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Restoration of non-Hermitian
bulk-boundary correspondence
by counterbalancing skin effect

Check for updates

Yi-Xin Xiao , Zhao-Qing Zhang & C. T. Chan

In systems exhibiting the non-Hermitian skin effect (NHSE), the bulk spectrum under open boundary
conditions (OBC) significantly differs from that of its periodic counterpart. This disparity renders the
conventional bulk-boundary correspondence (BBC) inapplicable. Here we propose an intuitive
approach called doubling and swapping to restore the BBC, using the non-Hermitian Su-Schrieffer-
Heeger model as an example. Explicitly, we construct a modified system free of NHSE by swapping
the asymmetric intracell hoppings in every second primitive unit cell. Importantly, this change does
not alter the OBC spectrum. As a result, the modified periodic system can serve as the bulk for
defining topological invariants that accurately predict edge states and topological phase transitions.
The basic principle is applicable to many other systems. By extending the study to disordered
systems in which the asymmetric hoppings are randomly swapped, we show that two types of
winding numbers can also be defined to account for the NHSE and topological edge states,
respectively.

Non-Hermitian (NH) Hamiltonians provide conceptually simple, intui-
tive, and powerful descriptions of a wide range of systems1, such as wave
systems with loss/gain2–4, and open systems5–7. Diverse intriguing phe-
nomena in NH systems, such as exceptional points (EPs)3,8–10, have
spurred extensive research and found numerous applications across
various fields11–14.

The bulk-boundary correspondence (BBC) that predicts, for example,
the existence and the number of chiral edge modes by the bulk Chern
number is at the core of the topological band theory15. The BBC implicitly
assumes that theHamiltonians with open boundary condition (OBC) share
essentially the same bulk eigenvalue spectra with their counterparts with
periodic boundary condition (PBC). The assumption no longer holds in
some NH systems that exhibit non-Hermitian skin effect (NHSE)16–38,
which manifests as the pileup of macroscopically many eigenstates at the
systemboundaries underOBCand the consequent difference betweenOBC
and PBC systems in their spectra16. As a result, the conventional BBC needs
to be rectified.

Some remedies have been proposed to resolve the problem, among
which two approaches known as the non-Bloch approach16,39–41 and the
biorthogonal approach42 are most popular and illuminating. The non-
Bloch approach has been applied successfully in many systems16,40,41. By
extending the concept of Brillouin zone (BZ) to generalized Brillouin zone

(GBZ), a substitute Hamiltonian known as the non-Bloch Hamiltonian is
constructed to serve as the bulk to define a topological invariant. The non-
Bloch approach correctly predicts the existence of topological edge states
and captures topological transitions. Its basic idea is to find a proper
Hamiltonian that is devoid ofNHSE andhas identicalOBC spectrumwith
the original system. The biorthogonal approach uses both the left and
right eigenvectors to determine topological transitions and distinguish
between edge states and bulk states, which are difficult to distinguish due
to NHSE42.

Here we propose a different approach which is more physically
intuitive, transparent, and notably less involved compared to the non-
Bloch approach. For illustration, we consider the NH Su-Schrieffer-
Heeger (SSH) model with asymmetric intracell hoppings16. We adopt a
double-sized unit cell comprising two primitive unit cells and swap the
asymmetric intracell hoppings in every second primitive unit cell. This
arrangement, which we call doubling and swapping, counterbalances the
asymmetry and removes NHSE in the modified system. Importantly, we
find that the doubling and swapping does not change the OBC spectrum
compared to the original NH SSH chain. Therefore the modified system
can serve as the faithful bulk for defining topological invariants that
correctly predicts edge states and topological phase transitions. The out-
come is the same as that of the non-Bloch approach but our approach is
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more straightforward and physically transparent: There is no need to
figure out the GBZ and the only cost is involving more bands. The dou-
bling and swapping method relies on a parameter-swapping symmetry
observed in some non-Hermitian systems, which ensures that the char-
acteristic polynomial of the OBC Hamiltonian remains invariant even
when these parameters are interchanged, for example, the twoasymmetric
intracell hopping parameters in theNHSSHmodelwith nearest-neighbor
hoppings exhibit this symmetry. This method is not applicable to all non-
Hermitian systems with NHSE, however, it is highly effective in handling
the most pertinent ones and can successfully capture the essential aspects
of the problem.We point out that the approach is also applicable tomany
other systems such as theNHCreutz ladderwith gain/loss43. Furthermore,
we extend the study to disordered systems in which the asymmetric
hoppings are randomly swapped. We find that two types of winding
numbers can also be defined in the disordered systems to account for the
presence of NHSE and topological edge states, respectively.

