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Revealing the mechanisms of semantic
satiation with deep learning models
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The phenomenon of semantic satiation, which refers to the loss of meaning of a word or phrase after
being repeated many times, is a well-known psychological phenomenon. However, the microscopic
neural computational principles responsible for thesemechanisms remain unknown. In this study, we
use a deep learning model of continuous coupled neural networks to investigate the mechanism
underlying semantic satiation and precisely describe this process with neuronal components. Our
results suggest that, fromamesoscopic perspective, semantic satiationmaybe abottom-upprocess.
Unlike existingmacroscopic psychological studies that suggest that semantic satiation is a top-down
process, our simulations use a similar experimental paradigm as classical psychology experiments
and observe similar results. Satiation of semantic objectives, similar to the learning process of our
network model used for object recognition, relies on continuous learning and switching between
objects. The underlying neural coupling strengthens orweakens satiation. Taken together, both neural
and network mechanisms play a role in controlling semantic satiation.

Haveyou ever engaged inprolonged contemplationof a linguistic entity to the
extent that its semantic essencebegins toeludeyou?Consider, for instance, the
word “cat” Prolonged and unwavering fixation on this linguistic symbol may
evoke an eerie sense of detachment. Abruptly, the very word “cat”, con-
ventionally evoking imagery of endearing domesticated felines, appears to
undergo a peculiar transmutation, losing its inherent signification, and even
forfeiting its status as a recognizable linguistic construct. Iterative inscriptions
or readings of “cat” yield an analogous outcome. The ceaseless recurrence of a
single lexical unit or phrase can culminate in its ephemeral deprivation of
semantic meaning, an intriguing psychological phenomenon referred to as
“semantic satiation”1–6. It is imperative tonote that these enigmatic encounters
are not restricted solely to the domain of language but extend to encompass
non-verbal entities that have been studied in both humans and animals with
different experimental protocols and techniques7–15.With themore advanced
methods recently developed, this phenomenon has been continuously
investigated with newly identified biomarkers16–23.

In the realmofneuroscience,despite the invaluable advantages it offers,
research in the field of semantic satiation has predominantly operated at a
macro level, thus far constrained in its ability to establish pertinent links
betweenmacro-level satiation phenomena and the intricacies ofmicro-level

neural activity15,24. Neurophysiological experiments, by necessity, entail the
examination of neural responses under stimulus conditions during the deep
sleep of animals to mitigate the influence of extraneous variables25–27.
However, the contention arises that the assessment of semantic satiation
should ideally transpire under conditionswhere animals are in an awakened
state. This suggestion presents a conundrum when contemplating the
integration of neuroscience experimental methodologies into the ambit of
psychological research28. Consequently, while significant strides have been
taken in deciphering the mechanistic underpinnings of semantic satiation,
the intricate dynamics of this phenomenon continue to elude comprehen-
sive understanding. This challenge stems from the innate susceptibility of
participant performance to the nuances of experimental paradigms and
tasks. Thus, the proposition of developing a mesoscopic model emerges as
an attractive pathway for research endeavors, one that endeavors to bridge
the chasm between micro-level neural activity and the macro-level mani-
festation of semantic satiation29.

In light of these challenges, here we endeavor to employ a novel
approach, utilizing a continuous coupled neural network30 and a fully
connected layer to construct an artificial neural network based on deep
learning that simulates the cognitive mechanisms underpinning semantic
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satiation. The CCNN, inspired by the dynamics of primary visual cortex31,
exhibits commensurate static and dynamic properties with real neurons.
Previous research has demonstrated that, by appropriately configuring the
parameters of the CCNN,model complexity can be reduced while faithfully
replicating the electrophysiological signals of actual neurons32–34. Conse-
quently, the CCNN holds the promise of facilitating large-scale simulation
computations while mirroring the dynamical attributes of real neurons35.
This approach is poised to facilitate efficient and accurate observations and
quantification of experimental results pertaining to semantic satiation, thus
advancing our comprehension of this enigmatic phenomenon.

Our findings serve to elucidate the temporal dynamics of the proposed
ventral pathwaymodel’s image classification accuracy using a deep learning
approach, revealing a distinct pattern over time. Specifically, we observe an
initial augmentation in classification accuracy as time progresses, reaching
an apex, followed by a subsequent decline. This pattern of performance
closely mirrors the phenomenon of semantic satiation, a well-documented
phenomenonassociatedwithfluctuations inhumanclassificationability36,37.
As a repeated stimulus persists, information processing within the primary
visual cortex becomes increasingly enigmatic. This underscores the pivotal
role played by the primary visual cortex in information processing and
suggests a link between the occurrence of semantic satiation and the
underlying mechanisms operating within this brain region. Consequently,
our observations imply that semantic satiation may be characterized as a
bottom-up process, with the primary visual cortex being a key player in this
cognitive phenomenon.

