
communications biology Article

https://doi.org/10.1038/s42003-024-06161-1

Optimized model architectures for deep
learning on genomic data

Check for updates

Hüseyin Anil Gündüz1,2, René Mreches3,4, Julia Moosbauer 1,2, Gary Robertson3,4, Xiao-Yin To 1,2,3,4,
Eric A. Franzosa 5, Curtis Huttenhower 5, Mina Rezaei 1,2, Alice C. McHardy 3,4,6, Bernd Bischl1,2,
Philipp C. Münch 3,4,5,6,7 & Martin Binder 1,2,7

The success of deep learning in various applications depends on task-specific architecture design
choices, including the types, hyperparameters, and number of layers. In computational biology, there
is no consensus on the optimal architecture design, and decisions are often made using insights from
more well-established fields such as computer vision. These may not consider the domain-specific
characteristics of genome sequences, potentially limiting performance. Here, we present
GenomeNet-Architect, a neural architecture design framework that automatically optimizes deep
learning models for genome sequence data. It optimizes the overall layout of the architecture, with a
search space specifically designed for genomics. Additionally, it optimizes hyperparameters of
individual layers and themodel trainingprocedure.Ona viral classification task,GenomeNet-Architect
reduced the read-level misclassification rate by 19%, with 67% faster inference and 83% fewer
parameters, and achieved similar contig-level accuracy with ~100 times fewer parameters compared
to the best-performing deep learning baselines.

Deep learning (DL) techniques have been shown to achieve exceptional
performanceonawide rangeofmachine learning (ML) tasks, especiallywhen
large training sets are available1. These techniques have been applied to a
variety of challenges in bioinformatics2–4. For differentMLproblems anddata
modalities, different neural architectures have emerged that perform well in
their respective domains, such as convolutional neural networks (CNN) for
images or recurrent neural networks (RNN) for text. Architectural design
choices are often made based on the experience of researchers and trial and
error5–13. However, the optimal design and arrangement of these layers are
highly domain-specific, problem-dependent, and computationally expensive
to evaluate. Besides expert-drivendesign, it has therefore become increasingly
popular to apply systematic approaches to finding neural network config-
urations, such as automated neural architecture search (NAS)14. The number
of possible configurations of even small neural networks is very large, as the
numberof decisions tobemadegrows exponentially, andmostpracticalNAS
algorithms therefore impose various constraints on the search space.

To efficiently perform NAS for ML tasks in genomics, it is essential to
identifyDLnetwork architecture designs for genomic sequence analysis that
are widely recognized in the literature. These designs often start with one or

several convolutional layers, followed by a global pooling layer, and con-
clude with a series of fully connected layers6,7,9,11. Recurrent layers offer an
alternative to convolutional or global pooling layers. Their ability to pro-
pagate information across sequences allows recurrent layers to effectively
summarize data, comparable to pooling layers. While numerous works in
genomics use RNN layers15–19, one example is Seeker8, an RNN-basedmodel
that employs an LSTM layer for bacteriophage detection. Furthermore, by
stacking them sequentially, integrating convolutional and recurrent layers
enhances model capability. For instance, the model developed by Wang et
al.20 demonstrates this approach by placing an RNN on top of a convolu-
tional layer, followed by two fully connected layers. A similar configuration
is utilized in the DanQmodel21, showcasing the effectiveness of combining
recurrent and convolutional layers.

One way to approach NAS is to consider it as a hyperparameter opti-
mization (HPO) problem. Hyperparameters (HPs) are configuration settings
that determine howanMLmodelworks. In the context ofDL, typicalHPs are
the choiceof the gradientdescent algorithmand its learning rate.However, the
choice of neural network layers and their configuration can also be considered
as HPs. NAS is then equivalent to optimizing HPs that define different

1Department of Statistics, LMU Munich, Munich, Germany. 2Munich Center for Machine Learning, Munich, Germany. 3Department for Computational Biology of
Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany. 4Braunschweig Integrated Centre of Systems Biology (BRICS),
TechnischeUniversität Braunschweig, Braunschweig, Germany. 5Department of Biostatistics, HarvardSchool of PublicHealth, Boston,MA,USA. 6GermanCentre
for InfectionResearch (DZIF), partner site Hannover Braunschweig, Braunschweig,Germany. 7These authors jointly supervised thiswork: PhilippC.Münch,Martin
Binder. e-mail: philipp.muench@helmholtz-hzi.de; martin.binder@stat.uni-muenchen.de

Communications Biology | (2024) 7:516 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06161-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06161-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-06161-1&domain=pdf
http://orcid.org/0000-0002-0000-9297
http://orcid.org/0000-0002-0000-9297
http://orcid.org/0000-0002-0000-9297
http://orcid.org/0000-0002-0000-9297
http://orcid.org/0000-0002-0000-9297
http://orcid.org/0009-0007-1482-8692
http://orcid.org/0009-0007-1482-8692
http://orcid.org/0009-0007-1482-8692
http://orcid.org/0009-0007-1482-8692
http://orcid.org/0009-0007-1482-8692
http://orcid.org/0000-0002-8798-7068
http://orcid.org/0000-0002-8798-7068
http://orcid.org/0000-0002-8798-7068
http://orcid.org/0000-0002-8798-7068
http://orcid.org/0000-0002-8798-7068
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0002-1110-0096
http://orcid.org/0000-0001-6994-6345
http://orcid.org/0000-0001-6994-6345
http://orcid.org/0000-0001-6994-6345
http://orcid.org/0000-0001-6994-6345
http://orcid.org/0000-0001-6994-6345
http://orcid.org/0000-0003-2370-3430
http://orcid.org/0000-0003-2370-3430
http://orcid.org/0000-0003-2370-3430
http://orcid.org/0000-0003-2370-3430
http://orcid.org/0000-0003-2370-3430
http://orcid.org/0000-0003-3233-9693
http://orcid.org/0000-0003-3233-9693
http://orcid.org/0000-0003-3233-9693
http://orcid.org/0000-0003-3233-9693
http://orcid.org/0000-0003-3233-9693
http://orcid.org/0009-0008-2578-2869
http://orcid.org/0009-0008-2578-2869
http://orcid.org/0009-0008-2578-2869
http://orcid.org/0009-0008-2578-2869
http://orcid.org/0009-0008-2578-2869
mailto:philipp.muench@helmholtz-hzi.de
mailto:martin.binder@stat.uni-muenchen.de

architectures. A popular class of optimization algorithms used for HPO is
model based optimization (MBO), also called Bayesian optimization22. It
iteratively evaluates HP configurations and selects new configurations to try
based on knowledge of which configurations have worked well in the past.
This is donebyfitting a regressionmodel, the so-called surrogatemodel, to the
observed performance values. New evaluations are made by considering the
“exploration-exploitation tradeoff”: new configurations should be tried if their
expected performance is high (exploitation), or if the model’s uncertainty
about their performance is high (exploration). MBO-based methods such as
BANANAS23 have been shown to outperform methods based on other
optimization paradigms such as ENAS24 (which uses reinforcement learning)
or DARTS25 (which uses gradient descent).