Results
BBC restored by doubling and swapping method
We consider the NH SSH model with asymmetric intracell hoppings t1, t2
and intercell hopping s shown in Fig. 1a. The dashed box marks a double-
sizedunit cell consistingof twoprimitiveunit cells, which corresponds to the

four-band Bloch Hamiltonian

HðkÞ ¼

0 t1 0 se�ika

t2 0 s 0

0 s 0 t1
seika 0 t2 0

0
BBB@

1
CCCA; ð1Þ

where a = 2a0 with a0 being the primitive lattice constant. It is well known
that, due toNHSE,H(k) is not a faithful bulk to capture the topological edge
states16.

To counterbalance the NHSE, we swap the non-reciprocal hoppings
t1, t2 in every second primitive cell and get amodified chain configuration as
shown in Fig. 1b, which corresponds to a modified four-band Bloch
Hamiltonian,

H0ðkÞ ¼

0 t1 0 se�ika

t2 0 s 0

0 s 0 t2
seika 0 t1 0

0
BBB@

1
CCCA: ð2Þ
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Fig. 1 | Topological transition captured by the swapped model. a The supercell
structure of the non-Hermitian (NH) Su-Schrieffer-Heeger model (SSH) H(k).
b The modified system H0ðkÞ obtained from (a) by swapping the non-reciprocal
hoppings t1, t2 in every second unit cell. c,dThe band structures of (a) and (b). Re ðEÞ
and Im ðEÞ bands are represented by solid and dashed lines, respectively. Parameters
s = 1, t1,2 = t ± γ/2 with t = 1/2, γ = 4/3 are used. Four Re ðEÞ bands pairwise coincide
in (d), and for visual clarity they are intentionally drawn to be slightly separated.

e The topological transitions occur at t ¼ ± tc ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðγ=2Þ2

q
as evidenced in

the variation of winding number w as t changes. The blue dots and dashed line
represent numerical and theoretical results, respectively. t = ± tEP = ± 2/3 denote
transition points between regions with complex-valued bands (∣t∣ < tEP) and regions
with real-valued bands (∣t∣ > tEP). f Bandgap of H0ðkÞ closes at the topological
transition point t = tc ≈ 1.2.
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It is obvious that the presence of inversion symmetry in Fig. 1b suppresses
theNHSE44.Wenote that thedoubling and swappingmethoddiffers inboth
construction methods and objectives from the Hermitianization procedure
used in45 and46, which converts the NH SSH chain in Fig. 1a to two separate
Hermitian chains (instead of a singleNH chain) and treats the topology of a
non-trivial point gap (instead of a line gap). Specifically, for a non-
Hermitian system under OBC in the thermodynamic limit,45 and46

respectively relate the topological characterization of its skin modes and
zero singular modes to the topological characterization of the zero
eigenmodes in the enlarged Hermitian system.

For convenience, we refer to the OBC counterparts ofH(k) andH0ðkÞ
asHobc andH0

obc, respectively. Just like Hermitian Hamiltonians,H0ðkÞ can
be used to establish the BBC to predict the topological edge states in H0

obc,
due to the absence of NHSE. As tridiagonal matrices representing chains
with nearest-neighbor hoppings, Hobc and H0

obc have identical spectrum,
since the spectrum depends solely on the product of t1 and t2 rather than on
each value singly (see Methods). And they are generally equivalent under a
similarity transformation, except in certain rare scenario where EPs are
involved and Hobc and H0

obc have distinct Jordan normal forms (see Meth-
ods). This implies that theNHSE-free systemH0ðkÞ can serve as a valid bulk
system for predicting edge states and topological transitions inHobc as well.