Results
Semantic satiation as a neural network model via deep learning
Figure 1a provides a depiction of the veritable architecture of the ventral
visual pathwaywithin the visual cortex38. This neural pathway encompasses
the sequential processing of light signals, commencingwith their capture by
the retina, followed by transmission through lateral geniculate nucleus
(LGN) cells, further passage to the primary visual cortex (V1), and sub-
sequent progression through secondary visual regions, including V2, V4,
and the inferior temporal cortex (IT cortex)39–43. It is noteworthy that
neurons located within V1 and V2 are characterized by smaller spatio-
temporal integration receptive fields, allowing them to effectively process
localized visual information44,45. In contrast, V4 neurons feature larger
receptive fields, rendering them suitable for the integration of visual infor-
mation within a broader visual field, while the IT cortex is primarily
responsible for object recognition and higher-order cognitive functions.

Figure 1c portrays the semantic satiation paradigm in psychology,
focusing on speed classification. This experimental design typically
encompasses two critical processes: first, the repetitive presentation of
identical stimuli to participants; and second, the participants’ subsequent
judgments and responses, designed to gauge the impact of stimulus repe-
tition on the accuracy of their classifications. In the realm of empirical
studies on semantic satiation, a variety of experimental paradigmshavebeen
employed. Nonetheless, a common thread among these paradigms is the
categorization task, which recurrently presents a target stimulus and
requires participants to assess the category towhich the targetword belongs.

Fig. 1 | Comparison of ventral pathway and artificial ventral pathway framework.
aThe ventral visual pathway and neuronal connections inmammals. bComparison
of changing trends between our ANN primary visual cortex framework output and

EEG signal. c Experimental paradigm of semantic satiation in psychology.
d Artificial neural network semantic satiation framework based on CCNN.
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Subsequently, the time required for categorization or the accuracy of
judgment is assessed to explore the phenomenon. In the present study, we
conceive of the primary visual cortex as a CCNN model that emulates the
repetitive processingof input stimuli, with a fully connected layer simulating
the recognition function of more advanced visual regions46,47. This model
incorporates both inter-layer and intra-layer connections, mirroring the
intricacies of the actual visual system, as portrayed in Fig. 1d.

The architecture and procedures of our network draw inspiration from
classic semantic satiation experiments conducted by numerous psycholo-
gists. In this context, the accuracy of network-based classifications emerges
as a pivotal metric for discerning the occurrence of semantic satiation.
Furthermore, the average output of CCNN neural clusters serves as a
representative indicator of the level of activity within the corresponding
brain areas, facilitating comparisons with results from Electro-
encephalography (EEG) experiments20–22 as shown in Fig. 1b.

This proposed framework thus offers a relevant explanation for a
multitude of intriguing findings in the domains of neuroscience and psy-
chology, particularly those pertaining to semantic satiation. To evaluate the
credibility of this model, we conduct a series of classification tasks that
parallel psychology experiments. Our simulation framework, as delineated
in Fig. 1c, endeavors to replicate various neuron behaviors observed in real-
world experiments. Semantic satiation experiments in psychology, akin to
the classification tasks in our study, involve the repetitive presentation of the
same stimulus to participants48. Participants subsequently classify the pre-
sented stimulus after varying durations of exposure49, with the time required
for classification serving as the determinant criterion for ascertaining the
occurrence of semantic satiation.

As illustrated in Fig. 1d, our model framework is comprised of a net-
work model, commensurate in size with the input image, designed to
establish anArtificial NeuralNetwork (ANN) simulating the primary visual
cortex. The CCNN neurons are interlinked with neighboring neurons
through linking matrices, with the dimensions of these matrices signifying
the receptive field’s size. Subsequent to this initial stage, a fully connected
layer, mirroring the functioning of the Inferior Temporal (IT) areas, is
deployed to conduct the classification of the processing results generated by
the ANN primary visual cortex. Our experimental protocol entails the
repeated input of an identical image into the CCNN network layer for
processing, with the number of iterations mirroring the stimulus pre-
sentationduration.The classification accuracy, a salient parameter, serves as
a metric for appraising the network’s classification proficiency.

In the ensuing series of experiments, we employ two datasets, the
MNIST dataset and the Fashion-MNIST dataset, to facilitate comprehensive
simulations50,51. These datasets encompass both verbal and non-verbal ima-
ges, affording us the capability to investigate the phenomenon of semantic
satiation in both verbal and non-verbal contexts. The images serve as input
stimuli, while the classification results constitute the model’s output. The
number of repetitions corresponds to the duration during which primary
visual cortex neurons process information and is consequently denoted as
model time. This meticulous alignment with the experimental protocols in
psychological studies enables a precise emulation of semantic satiation.