The quality of the configurations evaluated by MBO increases gradu-
ally as the optimizationprogresses. Thefirst configurations evaluated,which
constitute the initial design, are randomly sampled from the search space
withoutusing anyprior knowledge.By anticipating that early configurations
are unlikely to performaswell as later ones, and by devoting fewer resources
to their evaluation, it is possible to reduce the cost of the overall optimization
process. Algorithms that speed up optimization by using cheaper approx-
imations of the target objective are called multi-fidelity (MF) optimization
algorithms. A simple way to approximate the performance of a DLmodel is
to stop training the model after a certain amount of time, even though the
model performance has not fully converged26.

While there are libraries that perform NAS on genome datasets27, we
are not aware of any methods that use efficient multi-fidelity or MBO
methods specifically for genome datasets.MBOhas been used in the past to
tune specifically designed genomic DL models28, but only to optimize spe-
cificHPs,not as a generalNAS framework.Nogeneral-purposeMBO-based
NAS framework provides a search space specifically modified to fit genome
sequence data; in fact, many focus on 2D image data instead.

In this work, we present GenomeNet-Architect, which optimizes DL
network architectures by repeatedly constructing new network configura-
tions, training networks based on these configurations on a given dataset,
and evaluating the performance of the resulting models by predicting on
held-out test data. It uses MBO as an efficient black-box optimization
method, combined with a multi-fidelity approach that increases model
training time after some initial optimizationprogress has beenmade.Unlike
other general-purpose NAS frameworks, GenomeNet-Architect uses a
search space specifically for genome data. It is made up of neural

architectures and HP setups that build on top of and generalize various
architectures for the genome data that have been successfully applied in the
past. This approach allows us to efficiently explore a large space of possible
network architectures and identify those that perform well for genome-
related tasks, creating architectures that outperform expert-guided archi-
tectures. Our method can be used for a variety of DL tasks on genome
sequence data, such as genome-level, loci-level, or nucleotide-level classifi-
cation and regression.

Results
GenomeNet-Architect uses an efficient global
optimization method
GenomeNet-Architect provides a predefined search space of hyperpara-
meters (HPs) that are used to construct different network architectures. It
needs to be given a specific ML task on genome sequence data. In our
framework, we use model-based optimization (MBO)22 to jointly tune the
network layout andHPs, and generate a specific architecture thatworkswell
on the given task.

The result of the optimization process itself is a specific HP config-
uration that works well for the given task. The resulting architecture can be
trained and evaluated on the given data, as well as used tomake predictions
on new data. However, the resulting architecture can also be used for other
tasks that are similar to the task for which it was optimized. It is therefore
possible to perform a single optimization run to solve multiple genome
sequence DL tasks.

GenomeNet-Architect uses a search space that covers themost
common layer types and hyperparameter settings
The search space of GenomeNet-Architect is based on our literature
analysis of successful architectures developed for genome data, such as
DeepVirFinder6, ViraMiner7, Seeker8, CHEER9, Fiannaca (CNN
model)10, PPR-Meta11, and an adapted version of RC-ResNet-1812. A
common type of architecture consists of convolutional layers followed by
global pooling and fully connected layers6,7,9,11. An alternative to pooling,
which also aggregates information across the entire sequence, is the use
of recurrent (RNN) layers.

Inspired by these common patterns observed in many networks suc-
cessfully applied to genome data, we build a template for an architecture
consisting of three stages (Fig. 1): (i) a stage of stacked convolutional layers

Convolutional Layers

Conv.

Block

Recurrent Layers

Recurrent

Layer

Recurrent

Layer
Input

Model (CNN-RNN)

Conv.

Block

Dense

Layer

Dense

Layer
Output

Fully Connected Layers

Conv.

Block

Global Average Pooling Block

Input

Model (CNN-GAP)

Conv.

Block

Dense

Layer

Dense

Layer
Output

Fully Connected Layers

GAP Concat-

enate

Filter (Skip Ratio)

X

GAP

....

........

....

Convolutional Layers

a

b

Fig. 1 | The network layout optimized by GenomeNet-Architect consists of three
stages: (i) a stage of stacked convolutional layers, (ii) global average pooling (in
the CNN-GAP model) or a stack of recurrent layers (in the CNN-RNN model),
and (iii) a fully connected stage. aTheCNN-RNNmodel feeds the output of the last
convolutional layer into a block of recurrent layers. The output of the last recurrent
layer is then flattened and fed into a fully connected neural network. b The CNN-

GAP model groups the convolutional layers into convolutional blocks. While the
output of some of these blocks is skipped (controlled by the “skip ratio” hyper-
parameter), the network performs global average pooling (GAP) on the remaining
blocks and concatenates the result. This is then fed into the fully connected neural
network.

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 2

operating on one-hot encoded input sequences, (ii) a stage for embedding
the sequential output data of the convolutional layers into a vector repre-
sentation, using either global average pooling (GAP) (in a setup that we call
the CNN-GAP model) or a stack of recurrent layers (which we call the
CNN-RNN model), and (iii) a fully connected neural network stage oper-
ating on the embedded values.

Someof the propertieswe search over include the network layout, such
as the number and size of convolutional, dense, and recurrent layers. Other
HPs that we searched over influence the training process, such as the
optimizer, and the behavior of specific layers, such as the dropout rate, the
activation functions, and the batch normalization constant (Table 1). By
introducing multiple HPs that influence the final layout of the model, our
framework covers many successful architectures from the literature, while
also making it possible to find architectures that have not yet been imple-
mented. While the provided search space is our recommendation, our
method also supports defining a custom search space, e.g. allowing more
layers, or including GMP instead of GAP.

Our HPs cover both the overall architecture of the network (e.g.,
number of convolutional layers) and the setup of individual layers (e.g., the
CNN kernel size). Having different HPs for each layer individually would
introduce HP dependencies, which would make the optimization problem
more difficult. Therefore, we use a setup where only the first and last layers
are directly parameterized. f0 and fend, for example, specify the number of
filters of the first and last convolutional layer. The setup of the intermediate
layers is interpolated based on thefirst and last layers (seeMethods formore
details).

Model configurationsare initiallyevaluatedwithshorter runtimes
for more efficient search space exploration
Several challenges arise when optimizing DL architectures on complex data
modalities such as genomics. First, for complex tasks, the time required for a
single model to converge to a solution makes it impractically slow to opti-
mize over a large search space such as the one we have designed. A simple
way to speed upmodel evaluation would be to limit the time for which each
proposed model is trained, even if models do not converge within a given
timeframe, because models that perform well early in model fitting will
continue to perform well after more training epochs26. While this reduces
the time spent on individual evaluations, the resulting models can only
approximate the true performance of a given HP configuration. Smaller
models (which have fewer parameters and therefore converge faster) may
falsely appear tobe superior to largermodels that run slower, complete fewer
epochs, and cannot converge in the given time limit. However, the models
trained for only a short time are still informative about which parts of the
search space are more likely to contain models that perform well. We can
therefore use them in a “warm start” method that speeds up the optimi-
zation process. This works by only partially evaluating initial configuration
proposals at first, and using the resulting data about which HPs tend to
perform well for short evaluation times to help determine which config-
urations are later evaluated for longer training times29.