While the systems depicted by Fig. 1a, b have the same eigenvalues
underOBC, the band structures ofH(k) andH0ðkÞunderPBCexhibit a clear
contrast, as shown in Fig. 1c, d, where solid and dashed curves denote
Re EðkÞ and ImEðkÞ bands, respectively, for the specific set of parameters
s = 1, t1,2 = t ± γ/2 with t = 1/2, γ = 4/3. The solid bands in Fig. 1d should
actually coincide pairwise, and are intentionally slightly offset for better
visibility. Unlike Hermitian scenarios, Fig. 1c exhibits an unexpected
absence of BZ-folding-induced degeneracies (i.e., Re Ei ¼ Re Ej accom-
panied by Im Ei ≠ Im Ej at k = ± π/a) due to NHSE (see Supplementary
Note 1 for more details).

Due to the chiral symmetry,H0ðkÞ can beflattened to anoff-diagonalQ
matrix, namely QðkÞ ¼ I� 2PðkÞ ¼ 0 qðkÞ

q�1ðkÞ 0

� �
, where PðkÞ ¼P

n¼1;2∣ψR
nðkÞ

�
ψL
nðkÞ

�
∣ with ψR=L

n denoting right/left eigenvectors of
H0ðkÞ16. The two-band winding number16,47,48,

w ¼ 1
2πi

Z
BZ
Tr q�1ðkÞ∂kqðkÞ
� �

dk; ð3Þ

can be employed to capture the existence of topological edge states inHobc.
Alternatively we can use the two-band Berry phase to characterize the
topology utilizing the inversion symmetry in H0ðkÞ (see Methods).

Figure 1e shows thevariationof thewindingnumberwwith respect to t,
with the numerical and theoretical results represented by blue dots and a
dashed line, respectively. The topological transitions occur at

t ¼ ± tc ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðγ=2Þ2

q
, which is derived from s2 = t1t2 and agreeswith

the non-Bloch approach result16.H0ðkÞ becomes gapless at t = tc, as is shown
in Fig. 1f.

An EP transition occurs at t = ± tEP = ± γ/2, where the H0ðkÞ bands
transition from complex-valued to real-valued for ∣t∣ > tEP (i.e., t1t2 > 0). tEP
ismarked in Fig. 1e.When t = ± tEP, a pair of two-foldflat bandswithE = ± s
occur, with EPs for k∈ (− π/a, π/a) and nondefective degeneracies at
k = ± π/a (see Supplementary Note 2).

Following similar reasoning in obtaining H0ðkÞ, we can construct a
two-band NHSE-free system,

h0ðkÞ ¼ 0 τ þ se�ika0

τ þ seika0 0

 !
; ð4Þ

by replacing the asymmetric hoppings t1 and t2 in the original two-band
system h(k) (see Fig. 1a) with τ ¼ ffiffiffiffiffiffiffiffi

t1t2
p 16,44. Equation (4) can also serve as

the bulk, since its OBC counterpart shares the same spectrum with Hobc,

which only depends on the product of t1 and t2, and not on each value
separately.We note that τ ¼ i

ffiffiffiffiffiffiffiffiffiffijt1t2j
p

and h0ðkÞ is NHwhen t1t2 < 0, and it
is Hermitian when t1t2 > 0. It is evident from Eq. (4) that the nontrivial
region ∣t∣ < tc depicted in Fig. 1e can be inferred from ∣τ∣ < s, meaning that
the intracell hopping in h0ðkÞ is weaker than the intercell hopping.We note
thatwhen t1 > t2 > 0, h

0ðkÞ has the same formas the non-BlochHamiltonian
HnB(k) (see Methods). Moreover, by BZ-folding the h0ðkÞ bands, we can
obtain the H0ðkÞ bands in Fig. 1d (see Supplementary Note 3).

Compared to the non-Bloch approach, the doubling and swap-
ping method is more intuitive, transparent, and less involved. It has
the advantage of enabling efficient computation of the continuous
OBC spectrum of a large system, without the need for diagonalizing a
large OBC Hamiltonian matrix which is especially challenging due
to NHSE.

As for the presence of NHSE, a different winding number based on
eigenvalues18,19,45,49

νðEbÞ ¼
1
2πi

Z 2π

0

d
dk

ln det HðkÞ � Eb

� �
dk; ð5Þ

can be used to characterize it, where Eb denotes any point in the
complex energy plane. Skin modes appear under OBC if and only if
there exists Eb 2 C with respect to which the PBC spectrum denoted
as σ[H(k)] has nonzero winding, i.e., ν ≠ 0. In other words, a point
gap in σ[H(k)] is associated with the NHSE18. To differentiate from
Eq. (3), we call the eigenvalue-based ν(Eb) as the spectral winding
number, and call the eigenvector-based w as the chiral winding
number. Such spectral winding number will also be useful for
describing random systems as we will see below.