The primary objectives of the ensuing experiments are twofold: (1) To
elucidate the emergence of visual-related semantic satiation at the meso-
scopic level and ascertain whether it manifests as a bottom-up or top-down
cognitive process. (2) To scrutinize the extent to which visual information
undergoes modification within the primary visual cortex (V1) before
reaching the inferior temporal cortex (IT) region, thus unraveling the
intricate interplay between visual processing mechanisms and the phe-
nomenon of semantic satiation.

Semantic satiation caused by same repeated stimulus
Semantic satiation, a cognitive phenomenon, manifests when individuals
are subjected to prolonged exposure to the same stimulus. Classic experi-
ments in the realm of psychology have traditionally illuminated this phe-
nomenon by repetitively presenting subjects with identical stimuli. The
assessment of semantic satiation in such experiments typically hinges on

quantifying the duration of stimulus presentation and the duration required
for participants to reach a decision. Nonetheless, in conventional psycho-
logical experimentation, the precise quantification of participants’ response
times in the context of varying stimulus presentation durations proves to be
a formidable challenge. As a result, researchers often obtain only qualitative
results, discerning whether the presentation time of the same stimulus is
relatively shorter or longer. For instance, when the same target word is
reiterated thirty times compared to three times, participants invariably
exhibit extended decision-making times. In essence, excessive repetition of
stimuli correlates with lengthened response times.

In our study, we emulate the experimental process in psychology, as
delineated in Fig. 2a. The discernible trajectory of participants’ classification
proficiency in psychological experiments is depicted in Fig. 2b. Our pro-
posedArtificialNeuralNetwork (ANN) framework is anchored in the same
experimental paradigm. The results showcased in Fig. 2 indicate that the
model’s accuracy initially ascends and subsequently declineswith increasing
model time. This trajectory mirrors the trends observed in psychological
experiments (Fig. 2c, d). Notably, variations in the size of the receptive field
do not fundamentally alter the overarching pattern. This underscores the
efficacy of theANN framework in faithfully simulating and reproducing the
intricate process of semantic satiation. Significantly, the phenomenon of
satiation is not confined solely to verbal stimuli but also extends to other
non-verbal images, encompassing vision-related semantic satiation phe-
nomena. This observation aligns seamlessly with the findings documented
by psychologists.

Semantic satiation caused by similar repeated stimulus
In classification tasks, showing a related word before the target word
requiresmore time for the participant tomake a classificationdecision14. For
example, repeating “apple” thirty times before asking participants to classify
“banana” or “chair” as fruit will significantly increase the time required to
make a judgment for “banana” and result in more errors in classification.
However, this effect does not occur when classifying “chair”. This suggests
that stimuli related to the initial repeated stimulus are also affected by the
satiation effect.

The aim of this experiment is to explore how neurons react to images
withhigh relevance, low relevance, or relatedness after an extendedperiodof
stimulus. In section, Semantic satiation as a neural network model via deep
learning, the size of the receptive field doesn’t have a significant impact on
the experimental results. Therefore, in this experiment, the receptive field is
set to 3 × 3. The experimental input sequence is shown in Fig. 3a, c. Firstly, a
prime stimulus is input as input-1, and then after several repetitions of
input-1, the target stimulus to be classified is input as input-2. By analyzing
the correlation between input-2 and input-1 and the classification accuracy
of input-2, the effect of the similarity between the different categories on the
degree of satiation can be exposed through input-1 and input-2. Both
datasets show the same phenomenon. There are different correlations
between the different categories. For instance, some numbers may have
higher relevance to the number “1” (e.g., “7”), while others may be less
relevant (e.g., “9”), or unrelated (e.g., “3”). People tend to perceive more
similarities between “1” and “7”, such as the shape of a straight line while
finding a little resemblance between “1” and “3”. The Structural Similarity
Index (SSIM) is used to measure the degree of similarity between different
categories. InFig. 3b, the SSIMvalue for “1-3” is 0.203, the SSIMvalue for “1-
7” is 0.250, and the SSIM value for “1-9” is 0.243. In Fig. 3d, the SSIM value
for “Sandal-Bag” is 0.045, the SSIMvalue for “Sandal-Pullover” is 0.067, and
the SSIM value for “Sandal-Ankle boot” is 0.161. SSIM values between all
categories in the two datasets are shown in Fig. S1. The subsequent study
involves inputting one type of number image into the single-layer CCNN
framework repeatedly and then inputting a different type of number image
to measure the recognition accuracy of MNIST (Fig. 3a). The extent of the
decrease varies according to the relevance of each number to input-1 as
shown in Fig. 3b. The same results are obtained in the Fashion-MNIST
dataset experiment as shown in Fig. 3c, d. Psychological study has shown
that participants require more time to recognize the numbers “1” or “7”, as
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verified by EEG-based experiments21. Therefore, the results of this study are
consistent with those of actual psychological experiments.

