurations by assessing the ability
to discover a Z0 signal.

An important aspect is the selection of training data, due to the
unknown mass of the Z0, which strongly affects the kinematics of the t�t
system. To avoid introducing bias into the network, the training sample is
devised to be approximately flat inmt�t . The network trainingwas otherwise
identical to that described for the SM t�t network, and performance on SM t�t
events was approximately the same in the mass range covered by both
samples.

The basic t�t selection described in theDataset and Training subsection
is applied, and all events are reconstructed as described earlier in order to
calculate the t�t invariant mass, mt�t . The mass resolution of a hypothetical
resonance can often be improved by removing poorly- or partially-
reconstructed events. In the context of the algorithms under comparison,
this corresponds to a requirement on the KLFitter likelihood or network
output scores. The threshold is chosen to optimize the analysis with each
algorithm, leading to a significant reduction of the SM t�t background when
using the PDNN and SPA-NET. For SPA-NET we require a marginal
probability of >0.078, and for PDNN we require a score of >0.43. For
KLFitter, no cut is applied, as no improvement was found. More details on
these cuts and the effect on the background distributions are shown in
Supplementary Figs. 2 and 3 in Supplementary Note 1.

Impact on sensitivity. We use the pyhf41,42 package to extract the Z0

signal and assess statistical sensitivity.
The expected results for a Run 2 analysis, normalized to 140 fb−1 with

20 GeVbins and a systematic uncertainty of 10%, are shown in Table 3. The
discovery significance is improved by SPA-NET compared to the bench-
mark methods for all masses considered. For example, for a Z0 of mass
700 GeV the limit improves from 1.6σ using KLFitter to 3.1σ using
SPA-NET.

The expected sensitivity in a Run 3 dataset with the integrated
luminosity of 300 fb−1 is computed with an optimistic systematic uncer-
tainty of 5% as also shown in Table 3. For all the three benchmark signals,
discovery significance exceeds 5σ using SPA-NET, while for the baseline
methods only the highmass point for thePDNNreaches this threshold.At a
Z0 mass of 500 GeV, KLFitter does not reach the 3σ evidence threshold,
while SPA-NET is able to make a discovery. It is noteworthy that the
neutrino regressiondoes not lead to an improvement on thefinal sensitivity,
despite showing improved resolution compared to the baseline mass con-
straint method. This is due to the effect on the background shape, which
similarly improves in this case.

Improved reconstruction with SPA-NET can therefore greatly boost
particle discovery potential. This finding should extend to other

Fig. 7 | Expected best-fit top quark mass (mt) and jet scale factor (JSF) from a
template-based Asimov fit. Shown are results for the KLFitter (blue), permutation
deep neural network (PDNN) (yellow), SPA-NET (green), and an idealized perfect
reconstruction (red). Also shown are 1σ (solid) and 3σ (dashed) uncertainty ellipses.

Table 3 | Expected global significance for a Z0 signal with an
integrated luminosity of 140 (300) fb−1, for several choices ofZ0

mass and reconstruction algorithms

KLFitter PDNN SPA-NET SPA-NET w/ην

mZ0 ¼ 500 GeV 1.2σ (2.5σ) 1.8σ (3.5σ) 2.8σ (5.5σ) 2.7σ (5.4σ)

mZ0 ¼ 700 GeV 1.6σ (3.3σ) 2.5σ (4.9σ) 3.1σ (6.1σ) 2.9σ (5.7σ)

mZ0 ¼ 900 GeV 1.9σ (3.9σ) 2.8σ (5.5σ) 4.3σ (8.5σ) 4.1σ (8.2σ)
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hypothetical resonances such as heavy Higgs bosons,W 0 bosons, or SUSY
particles as well as non-t�t final states such as di-Higgs, di-boson, tb or any
other in which reconstruction is crucial and challenging.

Conclusions
This paperdescribes significant extensions and improvements to SPA-NET,
a complete package for event reconstruction and classification for high-
energy physics experiments. We have demonstrated the application of our
method to three flagship LHC physics measurements or searches, covering
the full breadth of the LHC program; a precision measurement of a crucial
SMparameter, a search for a rare SMprocess, and a search for ahypothetical
newparticle. In each case, theuse of SPA-NETprovides large improvements
over benchmark methods. We have further presented studies exploring
what the networks learn, demonstrating the ability to learn the inherent
symmetries of the data and strong robustness to training conditions. SPA-
NET is the most efficient, high-performing method for multi-object event
reconstruction to date andholds great promise for helpingunlock the power
of the LHC dataset.

Data availability
Our data is available in an online repository.

Code availability
Our code is available on github (https://github.com/Alexanders101/
SPANet).
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