GenomeNet-Architect first runs the MBOwith a fixed, low setting for
the model training time t = t1. After a given number of optimization
iterations, a newMBOrun is startedwith ahigher training time setting t= t2,
where the surrogatemodel contains the performance result data for t = t1 as

Table 1 | Space of hyperparameters that affect the training and final layout of the model, along with the ranges over which they
are optimized

Hyperparameter Type Range Log-Search Space Component

Learning Rate (lr) Float [10−6, 10−2] ✓ General

Reverse-Complement as
Additional Input

Boolean {True, False}

Optimizer Categ {Adam, Adagrad, Rmsprop, Sgd}

Model Type Categ {GAP, RNN}

Number of Convolutional Layers (nc) Integer [1,20] Convolutional Layers

Number of Convolutional Blocks (ncb) Integer [1,10]

First Layer Kernel Size (k0) Float [24,211] ✓

Last Layer Kernel Size (kend) Float [24, 211] ✓

First Layer Number of Filters (f0) Float [21,26] ✓

Last Layer Number of Filters (fend) Float [21,26] ✓

Last Layer Dilation Factor (dend) Float 20; 24
� �

for L ¼ 150 or 250;
20; 27
� �

for L ¼ 10000
✓

Total Max-Pooling (pend) Float 20; 24
� �

for L ¼ 150 or 250;
20; 27
� �

for L ¼ 10000
✓

Momentum of Batch-Normalization Float [0,0.99]

Leaky-ReLU Alpha Value Float [0,1]

Residual Block (res_block) Boolean {True, False}

Number of Dense Layers Integer [0,5] Fully Connected Layers

Units of Dense Layers Float [24,211] ✓

Dropout of Dense Layers Float [0,0.99]

Activation of Dense Layers Categ {ReLU, tanh, Sigmoid}

Recurrent Layer Type Categ {LSTM, GRU} Recurrent Layers (CNN-RNN only)

Number of Recurrent Layers Integer [1,3]

Uni-/Bidirectional Recurrent Layers Boolean {True, False}

Number of Recurrent Units Float [24, 211] ✓

SkipRatio for Global Average Pooling (rs) Float [0,1] Global Average Pooling Block (CNN-GAP only)

Where indicated in the “Log-Search Space” column, hyperparameters are optimized on a logarithmic scale. Hyperparameters are grouped by the “Component” they control, corresponding to the different
components shown in Fig. 1.

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 3

a “warm start”. The optimization procedure can be restarted several times
withhigher values of tnusing all previous points evaluatedat times t1, ..., tn−1

aswarmstart data.Our experiments startedwith t1 =2 hand thencontinued
with t2 = 6 h (Fig. 2a). Longer times were also tried, but did not lead to
sufficient improvement to justify the additional resources required (Sup-
plementary Note 1). Models evaluated after increasing the training time
have higher performance than randomly sampled models at the beginning,
showing that the information learned frommodels trained for a short time is
useful for building models trained for a longer time.

GenomeNet-Architect makes use of parallel resources
GenomeNet-Architect parallelizes the HP tuning process across multiple
GPUs to reduce the overall optimization time. There are a variety of multi-
point proposal techniques that allow MBO to evaluate several different HP
configurations simultaneously30.Aparticularly straightforwardmethod is to
use the UCB (upper confidence bound) infill criterion31: Given a parameter
λ, it uses the mean prediction of the surrogate model and adds λ times the
model’s uncertainty, thereby giving an optimistic bias to regions that have

high uncertainty and therefore potential for improvement. By sampling
multiple instances of the λ-parameter from an exponential distribution32,
effectively making different tradeoffs between exploration and exploitation,
one can generate different point propositions to be evaluated simulta-
neously. It is used by our method because, despite its simplicity, it is one of
the best-performing MBO parallelization methods30.

In addition to parallelizing individual MBO runs, we also identify
setups that are likely to lead to different optimal configurations, and whose
optimization can therefore be run independently and in parallel:WhichHP
settings are optimal, such as specific kernel sizes or number of filters, may
vary for different sequence lengths. Similarly, optimal values may differ for
CNN-GAP and CNN-RNN, and they may also change depending on
whether residual blocks are used. Therefore, the optimization proceeds in a
fully crossed design of these choices: The length of the training mini-
sequence (in our experiments we investigated both 150 nt, 250 nt, and
10,000 nt), the architecture (CNN-GAP or CNN-RNN), and whether
residual connections are used. These optimization runs are independent of
each other and can be run in parallel.

0.3

0.4

0.5

0.6

0.7

0 100 200 300

Evaluation progress (hours)

E
va

lu
at

io
n

ac
cu

ra
cy

Optimization progress

Search space (scaled)

E
va

lu
at

ed
 h

yp
er

pa
ra

m
et

er
s

(1
0,

00
0

nt
)

0.00 0.25 0.50 0.75 1.00

Learning rate

Dropout

First filter size

Last filter size

First kernel size

Last kernel size

Total max-pooling

Last dilation factor

Units of dense layers

Momentum of batch-norm

Leaky-ReLU alpha value

Skip ratio for GAP

Recurrent units

Batch size

models
trained for 2h

models
trained for 6h

Top 10%Evaluated Best

Convolution
(5, 623)

Max
Pool(2)

BatchNorm &

LeakyReLU

Convolution
(7, 375)

BatchNorm &

LeakyReLU

Convolution
(45, 30)

Concatenate

Dropout
(0.226)

Dense
(284, tanh)

Dropout
(0.226)

Dense
(284, tanh)

Convolution
(10, 226)

BatchNorm &

LeakyReLU

Convolution
(14, 137)

BatchNorm &

LeakyReLU

Convolution
(21, 83)

BatchNorm &

LeakyReLU

Convolution
(30, 50)

BatchNorm &

LeakyReLU

Dense
(3, softmax)

Global
Average
Pooling

Global
Average
Pooling

Input
(150,4)

Output (3)

Max
Pool(2)

Max
Pool(2)

Optimized architecture

a b

c

Evaluated hyperparameters

Fig. 2 | Overview of the optimization procedure and results on the viral
classification task.We evaluated the performance of the models proposed by our
optimization framework on a viral classification task and compared them to various
baseline methods for sequence lengths of 150 and 10,000 nt to evaluate for appli-
cation at the read and (large) contig level (Table 2). a The progress of hyperpara-
meter optimization for 150 nt sequence length. Models are trained for 2 h and then
6 h at different stages of the optimization. A better set of hyperparameters is dis-
covered as the optimization proceeds. b Evaluated values in the hyperparameter
optimization for 6 h of training time and a sequence length of 10,000 nt. The search
range (Table 1) of each hyperparameter is normalized in the plot. Dark circles

indicate the top 10% of evaluated configurations clustered around favorable values.
The best-selected configuration (vertical red lines) often lies within this cluster. cThe
model selected by the hyperparameter optimization stage for a sequence length of
150 is shown (CNN-GAP-6 h in Supplementary Table 1). The values in parentheses
indicate kernel size and number of filters for convolutional layers, units and acti-
vation for dense layers, and both pool size and stride values for max-pooling layers.
Since ncb is 7, there are seven convolutional layers with increasing kernel size and
decreasing number of filters along the model. Since the GAP skip ratio is 72%, only
the outputs of the last two convolutional layers are pooled and concatenated in the
GAP block. This is followed by two dense hidden layers with tanh-activation.