Visualization of visual information processing’s
intermediate state
The experiments above demonstrate that themodel is capable of simulating
semantic satiation from multiple perspectives. However, the evolution of

semantic or visual signals over time remains unclear. The output feature of
the CCNN layer at individual time points and the outputs of the fully
connected layer are plotted to study the evolution of semantics in the pri-
mary visual cortex and IT area. The visualization includes the follow-
ing parts:

Figures 4 and 5 show the changes in the image in our ANN primary
visual cortex. Figure 4 displays the images processed by theANNnetwork at

Fig. 2 | Semantic satiation caused by the same
stimulus. a Input stimulus sequences in the
experiment. The input stimulus remains the same
during the model time process. b The trend of
classification ability of participants in psychology
experiments. The judgment ability of the partici-
pants first increases and then decreases as the model
time increases. c, d The variation of MNIST and
Fashion-MNIST classification accuracy with the
model time under different receptive field sizes. The
colored lines represent the size of receptive fields.
The accuracy curve in various situations has the
same trend as real psychological experiments.
Receptive fields of different sizes show the
same trend.

Fig. 3 | Semantic satiation caused by similar stimulus. a, c Similar input sequences
from the MNIST and Fashion-MNIST datasets. The input is divided into two parts,
starting with a stimulus input that is repeated 5 or 10 times before inputting the
target stimulus. The participants show ahigher classification ability of input-2 on the
class with a lower relevance. b, dThe trend of the accuracy of the target input (input-
2). The left and right graphs show the cases where input-1 is repeated 5 and 10 times,

respectively. The colored lines represent different categories of input-2. Darker
colored lines represent higher category similarity and lower accuracy. The higher the
similarity with input-1, the lower the accuracy of input-2. The results demonstrate
that the proposed ANN framework is able to imitate the characteristics of semantic
satiation in humans.

https://doi.org/10.1038/s42003-024-06162-0 Article

Communications Biology |           (2024) 7:487 4



various model times, corresponding to section, Semantic satiation as a
neural network model via deep learning. In both datasets, the image signals
gradually becomemore obscure and themain parts, which refer to the parts
related to semantics, become larger and more unclear (Fig. 4a, b). Figure 5
shows the changes in a similar stimulus experiment, corresponding to
section, Semantic satiation caused by same repeated stimulus. The effect of
continuous pre-stimulus persists for some time after the stimulus stops. The
accuracy of other input1 and input2 situations can be found in Fig. S2. The
residual image of the processing result of the first image signal appears on
the processing result of the other subsequent pictures for some time before
gradually fading away.

Owing to the existence of coupling connections, the firing information
of neurons propagates through the coupling links to neighboring neurons,
giving rise to an automatic wave effect. As model time progresses, this
automatic wave effect becomes susceptible to interference from high-
intensity waves present in the darker regions of the image. Consequently,
this interferencedisrupts the state of neurons in thedarker areas anddistorts
the features at the image’s edges. The temporal evolution of several inter-
mediate states of the CCNNneuron was visualized in Fig. S3. The fivemain
parts are feeding input F, couple linking L,modulation product U, dynamic
activity E, and continuous output Y. Due to the presence of coupling con-
nections, noise gradually spreads towards the surrounding dark areas.

Figures 6 and 7 show the variation in processing results for themanual
IT area. The fully connected layer abstracts each image into a ten-
dimensional vector in Fig. 6a. Then, the distance between themean valuesof
different categories of vectors can be calculated. This simulation uses
abstract digital vectors to represent semantic segments. The inter-class
distance’s variation trend is consistent with the accuracy, but the intra-class
distance’s trend does not move in the opposite direction as expected as
shown in Fig. 6b, c52. Figure 7 shows the vector distribution after
t-distributed stochastic neighbor embedding (t-SNE). This indicates that in
the semantic satiation phenomenon, the semantics of different classes
becomemoredispersed,making classificationmore challenging to complete
and even leading to errors.

In summary, semantic satiation is closely related to the working
mechanisms of the primary visual cortex. Due to the connection between
neurons, the continuous stimulus of a single neuron will impact the action
potential and signal transmission process of other surrounding neurons,
which consequently alters the information processed by all neurons. This
explains why the persistent input signal to the brain may lead to the
attenuation of definition. From Fig. 5, it can be inferred that neuronal
responses exhibit a certain time delay compared to stimulus signal input. In
Fig. 5, the residual image of the previous input signal is still retained in the
output even after the signal has ceased for a while. This delay prevents

neurons from swiftly returning to the initial state and adapting promptly to
new tasks. And it is able to explain well the changes in the semantic dis-
tribution of the IT area.