Random swapping
A natural query arises: what happens if the swapping is conducted ran-
domly?We randomly swap the asymmetric hoppings t1, t2 in an SSHchain,
assigning an equal probability of 1/2 for either swapping or taking no action,
so that the NHSE should be eliminated on average; and investigate how
topology, NHSE and disorder interplay.We connect a disordered chainHc
end-to-end to get its ring counterpartHr . We denote the spectra ofHc and
Hr by σ½Hr� and σ½Hc�.

We observe that, akin to σ[H(k)], σ½Hr� typically manifest as
loops in the complex energy plane, which wind around the arcs of
σ½Hc�. An example is shown in Fig. 2a, where the spectra of three
different L = 80Hr configurations (i.e., comprising 80 sites) we pick
are denoted by orange, green and red dots, respectively. The three
corresponding Hc systems share a common spectrum as denoted by
blue crosses in Fig. 2a, which includes two edge states at E ≈ 0. The
enclosing behavior in Fig. 2a implies remnant NHSE and the size of
enclosed area signifies the strength of the NHSE which varies for
different random configurations. For comparison, σ[H(k)] is shown
by the dashed circle enclosing a much bigger area, indicating much
stronger NHSE under OBC than the disordered rings. The results
indicate that, for random configurations, the NHSE is predominantly
eliminated. However, remnants of it still persist, and the intensity of
these remnants varies depending on the configuration. We can view
H0ðkÞ as a special case of the random configurations that is NHSE-
free, and its spectrum σ½H0ðkÞ� encloses exactly zero area.

For illustration, three arbitrarily chosen wavefunctions of Hr and its
chain counterpart Hc are shown in Fig. 2b, c, respectively, for the third
configuration corresponding to the red dots in Fig. 2a. With the ring cut
open,wavefunctions accumulate to the right boundary as is shown inFig. 2c,
indicating the existence of NHSE under swapping disorder in a finite-size
chain. Different random chains are related by similarity transformations
(except in certain rare cases involving EPs), as is the case forHobc andH 0

obc.
Similar to Eq. (5), a winding number associated with the winding of

σ½Hr� around σ½Hc� as shown in Fig. 2a can be used to characterize the
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NHSE45,50:

ν0ðEbÞ ¼
1
2πi

Z 2π

0

d
dΦ

ln det HrðΦÞ � Eb

� �
dΦ; ð6Þ

whereΦ denotes the flux that threads theHr ring. Equation (6) reduces to
Eq. (5) when disorder is absent45. The fluxΦ appears as phase factors e±iΦ/L

multiplied to hoppings according to the Peierls substitution51. Taking a
L = 20 random ring for example, the winding of σ½HrðΦÞ�with respect toΦ
is shown in Fig. 2d, wherefive sets of spectra are displayed in different colors
and the arrows indicate the directions of spectral winding. The random
chain’s spectrum σ½Hc� is shown by blue crossings, which is enclosed
by σ½HrðΦÞ�.

Different random chains have identical spectrum and their topological
edge states all occur around E = 0 and are generally related by similarity
transformations. Their common topological transitions and topological
edge states can be captured by the winding number w in Eq. (3) defined
based on H0ðkÞ. Alternatively, the winding number for the random chains
can also be computed using the real-space formula52,53:

w0 ¼ 1
L0
Tr0ðSQ½Q;X�Þ; ð7Þ

where S = diag{1,− 1, 1,− 1,… } is the chiral symmetry operator, X =
diag{1, 1, 2, 2,… } denotes the coordinate operator, and Q is the flat-
tened version of Hc, and Tr0 denotes the trace over the middle interval
x∈ [ℓ+ 1, L− ℓ] of the chain. In practice, a modest chain size is
sufficient. The variation ofw0 with t is shown in Fig. 3a, which is the same
as Fig. 1e except that the latter has the merit of being immune to finite-
size errors. The value of w0 remains unchanged when we alter the
random configuration ofHc, which is a noteworthy result (see proof in
Methods).