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 4

GenomeNet-Architect finds models that outperform expert-
designed baseline models in the viral identification task
GenomeNet-Architect demonstrated superior performance on the
virus classification task compared to other deep learning (DL) and
non-deep learning methods that we selected as baselines, effectively
distinguishing between sequences originating from bacterial chro-
mosomes, prokaryotic viruses (referred to as bacteriophages) and
eukaryotic viruses (referred to as viral non-phage DNA). We have
tested the effectiveness of GenomeNet-Architect against baselines for
classification at the read-level (150 nt long sequences) and at the
contig-level (10,000 nt) separately. At the read level, GenomeNet-
Architect reduces the class-balanced misclassification rate, i.e., the
misclassification rate averaged over all classes, by 19%, while having
83% fewer parameters and achieving 67% faster inference time
compared to the best DL baseline (Fiannaca10) and outperforms k-
mer-based and alignment-based approaches for sequence classifica-
tion (Fig. 3a, Supplementary Table 2). At the contig-level, the best
model found by our method achieves a class-balanced misclassifica-
tion rate of 1.21%, outperforming the best baseline (1.36%) while
being 82% smaller. GenomeNet-Architect also finds a model that
performs comparably to the baseline (1.41%) while having a factor of
117 times fewer parameters (Fig. 3b, Supplementary Table 1). For a
fair comparison, we trained and validated all DL baseline models on
the same dataset and dataset splits. Additionally, we standardized the
configuration by adapting the output layer of each model and
employing multi-class cross-entropy as the loss function, aligning
with our models to facilitate three-class classification. This approach
allows for a direct comparison of algorithmic improvements.

We show the best configuration found for this classification task using
10,000 nt sequences (red lines), as well as the top 10% configurations (solid
circles) in front of all evaluated configurations (transparent circles) (Fig. 2b)
and a diagram visualizing the optimized architecture for the classification
task using 150 nt (Fig. 2c). We also analyzed the performance of the opti-
mized model stratified by the degree of genomic differences to the training
data. Our findings show that it consistently outperforms the Fiannaca
baseline, demonstrating thatGenomeNet-Architect’s performance does not
come from overfitting on sequences that occur in the training dataset
(Supplementary Fig. 1). The superior performance persists evenwhen reads
are simulated with the Illumina read error profile, underscoring the tool’s
effectiveness across diverse genomic sequencing challenges (Supplemen-
tary Fig. 2).

GenomeNet-Architect identifiesmodels that outperform expert-
designed baselines in the pathogenicity detection task
To further validate the versatility ofGenomeNet-Architect,we extendedour
experiments to a second task: pathogen detection in bacteria, specifically to
distinguish between pathogenic and non-pathogenic sequences in human
hosts. We aligned our evaluation with the baseline values reported in the
study of Bartoszewicz et al.13, utilizing the same search space for the viral
classification task andhyperparameter optimization stage,wheremodels are
optimized for 2 h. We also fine-tuned the pre-trained DNABERT33 (6-mer
model), using the suggested hyperparameter settings given for fine-tuning
on themethod’s GitHub page.We added it as an additional baseline for this
task tomake our benchmarkmore comprehensive. GenomeNet-Architect’s
optimized models outperform all baseline models, showing substantial
improvement in pathogenicity detection (up to 11% improvement,
see Fig. 4).

Additionally, we adapted the models originally optimized for the viral
classification (initially optimized for sequences of 150 nt, CNN-RNN-6h,
and CNN-GAP-6h) by adjusting the input size to 250 nt to evaluate how
well performance of an architecture optimized for one task transfers to a
different task and conditions. These architectures are renamed tohave “VC”
(short for viral classification) as a suffix. The comparable performance of
“VC”models to models detected by GenomeNet-Architect on this dataset
“GAP-CNN” and “GAP-RNN” shows good transfer between related tasks
on genome data (Fig. 4).

To enhance the predictive accuracy and robustness, we explored the
efficacy of ensemble approaches, a technique that combinesmultiplemodel
predictions, akin to the approach presented in Bartoszewicz et al.13, merging
RC-LSTMandRC-CNNmodels into an RC-CNN+ LSTM ensemble. Our
experiments with ensemble models, including GAP+ RNN-VC, GAP+
RNN, and the 4-model ensemble combining both CNN-RNN and CNN-
GAP variants, demonstrate a notable decrease in misclassification rates.
Specifically, the 4-model ensemble reduced misclassification rates by 11%
compared to the RC-CNN+ LSTM baseline, with a single model
improvement of 8% for CNN-GAP-VC versus RC-CNN.

Discussion
GenomeNet-Architect defines an HP configuration search space for neural
architectures that extends and generalizes successful genome data archi-
tectures from the past. This adaptable search space is coupled with an
efficient black-box optimization method that can generate more optimal
network architectures for genome-related tasks compared to expert-

Fig. 3 | Predictive performance and characteristics
of models found by GenomeNet-Architect and
various baselines on the viral classification task.
The inference time to classify 10,000 one hot encoded
samples on a GPU and the class-balanced accuracy are
shown. The size of the circles indicates the number of
model parameters. We have not included Seeker8 in
both graphs and PPR-Meta11 for long sequences
because their performance was too low. a At the read-
level (150 nt), the best-performing model selected by
GenomeNet-Architect (CNN-GAP-6h) reduces the
read-level misclassification rate by 19% relative to the
best-performing deep learning baseline - Fiannaca10,
despite having 83% fewer parameters and 67% faster
inference time.bAt the contig-level (10,000nt),models
found by GenomeNet-Architect perform on par or
better than the best-performing baseline, although
all thesemodels performverywell in terms of accuracy.
However, much faster (CNN-GAP-2h) and much
smaller (CNN-RNN-6h) models are found, all with
balanced accuracy close to the best baseline (~ 98.6%).