Comparison experiment of framework and EEG based
cognitive study
Psychological perspectives have utilized the N400 component of event-
related potentials (ERPs) to investigate the phenomenon of semantic
satiation. Researchers observe the amplitude changes of the N400 compo-
nent before and after semantic satiation20,21,53. When two completely unre-
lated stimuli are presented, significant differences in the amplitude of the
N400 component will occur. The difference inN400 of population activities
before and after satiation can be used to measure the degree of satiation as
shown in Fig. 8b54–57.When the difference is larger, the degree of satiation is
generally believed to be deeper.

Parallels have been drawn between the neuronal action potentials
generated by the CCNNmodel and the N400 component observed in EEG
signals due to their shared manifestation as electrical signal characteristics
indicative of neural activity. EEG signals serve as a proxy for neuronal
activity fluctuations transmitted by electrical signals across the brain.
Similarly, the output Y from the CCNN model’s neurons, representing
action potentials, reflects the underlying neuronal activities. N400 typically
manifests itself in the central and upper regions of the brain58. For a com-
prehensive understanding of the spatial distribution of the N400 effect and
the interaction between brain regions, multiple electrodes are typically
employed for recording59. This facilitates the analysis of N400 waveform
distribution across the entire scalp and the exploration of spatiotemporal
relationships between different brain regions. Drawing from psychological
experiments on N400, researchers primarily focus on changes in N400
amplitudes before and after semantic satiation53. When two entirely unre-
lated stimuli are presented, significant differences in N400 component
amplitudes arise. The disparity in the amplitudes of the N400 components
before and after satiation serves as a measure of the degree of satiation54.

Inourmodel, the average output of neurons in theANNprimary visual
cortex represents the level of neuron activity. By comparing the output
difference of the visual cortex before and after semantic satiation, it can be
determinedwhether there is a satiationphenomenon in this stage.As shown
in Fig. 8a, the output of ourmodel has the same trend as the change inN400.
Our experiment yieldeda similar conclusion: once semantic satiation sets in,
the difference in the mean output of the neurons significantly reduces. The
experiments compared the averageoutputof ourmodel’sneurons at input-2
from the experiments in Section, Semantic satiation caused by same repe-
ated stimulus, as shown in Fig. 8c. The difference in output between the
numbers “7” and “3” is significantly higher than the difference in output

Fig. 4 | Visualization of the results of the proces-
sing of theCCNNat different time points. aRepeat
processing results for number “7” in CCNN.
b Repeat processing results for “pullover” in CCNN.
Both datasets show that the images are changing as
themodel time lasts. This maymake itmore difficult
to classify images for the model.
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Fig. 5 | Visualization of semantic satiation caused by similar input. a The process
of experiment on MNIST with the five repetitions of input-1. b The process of
experiment on Fashion-MNIST with the repetitions of input-1. c The process of
experiment on MNIST with the ten repetitions of input-1. d The process of

experiment on Fashion-MNIST with the ten repetitions of input-1. In fig. (a, c), “1”
repeats 10 times has a greater impact on the following images than 5 times. The same
result can be seen on Fashion-MNIST in fig. (b, d). Continuous repetition will make
it more difficult for the model to classify similar content.
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between the numbers “7” and “9”. The disparity gradually decreased fol-
lowing the onset of semantic satiation. Our findings resemble those of N400
experiments conducted by cognitive psychologists, however, our conclu-
sions differ. Our experimental results show that semantic satiation emerges
in the primary visual cortex. This differencemay be attributed to the spatial
scale of our respective investigations. While existing cognitive research
based on EEG characterizes cognitive processes by employing the average
activity of numerous neurons in the brain region, our research examines
cognitive processes using mesoscopic neural networks. Hence, this study
presents a different landscape.

Discussion
Early studies in thefieldofpsychology coined the term “Semantic Satiation”1

to delineate the phenomenonwherein the repetition of a stimulus or context
precipitates a waning of the affective response. The conceptual under-
pinning of “satiation” first materialized in the context of a comprehensive
meta-analysis of research endeavors related to maze-running experiments
in the context of rodent behavior7. Divergent from response inhibition,
“satiation”pertains to a formof aversion related to the continuedprocessing
of a recurrent stimulus or context, specifically denominated as “processing
satiation”8. The exploration of semantic satiation has piqued the interest of

numerous psychologists, engendering a proliferation of research meth-
odologies, thereby yielding a kaleidoscope of distinctive theories1,3,4. How-
ever, hitherto, the collective scientific endeavor has not succeeded in
providing a definitive elucidation concerning the precise neural mechan-
isms and locales implicated in the manifestation of this intriguing
phenomenon.