w0≠0 predicts the existence of a pair of E ≈ 0 states ψ1, ψ2 in a random
chainHc, which are generally edge states localized at the left or right edge
(depending on the configuration), noting that NHSE-induced delocaliza-
tionof edge states is a rare event54,55. For illustration, the edge statesψ1 andψ2
for the third randomHc configuration are shown inFig. 3b. They are related
by chiral symmetry, i.e., ψ1 = Sψ2. The edge states ofHc are generally con-
nected to thoseofH0

obc througha similarity transformation,which embodies
the NHSE in Hc: It amplifies (attenuates) the right (left) side of the edge
states ofH0

obc that are localized at both edges and exhibit even/oddparity due
to inversion symmetry, resulting in ψ1, ψ2 in Fig. 3b that are similar. When
the size ofHobc goes to infinity, its two edge states tend to form an EP due to
NHSE43 (see Supplementary Note 4).

Application to other systems
The doubling and swapping method to restore the BBC can be extended
straightforwardly to other systems that exhibit NHSE including higher-
dimensional ones. For example, the BBC in the NH Creutz ladder model
shown in Fig. 4a can be restored by using a modified bulk obtained by
swapping gain/loss in every second primitive cell43. This is anticipated since
swapping gain/loss ± iγ/2 in Fig. 4a is equivalent to swapping the non-
reciprocal hoppings t ± γ/2 in Fig. 1a (seeMethods).We find that, for every
randomly swappedNHCreutz ladder, there exists a randomly swappedSSH
chain related to it by a similarity transformation (see Methods). Conse-
quently, similar results as shown in Figs. 2 and 3 occur to the NH Creutz
ladder in the presenceof randomswapping. In Fig. 4b, c, we present twoNH
SSHmodels with next-nearest-neighbor hoppings that can be treated using
the swapping method to obtain their true bulk Hamiltonians. Although the
models do not have chiral symmetry, the swapping method is still effective
indetermining the boundaries betweendifferent gappedphases underOBC.
Ourmethod is also applicable to two dimensional (2D) systems like 2DNH
SSH shown in Fig. 4d andNHBenalcazar-Bernevig-Hughes (BBH)model56

in Fig. 4e, which contain asymmetric hoppings in both directions. We

Fig. 2 | Topological characterization of skin effect
in the presence of random swapping. a The spectra
for three different L = 80 random ring configura-
tionsHr (orange, green, red), common spectrum for
three chain configurations Hc (blue crossings), and
H(k)’s spectrum (gray dashed). Parameters
s ¼ 1; t1;2 ¼ t ± γ=2with t ¼ 1=2; γ ¼ 4=3 are used.
b, c Three arbitrarily chosen wavefunctions ∣ψ(x)∣ of
the 3rd configuration for Hr and Hc , respectively.
d Depiction of winding number ν0ðEÞ in Eq. (6)
regarding non-Hermitian skin effect: spectral
winding (two loops) induced by increasing flux Φ
from 0 to 2π in a L = 20 random ring configuration.
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provide a detailed demonstration of the applicability of the swapping
method to the NH BBH model in Supplementary Note 5.

Conclusion
We introduced a simple and intuitive approach known as doubling and
swapping to restore the BBC in systems exhibiting NHSE, at the expense of
involvingmore bands. The basic principle is to counterbalance theNHSEby
swapping the asymmetric hoppings (or gain/loss) in every second primitive
unit cell, while keeping the OBC spectrum unchanged. This approach gives
the same result as the non-Bloch approach that uses the concept of GBZ.
The idea can be applied to a wide range of systems covered in the literature,
including those in higher dimensions. Furthermore, we extended the study
to disordered systems where asymmetric hoppings are randomly exchan-
ged, causing NHSE strength to fluctuate. For each configuration, the NHSE
strength is reflected in the area enclosed by the ring’s spectrum. Similar to
the ordered case, two types of winding numbers can be defined to account
for the NHSE and topological edge states, respectively.

Methods
Similarity between Hobc and H0

obc
Below we show that for a general N ×N tridiagonal matrix M that repre-
sents a chain with nearest-neighbor hoppings, the spectrum remains
invariant when any pair of hoppings between two sites are swapped, i.e.,
Mi,i+1↔Mi+1,i.