Short sequences (150 nt) Long sequences (10,000 nt)

Performance comparison

Time Required to Classify 10,000 samples (s)

C
la

ss
−

B
al

an
ce

d
A

cc
ur

ac
y

5101520

Model parameters [M]

Baseline models

Optimized models

a b

CNN−GAP−2h

CNN−RNN−2h

CNN−GAP−6h
CNN−RNN−6h

Fiannaca

DeepVirFinder

Viraminer

CHEER

RC−ResNet−18

20 30 40

0.975

0.980

0.985

CNN−GAP−6h

CNN−RNN−6h

CNN−RNN−2h

CNN−GAP−2h

Fiannaca

Viraminer

DeepVirFinder

CHEER PPR−Meta

RC−ResNet−18

0.3 1.0 3.0 10.0

0.65

0.70

0.75

0.80

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 5

designed architectures. With GenomeNet-Architect, researchers can iden-
tify better models when applying DL to genomic datasets.

The search space used by GenomeNet-Architect leads to resulting
architectures that are similar to other models used in the literature, and the
individual components of the resulting architecture therefore have similar
interpretations. The convolutional layer can be thought of as a pattern-
matching method that encodes the presence of motifs in short sub-
sequences. The global pooling layer then aggregates the information about
specific patternswithin the entire sequence.A global average pooling (GAP)
layer measures the relative frequency of these patterns, as opposed to the
encoding of the presence of individual patterns that are recorded in some
models that use global max-pooling (GMP). Models using RNNs, on the
other hand, are able to predict outcomes based on the spatial relationships
between different patterns and can learn long-term dependencies8,34. The
following fully connected layers are used to learn complex relationships
between detected patterns and can be used in both GAP and RNN-based
models20.

The DeepVirFinder6 model is an architecture that uses pooling, with a
convolutional layer, followed by a global max-pooling layer and a fully
connected layer. TheViraMiner7model builds on theDeepVirFindermodel
and proposes two branches called frequency and pattern branches, using
either GAP (frequency branch) or GMP (pattern branch) after separate
convolutional layers. In both branches, a fully connected layer follows, after
which their output vectors are concatenated. Finally, another fully con-
nected layer classifies whether a 300 nt sequence is human or viral DNA.
Since Tampuu et al.7 showed that the GAP alone achieves higher perfor-
mance than the GMP alone, we did not include GMP in our search space.
Another similarly structured architecture for viral classification is the
CHEERmodel9. In thismodel, reads from250 nt sequences are fed into four
different convolutional layers with different kernel sizes: 3, 7, 11, and 15.
Global max-pooling layers follow each convolutional layer, after which the
paths are concatenated. Similar to other architectures, multiple fully con-
nected layers follow the concatenation.

DeepMicrobes is another RNN-based DL model developed for viral
identification. The model consists of a 12-mer embedding layer, a bidirec-
tional LSTM layer, a self-attention layer, and several fully connected layers.
The convolutional layer in this model learns local representations, and the
recurrent layer can learn long-term dependencies within these local repre-
sentations in a sequential manner.

AlthoughDLmodels based on raw nucleotide sequences are common,
there are also alternatives. One example is Fiannaca-CNN10, which is a
model for bacterial classification. The model uses the number of k-mer
occurrences as input, which is fed into convolutional layers followed by
max-pooling layers and fully connected layers. We used k = 7 (7-mers) in
our experiments because they show that the highest accuracy is achieved
using this HP. Another example is PPR-Meta11, which is used to classify if
the sequence is a plasmid, chromosome, or phage. The input to themodel is
both one-hot encoded nucleotides and 3-mers. In addition, the reverse-
complements of the original inputs are concatenated to the original
sequence for both inputs. The model consists of two different three con-
volutional layers, the outputs of which are global average pooled, con-
catenated, and fed into a fully connected layer. There are also max-pooling
and batch-normalization layers after the first two convolutional layers.

Our HPO results provide valuable insight into the design and training
of architectures for specific tasks and datasets. For example, increasing the
kernel size, number of filters, and layers in convolutional networks can
substantially increase both the number of trainable parameters andmemory
requirements, resulting in a trade-off. Many existing models, such as
DeepVirFinder6, ViraMiner7 or CHEER9, are limited to a single (ormultiple
but parallelized, not sequential) convolutional layer with a large kernel size
(up to ~15) and a large number of filters (~ 1000). Although PPR-Meta11

proposes a deepermodel (3 sequential convolutional layers), it compensates
by reducing the kernel size (down to 3). Our HPO framework has dis-
covered an architecture that performs better on viral classification in terms
of accuracy: deeper (7 convolutional layers) with a smaller number of filters
in the final convolutional layers (as low as 30).

In examiningmodel architectures that performwell across twodatasets
and three different sequence lengths, we sought to identify common trends
and patterns in their architecture designs. Our analysis reveals that archi-
tectures with GAP layers typically incorporatemore convolutional layers (5
to 7, as opposed to 1 to 5 inRNNmodels) andmore fully connected layers (1
or 2, vs. 0 or 1) (Supplementary Table 1). The preference for GAP layers is
likely due to their function in aggregating information learned by con-
volutional layers through averaging over the sequence, instead of learning
representations by optimizing its own weights. Compared to CNN-RNN
models, CNN-GAP models mainly use fully connected layers to integrate
long-range information. Furthermore, LSTM layers are consistently pre-
ferred to GRU layers. Our findings also indicate a general avoidance of

Fig. 4 | Comparative analysis of misclassification
rates in the pathogenicity detection task. The
baselinemodels are shown in gray, while the red bars
indicate the models developed by GenomeNet-
Architect. The data for the dataset itself and the
baseline results, with the exception of DNABERT33,
were derived from the DeePaC study13. In addition,
the pre-trained DNABERT33 model is fine-tuned on
this task and added as a baseline. The graph shows
individual model performance along with the
improved performance archived by the ensemble
approaches and highlights the superior performance
of the GenomeNet-Architect models over various
baselines.

0.335

0.219

0.167 0.156 0.147 0.1430.147 0.1460.152 0.1390.140 0.136

EnsembleSingle Single Ensemble

BLA
ST

PaP
rB

aG

DNABERT

RC−C
NN

RC−C
NN+L

STM

CNN−R
NN

CNN−R
NN−V

C

CNN−G
AP

CNN−G
AP−V

C

GAP+R
NN

GAP+R
NN−V

C

4−
m

od
el

M
is

cl
as

si
fic

at
io

n
ra

te

Performance on the pathogenicity detection task

Baseline models Optimized models

0.0

0.1

0.2

0.3

RC−L
STM

0.162

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 6

multiple recurrent layers, while bidirectional RNN layers are preferred over
unidirectional ones. In terms of training hyperparameters, the optimized
learning rate is typically between 10−3 and 10−4 with the Adam35 optimizer
more commonly chosen over alternatives like Adagrad36, Rmsprop, and
SGD37. It is important to note, however, that these trends are observations
and may not universally apply to every dataset or task. Therefore, we
recommend runningGenomeNet-Architect on the specific dataset and task
in question to tailor themodel architecture for optimal performance in each
unique scenario.