The inquiry into the phenomenon of semantic satiation has embarked
upon a protracted and intricate journey, marked by methodological evo-
lution and refinement9. In its nascent stages, research predominantly leaned
on introspectivemethods, which necessitated participants to expound upon
their own cognitive experiences, encompassing thoughts, emotions, and
consciousness10–12. Of notable significance, Lambert’s seminal investigation
entailed participants evaluating their affective responses to repeatedly pre-
sented words1. The findings of this study revealed a perceptible attenuation
in participants’ emotional responses following the repetition of identical
words, thus manifesting a marked semantic erosion. However, by
employing a closely analogous experimental approach, a congruent phe-
nomenon was intriguingly failed to observe13. The inherent limitation of
introspective methods lies in their challenge in quantifying and standar-
dizing participants’ subjective experiences14, thus yielding inconsistent
findings that have hindered the advancement of semantic satiation research.

Fig. 6 | Intra-class and inter-class distance of semantic vectors. aThe details of the
fully connected layer. This layer extracts 784 elements into a 10-dimension vector.
bThe inter-class distance ofMNIST and Fashion-MNIST datasets. cThe intra-class
distance of MNIST and Fashion-MNIST datasets. In both datasets, the inter-class

distance shows a trend of first rising and then falling. From the results, for themodel,
the larger the inter-class distance, the easier the classification will be. However, the
intra-class distance shows a more complicated situation.
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Consequently, introspective methods prove insufficient for discerning the
intricate stages underpinning the emergence of semantic satiation15.

Subsequent to this nascent phase, the burgeoning fields of cognitive
psychology and cognitive neuroscience ushered in a plethora of diverse
experimental paradigms andneurophysiological techniques,marking a new
era of objective and quantifiable approaches to investigating semantic
satiation16–19. Notably, theN400 component emerged as a prominent tool in
probing the processes underlying semantic satiation20–22. This component is
commonly employed to measure semantic processing, with greater

amplitude observed in cases of semantic or contextual incongruence com-
pared to congruence. While experimental outcomes have not been uni-
versally consistent, they collectively support the conclusion that semantic
satiation transpires at the semantic level, rather than being a mere offshoot
of perceptual decay. Notably,magnetoencephalography (MEG)was used to
discern that satiation materializes at the juncture where perception and
semantics converge23. Not with standing the advantages afforded by neu-
roscience, research in this domain has primarily operated at a macro level,
with a limited capacity to establish links between macro satiation

Fig. 7 | Semantic distance for different categories. aTwo-dimensional vectors of the semantics ofMNIST. bTwo-dimensional vectors of the semantics of Fashion-MNIST.
The distribution of semantics shows a trend of being gradually disordered.

Fig. 8 | Comparison with the trend of N400 com-
position. a Schematic diagram of the experimental
process in psychology and ANNmodel. The change
of them has the same trend. b The changing trend of
N400 before and after satiation. Semantic satiation
makes theN400’s Amplitude become lower. cTrend
of the average output (Y) difference (D-value) of
different categories. The left plot shows the average
output of “3” and “7”. The middle plot shows the
average output of “9” and “7”. The right one shows
the D-value of the output Y: “3− 7” and “9− 7”.
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phenomena and micro-level neural activity. Neurophysiological experi-
ments necessitate the examination of neural responses under stimulus
conditions during the deep sleep of animals to mitigate extraneous inter-
ference. However, it is suggested that the evaluation of semantic satiation
should be conducted under conditionswhere animals are awake, presenting
a potential challenge when integrating neuroscience experimental meth-
odologies into psychological research.

Therefore, while several strides have been made in elucidating the
mechanism of semantic satiation, the intricacies of the phenomenon con-
tinue to elude complete understanding due to the susceptibility of partici-
pant performance to the intricacies of experimental paradigms and tasks.
Hence, the development of a mesoscopic model that bridges micro-level
neural activity with the macro-level manifestation of semantic satiation
appears to be a promising avenue. In this study, drawing from the intricate
physiological underpinnings of neurons within the visual cortex, we have
engineered an ANN semantic satiation framework rooted in the CCNN.
This innovative framework endeavors to improve the inherent limitationsof
real-life psychological experiments, which are susceptible to disruptions and
possess complexities that challenge their reliability. Our empirical findings
resonate with previous studies, conclusively establishing that semantic
satiation transpires upon the recurrent presentation of identical or closely
akin stimuli. Yet, our mesoscopic-scale investigation introduces an intri-
guingperspective, postulating that semantic satiation could be characterized
as a bottom-up cognitive process. This novel perspective holds the potential
to furnish the realm of psychological research with numerical benchmarks
and methodological paradigms. However, owing to the constraints of our
present experimental conditions, we are currently unable to validate our
simulation results on actual neurons. Nevertheless, our research proffers
novel insights and avenues for future exploration, thereby extending an
invitation for subsequent research endeavors to substantiate our discoveries.