For illustration, we consider the following 3 × 3 tridiagonal matrix,

M ¼
ϵa M12 0

M21 ϵb M23

0 M32 ϵc

0
B@

1
CA: ð8Þ

Its characteristic polynomial has the following form

f ðλÞ ¼ detðλI�MÞ
¼ λ3 � λ2 ϵa þ ϵb þ ϵc

	 

� λ M12M21 þM23M32 � ϵaϵb � ϵaϵc � ϵbϵc
	 


� ϵaϵbϵc þM23M32ϵa þM12M21ϵc

ð9Þ

Just like Eq. (9), the characteristic polynomial of a general tridiagonal matrix
consist ofmany terms in the formofMi+1,iMi,i+1, i.e.,Mi+1,iandMi,i+1 always
appear together. Swapping the values of Mi+1,i and Mi,i+1 in a general tri-
diagonal matrixM does not change f(λ) and therefore the eigenvalues ofM.

Immediately we can conclude that Hobc and H0
obc share the same

spectrum, and they are generally equivalent under a similarity transfor-
mation except in the rare scenariowhereEPs are involved andHobcandH0

obc
correspond to distinct Jordan normal forms. For example, as we increase t,
we encounter such a rare scenario at t = γ/2 when the intracell coupling
becomes unidirectional, i.e., t2 = 0. In this case,Hobc andH0

obc have distinct
Jordan normal forms due to occurrence of EPs, and cannot be related by a
similarity transformation.

In a similar vein, we can show thatH 0
obc and a random chainHc have

identical spectrum and are similar in general cases.

Characterization by quantized Berry phase
The topological edges states ofHobc can also be captured by quantized Berry
phase, noting that there is inversion symmetry in H0ðkÞ.

Since H0ðkÞ is a four-band system, we need to consider the two-band
Berry phase. The overlap matrix has the form

Mki;kiþ1
mn ¼ uLm;ki

juRn;kiþ1

D E
; ð10Þ

where m, n = 1, 2, L and R indicate the left and right eigenvectors, respec-
tively. The two-band Berry phase is then obtained by57

ϕB ¼ �Im ln det
YN�1

i¼0

Mki ;kiþ1 ; ð11Þ

A dense enough mesh in calculating Eq. (11) gives us the quantized Berry
phase, without the need to involve the singular value decomposition. In our
numerical computation, we can skip the k = π point where the band
degeneracyoccurs.Wecan also include the k = πpoint, but it is important to
remember the constraint 〈um,k=π∣un,k=π〉 = δmn in order to address the
degeneracy-induced ambiguity in the eigenvectors.

Derivation of non-Bloch Hamiltonian HnB(k)
In the textwe claimed thath0ðkÞ inEq. (4) is just the non-BlochHamiltonian
HnB(k). Belowwe provide the derivation ofHnB(k). The BlochHamiltonian
for the system in Fig. 1a is

hðkÞ ¼ 0 t1 þ se�ika0

t2 þ seika0 0

 !
: ð12Þ
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Fig. 3 | Topological edge states in the presence of random swapping. aWinding
number w0 of a L = 80 random chain calculated using Eq. (7). The dots and dashed
line represent numerical and theoretical results, respectively.bThe two topologically

protected E = 0 states (real part) are denoted by blue and orange lines. The inset
shows their imaginary parts.
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With the substitution eika0 ! β in h(k), Eq. (12) becomes

hðβÞ ¼ 0 t1 þ sβ�1

t2 þ sβ 0

 !
: ð13Þ

The characteristic polynomial of hðβÞ ¼ det½E � hðβÞ� is

f ðβ; EÞ ¼ E2 � t1t2 � s2 � t1sβ� t2sβ
�1: ð14Þ

Following ref. 41, we can solve for the auxiliary generalized Brillouin zone
from

f ðβ; EÞ ¼ f ðβeiΞ; EÞ ¼ 0; ð15Þ

whereΞ is real. Equation (15) contains four real equations ifwewrite the real
and imaginary parts separately, and five real variables: Re ðEÞ, Im ðEÞ, Ξ,
Re ðβÞ and Im ðβÞ. By eliminating E in Eq. (15), we get two equations for the

three variables Ξ, Re Re ðβÞ and Im ðβÞ:

Re ½Gðβ;ΞÞ� ¼ 0; and Im ½Gðβ;ΞÞ� ¼ 0; ð16Þ

where Gðβ;ΞÞ ¼ RE½f ðβ; EÞ; f ðβeiΞ; EÞ� denotes the resultant58 of f(β, E)
and f (βeiΞ, E) with respect to E.