The results of the 10,000 nt setting in contrast to the 150 nt setting are
noteworthy in that there is a much smaller improvement in accuracy over
the baselines in the 10,000 nt setting. This is because the viral identification
task becomes “too easy” at 10,000 nucleotides, leaving little room for
improvement. In such settings, where relatively simple models already
perform sufficiently well, it may not be worth the considerable computa-
tional overhead of finding a specialized architecture.

Method
Hyperparameter search space
The hyperparameter space used for optimization is listed in Table 1 and
described in more detail here.

The first part of the model constructed by GenomeNet-Architect
consists of a sequenceof convolutional blocks (Fig. 1), eachofwhich consists
of convolutional layers. The number of blocks (Ncb) and the number of
layers in eachblock (scb) is determined by theHPsncb andnc in the following
way:Ncb is directly set to ncb unless nc (which relates to the total number of
convolutional layers) is less than that. Their relation is therefore

Ncb ¼
nc; if nc ≤ ncb
ncb; otherwise

�

scb is calculated by rounding the ratio of the nc hyperparameter to the
actual number of convolutional blocks Ncb:

scb ¼ round
nc
Ncb

� �
:

This results in nc determining the approximate total number of con-
volutional layers while satisfying the constraint that each convolutional
block has the same (integer) number of layers. The total number of con-
volutional layers is then given by

Nc ¼ Ncb × scb:

f0 and fend determine the number of filters in the first or last con-
volutional layers, respectively. The number offilters in intermediate layers is
interpolated exponentially. If residual blocks are used, the number of filters
within each convolutional block needs to be the same, in which case the
number of filters changes block-wise. Otherwise, each convolutional layer
canhave adifferentnumberoffilters. If there is onlyone convolutional layer,
⌈f0⌉ is used as the number of filters in this layer. Thus, the number of filters
for the ith convolutional layer is:

f i ¼ f 0 ×
f end
f 0

� �j ið Þ& ’
; j ið Þ ¼

i
scb

j k
× 1

Ncb�1 ; if res block

i
Nc�1 ; otherwise

8<
: :

The kernel size of the convolutional layers is also exponentially inter-
polated between k0 and kend. If the model has only one convolutional layer,
the kernel size is set to ⌈k0⌉. The kernel size of the convolutional layer i is:

ki ¼ k0 ×
kend
k0

� � i
Nc�1

& ’
:

The convolutional layers can use dilated convolutions, where the
dilation factor increases exponentially from 1 to dend within each con-
volutional block.Using “rem” as the remainderoperation, thedilation factor
for each layer is then:

di ¼ d
i rem scbb cð Þ= scb�1ð Þ

end

l m
:

We apply max-pooling after convolutional layers, depending on the
total max-pooling factor pend. Max pooling layers of stride and a kernel size
of 2 or the power of 2 are inserted between convolutional layers so that the
sequence length is reduced exponentially along the model. pend represents
the approximate value of total reduction in the sequence length before the
output of the convolutional part is fed into the last GAP layer or into the
RNN layers depending on the model type.

For CNN-GAP, outputs from multiple convolutional blocks can be
pooled, concatenated, and fed into a fully connected network. Out of Ncb

outputs, the lastmin(1, ⌈(1− rs) ×Ncb⌉) of them are fed into global average
pooling layers, where rs is the skip ratio hyperparameter.

Hyperparameter optimization process
GenomeNet-Architect uses themlrMBOsoftware38with aGaussian process
model from the DiceKriging R package39 configured with a Matérn-3/2
kernel40 for optimization. It uses the UCB31 infill criterion, sampling λ from
an exponential distribution as a batch proposal method32. In our experi-
ment, we proposed three different configurations simultaneously in each
iteration.

For both tasks, we trained the proposed model configurations for a
given amount of time and then evaluated them afterwards on the validation
set. For each architecture (CNN-GAP and CNN-RNN) and for each
sequence length of the viral classification task (150 nt and 10,000 nt), the
best-performingmodel configuration foundwithin the optimization setting
(2 h, 6 h) was saved and considered for further evaluation. For the patho-
genicity detection task,weonly evaluated the 2 hoptimization. For each task
and sequence length value, the first t= t1 (2 h) optimization evaluated a total
of 788 configurations, parallelized on 24 GPUs, and ran for 2.8 days (wall
time). For the viral classification task, the warm-started t = t2 (6 h) opti-
mization evaluated 408 more configurations and ran for 7.0 days for each
sequence length value.

During HPO, the number of samples between model validation eva-
luationswas set dynamically, dependingon the time taken for a singlemodel
training step. It was chosen so that approximately 20 validation evaluations
were performed for each model in the first phase (t = 2 h), and approxi-
mately 100 validation evaluations were performed in the second phase (t =
6 hours). In the first phase, the highest validation accuracy found during
model trainingwasused as the objective value tobeoptimized. In the second
phase, the second-highest validation accuracy found in the last 20 validation
evaluations was used as the objective value. This was done to avoid
rewarding models with a very noisy training process with performance
outliers.

The batch size of each model architecture is chosen to be as large as
possible while still fitting into GPU memory. To do this, GenomeNet-
Architect performs a binary search to find the largest model that still fits in
the GPU and subtracts a 10% safety margin to avoid potential training
failures.

Architecture evaluation and benchmarks
For the viral classification task, the training and validation samples are
generated by randomly sampling FASTA genome files and splitting them
into disjoint consecutive subsequences from a random starting point. A
batch size that is a multiple of 3 (the number of target classes) is used, and
each batch contains the same number of samples from each class. Since we
work with datasets that have different quantities of data for each class, this
effectively oversamples the minor classes compared to the largest class. The
validation set performance was evaluated at regular intervals after training

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 7

on a predetermined number of samples, set to 6,000,000 for the 150 nt
models and 600,000 for the 10,000 nt models. The evaluation used a sub-
sample of the validation set equal to 50% of the training samples seen
between each validation. During the model training, the typical batch size
was 1200 for the 150 nt models, and either 120, 60, or 30 for the 10,000 nt
models. Unlike during training and validation, the test set samples were not
randomly generated by selecting randomFASTA files. Instead, test samples
were generated by iterating through all individual files, and using con-
secutive subsequences starting from the first position. For the pathogenicity
detection task, the validation performancewas evaluated at regular intervals
on the complete set, specifically once after training on 5,000,000 samples.
The batch size of 1000 was used for all models, except for GAP-RNN, as it
wasnotpossiblewith thememoryofourGPU.For thismodel, a batchsizeof
500 was used.

For both tasks, we chose a learning rate schedule that automatically
reduced the learning rate byhalf if the balancedaccuracydidnot increase for
3 consecutive evaluations on the validation set. We stopped the training
when the balanced accuracy did not increase for 10 consecutive evaluations.
This typically corresponds to stopping the training after 40/50 evaluations
for the 150ntmodels, 25/35 evaluations for the10,000ntmodels for the viral
classification tasks, and 5/15 evaluations for the pathogenicity
detection task.