In particular, these implications appear to diverge from the prevalent
psychological research, which generally posits semantic satiation as a top-
down process22,60,61. Although our study aligns with psychological research
in its choice of experimental paradigm, discrepant viewsmay be attributable
to discrepancies in the scales of observation. It is imperative to underscore
that our experimental results are underpinned by careful examination, and
we note a congruence between the overall neural output levels in the CCNN
model and the observed trends in theN400 signal as documented in classical
experiments. Both the N400 components and the CCNN model’s output
exhibit a discernible decline in the context of semantic satiation prompted
by heightened image similarity. Furthermore, our real-time monitoring of
individual neuron activity unveils a distinct neural landscape, potentially
affording novel insights and a mesoscopic perspective for the continued
exploration of the intricate phenomenon of semantic satiation. This holistic
approach, bridging computational modeling and neural activity analysis,
provides a promising avenue for further unraveling the cognitive intricacies
of this phenomenon. Notably, in psychological experiments, the process
typically involves two main stages: presenting prime words (input-1) and
target words (input-2), with a deliberate pause, referred to as a “blank wait”
period, between each stimulus presentation53. This pause is crucial for
ensuring that participants’ attention remains squarely focused on the visual
stimuli. In our model, unlike the human brain, there isn’t an element of
uncontrolled distraction; consequently, the “blank wait” phase was not
initially incorporated. Therefore, integrating distraction and attentional
focus in future research could significantly enrich our understanding and
the realism of our model.

Moreover, our model proposes broader inquiries that may be inter-
esting in the domain of psychological experimental research. What are the
advantageous aspects of this operational mechanism within the human
brain? Can it be deemed the optimal mode of information processing in the
cerebral apparatus, and how might we harness or circumvent this phe-
nomenon? These intriguing questions, grounded in our computer simula-
tion outcomes, eagerly await corroboration through dedicated biological
and psychological experiments. It is possible that these information-
processing mechanisms could serve as sources of inspiration for brain-

inspired computing. In general, our results provide the potential to study
semantic satiation using neural network models, which may spark the
emergence of novel research questions that span the domains of brain-
inspired computing and psychology.

Methods
In this study, all simulations employ a uniform model structure and utilize
the MNIST and Fashion-MNIST datasets as inputs. Each experiment
adopts different input, analysis, and statistical techniques. The architecture
mainly comprises two components: the ANN primary visual cortex layer
and the artificial IT layer, as illustrated in Fig. 1. The following parts will
outline the principles of the two layers and explicate the specific stages and
intricacies of network training and testing.

The ANN primary visual cortex layer
TheANNprimary visual cortex layer is composedof theCCNNnetwork. In
the realm of modeling the visual pathway, Convolutional Neural Networks
(CNNs) have been widely adopted due to their efficacy in emulating the
functioning of the visual cortex. However, a notable limitation of traditional
CNNs is their lack of capacity to incorporate temporal dynamics, syn-
chronous oscillations, and refractory periods, which are intrinsic to the
behavior of real neurons. This disparity prompted exploration into alter-
nativemodels offering a closer approximation to the physiological processes
of the human visual system. The Pulse-Coupled Neural Network (PCNN),
inspired by the groundbreaking work of Eckhorn62 and further elaborated
by Rangnanath63, is a model with high biological rationality. PCNNs, with
their feedbackmechanism and spike coding, provide amore physiologically
aligned model. The equations of PCNN are as follows:

FijðnÞ ¼ e�αf Fijðn� 1Þ þ VFMijklYklðn� 1Þ þ Sij
LijðnÞ ¼ e�αl Lijðn� 1Þ þ VLWijklYklðn� 1Þ
UijðnÞ ¼ FijðnÞð1þ βLijðnÞÞ

YijðnÞ ¼
1; if UijðnÞ > EijðnÞ
0; otherwise

�

EijðnÞ ¼ e�αeEijðn� 1Þ þ VEYijðn� 1Þ

8>>>>>>>><
>>>>>>>>:

ð1Þ

Where (i, j) is the (ith, jth) neuron, and (k, l) is the (kth, lth) neuron. The five
main parts are couple linking Lij(n), feeding input Fij(n), modulation pro-
duct Uij(n), dynamic activity Eij(n) and output Yij(n). Sij represents the
external feeding input obtained by the receptive fields. αf, αl and αe are
exponential decay factors. VF and VL denote weighting factors. Moreover,
Wijkl and Mijkl indicate feeding and linking synaptic weights, respectively,
and β indicates the linking strength, which directly determines Lij(n) in the
modulation product Uij(n). Sij is the external feeding input, αf, αl, αe are
exponential decay factors of the five main parts.