By the Weierstrass substitution cosΞ ¼ ð1� τ2Þ=ð1þ τ2Þ and
sinΞ ¼ 2τ=ð1þ τ2Þ, Eq. (16) becomes two algebraic equations of τ, Re ðβÞ
and Im ðβÞ, which we rewrite as

Grðβr; βi; τÞ ¼ 0; and Giðβr; βi; τÞ ¼ 0 ð17Þ

where we use βr � Re ðβÞ, βi � Im ðβÞ, Grðβr; βi; τÞ � Re ½Gðβ; τÞ�
and Giðβr; βi; τÞ � Im ½Gðβ; τÞ�.

Using Rτ ½Grðβr; βi; τÞ;Giðβr; βi; τÞ� ¼ 0, we eliminate τ in Eq. (17)
and obtain the equation for the auxiliary GBZ,

t1ðβ2r þ β2i Þ � t2
� �4

× t1ðβ2r þ β2i Þ þ t2
� �4 ¼ 0; ð18Þ
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Fig. 4 | More examples. a Applying swapping method to non-Hermitian (NH)
Creutz ladder model with magnetic flux represented by imaginary hoppings ± is/2.
Gain and loss are denoted by onsite energies ± iγ/2. The system with swapped gain/
loss in every second unit cell is displayed on the right side. b, c Applying swapping

method to another two variants of NH SSH model. d, e Two dimensional (2D)
examples that can be treated by the swappingmethod: (d) 2DNHSSHmodel and (e)
NH Benalcazar-Bernevig-Hughes model. The swapping procedures are omitted in
d and e.
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which involves t1 and t2. From Eq. (18), we obtain the arcs of the auxiliary
GBZ,

t1ðβ2r þ β2i Þ ¼ ± t2: ð19Þ

From Eq. (19), we then get the GBZ modulus

jβj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∣t2=t1∣

p
: ð20Þ

With the GBZ parameterized as β ¼ jβjeika0 substituted into Eq. (13),
we get the non-Bloch Hamiltonian

~HnBðkÞ ¼
0 t1 þ sjβj�1e�ika0

t2 þ sjβjeika0 0

 !
: ð21Þ

By a similarity transformationHnBðkÞ ¼ X�1 ~HnBðkÞX with X = diag(∣β∣−1/

2, ∣β∣1/2), we obtain a different form of non-Bloch Hamiltonian

HnBðkÞ ¼
0 t1jβj þ se�ika0

t2jβj�1 þ seika0 0

 !
: ð22Þ

Compared to Eq. (12), the asymmetric intracell hoppings t1,t2 are scaled
to t1∣β∣, t2∣β∣−1 inHnB(k) such that t1∣β∣ = ± t2∣β∣−1 and the systemHnB(k)
is NHSE-free. Obviously the OBC counterpart ofHnB(k) shares the same
spectrum with that of h(k), H(k), H0ðkÞ or h0ðkÞ, noting
t1∣β∣ × t2∣β∣−1 = t1t2.

In comparisonwithHnB(k) inEq. (22),h
0ðkÞ inEq. (4)of the text comes

from a different scaling of the asymmetric intracell hoppings t1,t2 to
ffiffiffiffiffiffiffiffi
t1t2

p
such that the system h0ðkÞ is NHSE-free. They are identical when t1 > t2 > 0.

Samew0 value for different random SSH chain configurations
Below we show that different random configurations ofHc not only share
the common spectrum, but also lead to the same value of winding num-
ber w0.