To evaluate the performance of the architectures and HP configura-
tions, the models proposed by GenomeNet-Architect were trained until
convergence on the training set; convergence was checked on the validation
set. The resultingmodels were then evaluated on a test set that was not seen
during optimization.

Datasets
For the viral classification task, we downloaded all complete bacterial and
viral genomes fromGeneBank and RefSeq using the genome updater script
(https://github.com/pirovc/genome_updater) on 04-11-2020 with the
arguments -d “genbank,refseq” -g “bacteria”/”viral” -c “all” and -l “Com-
plete Genome”. To filter out possible contamination consisting of plasmids
and bacteriophages, we removed all genomes from the bacteria set with
more thanone chromosome.Filteringout plasmidsdue to their inconsistent
and poor annotations in databases avoids introducing substantial noise in
sequence and annotation since they can be incorrectly included or excluded
in genomes. We used the taxonomic metadata to split the viral set into
eukaryotic or prokaryotic viruses. Overall this resulted in three subgroups:
bacteria, prokaryotic bacteriophages, and eukaryotic viruses (referred to as
non-phage viruses, Table 2). To assess the model’s generalization perfor-
mance,we subset the genomes into training, validation, and test subsets.We
used the “date of publishing”metadata to split the data by publication time,
with the training data consisting mostly of genomes published before 2020,
and the validation and test data consisting of more recently published
genomes. Thus, when applied to newly sequenced DNA, the classification
performance of the models on yet unknown data is estimated. For smaller
datasets, using average nucleotide identity information (ANI) generated
with tools such asMashtree41 to perform the splits can alternatively be used
to avoid overlap between training and test data.

The training data was used for model fitting, the validation data was
used to estimate generalization performance during HPO and to check for
convergence during final model training, and the test data was used to
compare final model performance and draw conclusions. The test data was

not seen by the optimization process. The training, validation and test sets
represent approximately 70%, 20%, and 10% of the total data, respectively.

The number of FASTA files in the sets and the number of non-
overlapping samples in sets of the viral classification task are listed in
Table 2. Listed is the number of different non-overlapping sequences that
could theoretically be extracted from the datasets, were they split into
consecutive subsequences. However, whenever the training process reads a
file again, e.g. in a different epoch, the starting point of the sequence to be
sampled is randomized, resulting in a much larger number of possible
distinct (though overlapping) samples. Because the size of the test set is
imbalanced, we report class-balancedmeasures, i.e. measures calculated for
each class individually and then averaged over all classes.

For thepathogenicity classification task,wedownloaded thedataset from
https://zenodo.org/records/367856313. Specifically, the used training files are
nonpathogenic_train.fasta.gz, pathogenic_train.fasta.gz, the used validation
files are pathogenic_val.fasta.gz, nonpathogenic_val.fasta.gz, and the used test
files are nonpathogenic_test_1.fasta.gz, nonpathogenic_test_2.fasta.gz,
pathogenic_test_1.fasta.gz, pathogenic_test_2.fasta.gz.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data for the virus identification task is available under https://research.
bifo.helmholtz-hzi.de/downloads/deepg_refpacks/architect_training_data.
tar.gz. Data for the pathogen detection task is taken from a study of Bar-
toszewicz et al.13 https://zenodo.org/records/3678563 as mentioned in the
Datasets subsection. Source data for figures can be found in Supplementary
Data 1 as well as on https://github.com/GenomeNet/Architect (https://doi.
org/10.5281/zenodo.10889923).

Code availability
The code, available at https://github.com/GenomeNet/Architect, enables
users to apply theoptimizationprocess across variousdatasets and tasks. It is
based on our R library deepG (deepg.de) and can therefore be adapted to a
variety of genomics tasks that are supported by it. It uses the TensorFlow
backend and can be made to run in parallel on multi-GPU-machines and
compute clusters through the batchtools42 R package.

Received: 8 February 2023; Accepted: 8 April 2024;

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–444 (2015).
2. AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 35,

4862–4865 (2019).
3. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional

Networks for Biomedical Image Segmentation. in Medical Image
Computing and Computer-Assisted Intervention –MICCAI 2015
234–241 (Springer International Publishing, 2015).

4. Daoud, M. & Mayo, M. A survey of neural network-based cancer
prediction models from microarray data. Artif. Intell. Med. 97,
204–214 (2019).

Table 2 | Description of the datasets used in our experiments

Number of FASTA Files Number of Sequences (L = 150) Number of Sequences (L = 10k)

Class Training Validation Test Training Validation Test Training Validation Test

Bacteria 15,826 4523 2263 373,404,076 118,398,785 59,111,408 5,579,451 1,772,121 881,031

Virus (non-Phage) 18,093 5171 2588 2,262,526 568,717 458,526 20,075 5552 5350

Bacteriophage 9987 2855 1428 4,702,821 1,301,375 609,088 64,937 18,031 8400

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 8

https://github.com/pirovc/genome_updater
https://zenodo.org/records/367856313
https://research.bifo.helmholtz-hzi.de/downloads/deepg_refpacks/architect_training_data.tar.gz
https://research.bifo.helmholtz-hzi.de/downloads/deepg_refpacks/architect_training_data.tar.gz
https://research.bifo.helmholtz-hzi.de/downloads/deepg_refpacks/architect_training_data.tar.gz
https://zenodo.org/records/3678563
https://github.com/GenomeNet/Architect
https://doi.org/10.5281/zenodo.10889923
https://doi.org/10.5281/zenodo.10889923
https://github.com/GenomeNet/Architect

5. Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach.
(‘O’Reilly Media, Inc.’ 2017).

6. Ren, J. et al. Identifying viruses from metagenomic data using deep
learning. Quant. Biol. 8, 64–77 (2020).

7. Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep
learning on raw DNA sequences for identifying viral genomes in
human samples. PLoS One 14, e0222271 (2019).

8. Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V.
Seeker: alignment-free identification of bacteriophage genomes by
deep learning. Nucleic Acids Res. 48, e121 (2020).

9. Shang, J. & Sun, Y. CHEER: HierarCHical taxonomic classification for
viral mEtagEnomic data via deep learning.Methods 189,
95–103 (2021).

10. Fiannaca, A. et al. Deep learning models for bacteria taxonomic
classification of metagenomic data. BMC Bioinformatics 19,
198 (2018).

11. Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids
from metagenomic fragments using deep learning. Gigascience 8,
giz066 (2019).

12. Bartoszewicz, J. M., Nasri, F., Nowicka, M. & Renard, B. Y. Detecting
DNA of novel fungal pathogens using ResNets and a curated fungi-
hosts data collection. Bioinformatics 38, ii168–ii174 (2022).

13. Bartoszewicz, J. M., Seidel, A., Rentzsch, R. & Renard, B. Y. DeePaC:
predicting pathogenic potential of novel DNA with reverse-
complement neural networks. Bioinformatics 36, 81–89 (2019).