However, a critical gap in the PCNNmodel’s capacity to replicate the
dynamic responses of neurons to external periodic signals was identified by
Siegel’s experiments64 with real primary visual cortex neurons. This lim-
itation motivated the development of the (CCNN)30, which was introduced
to address the shortcomings of the PCNN in capturing the complex non-
linear dynamics of neuron activity under dynamic stimuli. The CCNN
comprises five components: coupling linkage, feeding input, modulation
product, dynamic activity, and continuous output. The CCNN equations
are as follows:

FijðnÞ ¼ e�αf Fijðn� 1Þ þ VFMijklYklðn� 1Þ þ Sij
LijðnÞ ¼ e�αl Lijðn� 1Þ þ VLWijklYklðn� 1Þ
UijðnÞ ¼ FijðnÞð1þ βLijðnÞÞ
YijðnÞ ¼ 1

1þe�ðUij ðnÞ�Eij ðnÞÞ

EijðnÞ ¼ e�αeEijðn� 1Þ þ VEYijðn� 1Þ

8>>>>>><
>>>>>>:

ð2Þ

Where, the output Yij(n) is changed from a pulse signal to a continuous
value. The CCNN model distinguishes itself by generating continuous
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output values, Yij(n), and demonstrates behavior that closely mirrors the
dynamic of chaotic activity observed in real V1 neurons when exposed to
periodic stimuli. This adaptation enables the CCNN to better simulate the
intricate dynamics of neuron interactions within the primary visual cortex,
offering a model that strikes an optimal balance between biological fidelity
and the complexity of neuronal behavior.

In experiments, all neurons are in a static state at the beginning, then all
parameters in the matrices F, L, U, Y and E are zero in the initial state. The
parameter settings in all experiments are as follows: αf = 0.1, αe = 1, αl = 0.1,
and β = 0.5. The impact analysis of these parameter settings on themodel is
detailed in Fig. S4(see Supplementary Figures).

The ANNmodel of the primary visual cortex encompasses neurons of
identical size as the input images, totaling 784 (28 × 28) neurons. The size of
the receptive field is set to 3 × 3 and 5 × 5 for simulation experiments. In the
specific computation, we realize this calculation by convolution
without bias.

The ANN model of IT area
This model’s IT area employs the fully connected layer to reduce the
dimensionality and classify the information processed by CCNN as shown
in Fig. 6a65,66. Following the iterative processing of CCNN, the output is a
28 × 28 feature.Then it isflattened into a one-dimensional vectorwith a size
of 784, which is then input into the fully connected layer. As both datasets
contain 10 classes, the number of neurons in the fully connected layer is set
to 10 to match the simulation task.

Training and testing
The MNIST and Fashion-MNIST datasets are utilized for training and
testing. During training, the aim is to learn the content of the two linking
matrices M and W. Specifically, in this study, the models for training and
testing are nonidentical. During training, the best repetition of the input
stimulus is set as n. The model is only allowed to learn the situation where
the stimulus is repeated n times. n is set to 4 in this research. The CCNN
layer accepts the input signal, repeats it n times, and then inputs it into the
fully connected layer. Finally, the output of the fully connected layer gets the
classification probability of the training object through the activation
function. The network adjusts the values of thematricesM andW, as well as
the weight in the fully connected layer.

During testing, it is necessary to evaluate the recognition performance
of eachmodel time.When testing, theCCNNModule is repeated 100 times,
and the output from eachmodel time is fed into the fully connected layer for
classification. The main difference is that for the output of the CCNN
network, the training network only requires the nthmodel time’s output as
the target, whereas in the testing network, the output results of each model
time need to be classified and counted67. Thus, the output of the CCNN
network needs to be transmitted to the fully connected layer for classifica-
tion after eachmodel time. The loss function is the cross-entropy loss of the
model’s predicted results and the image’s label.

For the simulation of semantic satiation caused by the same or similar
repeated stimulus, the same training results are used as model parameters.
The primary difference lies in whether the inputs are changed after 5 or 10
repetitions. In the visualization part, the output Y of each model time is
converted into a grayscale image and displayed for observation. Addition-
ally, the concepts of intra-class distance and inter-class distance are used to
measure the division of semantics in the brain. The distance of the same
semantics is represented by the intra-class distance. The inter-class distance
is utilized to measure the difference between different semantics. Both are
measured using the Euclidean distance.

Themodel is trainedwith a batch size of 200 andAdamwith a learning
rate of 0.001. The maximum number of epochs is set to 100. The model is
implemented by Pytorch and trained on a NVIDIA GeForce GTX 1660.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Publicly available datasets were used in this study. These datasets can be
found at the following sites: http://yann.lecun.com/exdb/mnist/(MNIST),
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/(Fashion
MNIST). The source data for all figures of fluorescence is available in Sup-
plementary Data. All figures are open on figshare (https://doi.org/10.6084/
m9.figshare.25507406.v2). Any further data not included in the text will be
made available upon request.

Code availability
The code used in this study is available at https://zenodo.org/records/
10894595.
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