We rewrite the real-space formula for the winding number associated
with chiral symmetry,

w0 ¼ 1
L0
Tr0ðSQ½Q;X�Þ; ð23Þ

whereTr0 denotes the trace over themiddle interval x∈ [ℓ+ 1, L− ℓ] of the
chain, and

S ¼ diag½1;�1; 1;�1; 1;�1; � � � �; X ¼ diagf1; 1; 2; 2; . . . g; ð24Þ

andQ represent the chiral symmetry operator, the coordinate operator, and
the flattened Hamiltonian. Q is given by

Q ¼ I� 2P ð25Þ

with P ¼P‘=2
i¼1jϕRi ihϕLi j being the projection operator of the eigenstates

with lower energy E (or ReE).
Without loss of generality, for any two different random chain con-

figurations, e.g.,Hc and �Hc, we assume that they are related by a similarity
transformation,

�Hc ¼ UHcU
�1: ð26Þ

Correspondingly, their projection operators and flatten Hamiltonians are
related by

�P ¼ UPU�1; �Q ¼ UQU�1: ð27Þ

It is important to note that S,X and U are all diagonal matrices, and �Q2 ¼
ðI� 2�PÞ2 ¼ 4�P2 � 4�P þ I ¼ I using �P2 ¼ �P.

We have

ð�QX �QÞii ¼ ðUQU�1XUQU�1Þii ¼
X
j

UiiQijU
�1
jj XjjUjjQjiU

�1
ii

¼
X
j

UiiQijXjjQjiU
�1
ii ¼

X
j

QijXjjQji ¼ ðQXQÞii;
ð28Þ

where U�1
jj � ðU�1Þjj. Then we have

Tr0ðS�QX �QÞ ¼
XL�‘0

i¼‘0þ1

X
j

Sii �QijXjj
�Qji ¼

XL�‘0

i¼‘0þ1

Sii
X
j

�QijXjj
�Qji

¼
XL�‘0

i¼‘0þ1

Siið�QX �QÞii ¼
XL�‘0

i¼‘0þ1

SiiðQXQÞii ¼ Tr0ðSQXQÞ;

ð29Þ

where the fourth equality used Eq. (28).
Finally we find the relation

�w0 ¼ 1
L0
Tr0ðS�Q½�Q;X�Þ ¼ 1

L0
Tr0ðS�Q2X � S�QX �QÞ ¼ 1

L0
Tr0ðSX � S�QX �QÞ

¼ 1
L0
½Tr0ðSXÞ � Tr0ðS�QX �QÞ� ¼ 1

L0
½Tr0ðSXÞ � Tr0ðSQXQÞ�

¼ 1
L0
Tr0ðSQ½Q;X�Þ ¼ w0;

ð30Þ

where �Q2 ¼ I is used in the third equality, and Eq. (29) is used in the fifth
equality. Equation (30) shows that the winding number is exactly equal for
any two different random chain configurations, i.e., the random swapping
itself does not change the value of the winding number as long as the same
L, ℓ are taken.

Similarity between SSH model and Creutz ladder model in the
presence of disorder
The BlochHamiltonians of the SSHmodel and Creutz laddermodel, which
we denote as h(k) and HlðkÞ, are related by the following similarity trans-
formation:

R�1hðkÞR ¼ HlðkÞ; ð31Þ

where

hðkÞ ¼ ðt þ s cos kÞσx þ ðs sin kþ iγ=2Þσy

¼ 0 t1 þ se�ik

t2 þ seik 0

 !
;

HlðkÞ ¼ ðt þ s cos kÞσx þ ðs sin kþ iγ=2Þσz
¼ s sin kþ iγ=2 t þ s cos k

t þ s cos k �s sin k� iγ=2

� �
;

ð32Þ

and

R ¼ eiσxπ=4 ¼ 1ffiffiffi
2

p 1 i

i 1

� �
: ð33Þ

In the presence of random swapping, the Hamiltonians of the SSH
chains (rings) and Creutz ladder chains (rings) are related by the following
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similarity transformation,

X�1h0X ¼ H0
l; ð34Þ

where

X ¼ R� R� � � � � R ð35Þ

is a block diagonal matrix, as long as the indices of swapped unit cells in the
two systems coincide. It is obvious that Eq. (34) also applies to the finite
unswapped and the orderly swapped chains (rings).

For any given t, s, γ values, all the random SSH chains and random
Creutz ladder chains share the same spectrum, and a similarity transfor-
mation generally exists between any two of them.

Data availability
The rawnumerical data of the presented plots are available from the authors
upon request.

Code availability
The codes used to generate the figures are available upon a reasonable
request, though not essential to the conclusions of this work.
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