14. Elsken, T., Metzen, J. H., & Hutter, F. Neural architecture search: A
survey. J. Machine Learn. Res. 20, 1–21 (2019).

15. Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new
computational modelling techniques for genomics. Nat. Rev. Genet.
20, 389–403 (2019).

16. Koumakis, L. Deep learning models in genomics; are we there yet?
Comput. Struct. Biotechnol. J. 18, 1466–1473 (2020).

17. Boža, V., Brejová, B. & Vinař, T. DeepNano: Deep recurrent neural
networks for base calling in MinION nanopore reads. PLoS One 12,
e0178751 (2017).

18. Cao, R. et al. ProLanGO: Protein Function Prediction Using Neural
Machine Translation Based on a Recurrent Neural Network.
Molecules 22, 1732 (2017).

19. Shen, X., Jiang, C., Wen, Y., Li, C. & Lu, Q. A brief review on deep
learning applications in genomic studies. Front. Syst. Biol., 2,
877717 (2022).

20. Wang, R., Zang, T. & Wang, Y. Human mitochondrial genome
compression usingmachine learning techniques.Hum.Genomics13,
49 (2019).

21. Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep
neural network for quantifying the function of DNA sequences.
Nucleic Acids Res. 44, e107 (2016).

22. Snoek, J., Larochelle, H. & Adams, R. P. Practical bayesian
optimization ofmachine learning algorithms.Adv. Neural Inf. Process.
Syst. 25, (2012).

23. White, C., Neiswanger, W., & Savani, Y. Bananas: Bayesian
optimization with neural architectures for neural architecture search.
In Proceedings of the AAAI conference on artificial intelligence (Vol.
35, No. 12, pp. 10293–10301) (2021).

24. Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J. Efficient Neural
Architecture Search via Parameters Sharing. 80, 4095–4104 (2018).

25. Liu, H., Simonyan, K. & Yang, Y. DARTS: Differentiable Architecture
Search. arXiv [cs.LG] (2018).

26. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A.
Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv [cs.LG] (2016).

27. Zhang, Z., Park, C. Y., Theesfeld, C. L. & Troyanskaya, O. G. An
automated framework for efficiently designing deep convolutional
neural networks in genomics. Nat. Machine Intell. 3, 392–400 (2021).

28. Kelley, D. R. et al. Sequential regulatory activity prediction across
chromosomes with convolutional neural networks. Genome Res. 28,
739–750 (2018).

29. Booker, A. J. et al. A rigorous framework for optimization of expensive
functions by surrogates. Struct. Optimization 17, 1–13 (1999).

30. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K. & Weihs, C. MOI-
MBO: Multiobjective Infill for Parallel Model-Based Optimization. in
Learning and Intelligent Optimization 173–186 (Springer International
Publishing, 2014).

31. Srinivas,N., Krause, A., Kakade,S.M.&Seeger,M.GaussianProcess
Optimization in the Bandit Setting: No Regret and Experimental
Design. arXiv [cs.LG] (2009).

32. Hutter, F., Hoos, H. H. & Leyton-Brown, K. Parallel Algorithm
Configuration. in Learning and Intelligent Optimization 55–70
(Springer Berlin Heidelberg, 2012).

33. Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained
Bidirectional Encoder Representations from Transformers model for
DNA-language in genome. Bioinformatics https://doi.org/10.1093/
bioinformatics/btab083. (2021).

34. Liang, Q., Bible, P. W., Liu, Y., Zou, B. & Wei, L. DeepMicrobes:
taxonomic classification for metagenomics with deep learning. NAR
Genom. Bioinform. 2, lqaa009 (2020).

35. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization.
arXiv [cs.LG] (2014).

36. Stochastic Optimization. Adaptive Subgradient Methods for. https://
www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf (2011).

37. Robbins, H. & Monro, S. A Stochastic Approximation Method. Ann.
Math. Stat. 22, 400–407 (1951).

38. Bischl, B. et al. mlrMBO: A Modular Framework for Model-Based
Optimization of Expensive Black-Box Functions. arXiv
[stat.ML] (2017).

39. Roustant, O., Ginsbourger, D. & Deville, Y. DiceKriging, DiceOptim:
Two R Packages for the Analysis of Computer Experiments by
Kriging-Based Metamodeling and Optimization. J. Stat. Softw. 51,
1–55 (2012).

40. Genton, M. G., Cristianini, N., Shawe-Taylor, J. & Williamson, R.
Classes of kernels for machine learning: A statistics perspective.
https://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf?
ref=https://githubhelp.com.

41. Katz, L. S. et al. Mashtree: a rapid comparison of whole genome
sequence files. J. Open Source Softw. 4, 44 (2019).

42. Lang, M., Bischl, B. & Surmann, D. batchtools: Tools for R to work on
batch systems. J. Open Source Softw. 2, 135 (2017).

Acknowledgements
This work was funded in part by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A and under GenomeNet
Grant No. 031L0199A/031L0199B and by the Deutsche
Forschungsgemeinschaft DFGEXC 2155. P.C.M. received funding from the
German Research Foundation (Grant number 405892038). X.-Y.T. received
funding from the German Center for Infection Research (DZIF) TI BBD. C.H.
received funding from NIH U19AI110820.

Author contributions
H.A.G., M.B., and P.C.M. designed the study and experiments. H.A.G. was
responsible for coding the baselines and optimized architectures, and for
training, evaluating, and analyzing them. H.A.G. drafted the initial
manuscript. R.M. and J.M. contributed to code development. M.B. was the
main developer of the hyperparameter optimization code and the multi-
fidelity approach used. M.B. also supervised and contributed to the model
code, and ran the model-based optimization experiments to find optimal
architectures. G.R. provided computational resources and support. E.A.F.
andC.H. contributed tovirus identificationandbenchmarking.M.R., A.C.M.,
B.B., and X.-Y.T. provided valuable feedback and input throughout the

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 9

https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf?ref=https://githubhelp.com
https://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf?ref=https://githubhelp.com

project. The project was supervised by M.B. and P.C.M. All authors con-
tributed to the writing of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06161-1.

Correspondence and requests for materials should be addressed to
Philipp C. Münch or Martin Binder.

Peer review information Communications Biology thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editors: Gene Chong and Luke R. Grinham. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024) 7:516 10

https://doi.org/10.1038/s42003-024-06161-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimized model architectures for deep learning on genomic�data
	Results
	GenomeNet-Architect uses an efficient global optimization�method
	GenomeNet-Architect uses a search space that covers the most common layer types and hyperparameter settings
	Model configurations are initially evaluated with shorter runtimes for more efficient search space exploration
	GenomeNet-Architect makes use of parallel resources
	GenomeNet-Architect finds models that outperform expert-designed baseline models in the viral identification�task
	GenomeNet-Architect identifies models that outperform expert-designed baselines in the pathogenicity detection�task

	Discussion
	Method
	Hyperparameter search�space
	Hyperparameter optimization process
	Architecture evaluation and benchmarks
	Datasets
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

