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Human local field potentials in motor and
non-motor brain areas encode upcoming
movement direction
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Etienne Combrisson 1,2,3 , Franck Di Rienzo 2, Anne-Lise Saive 1,4, Marcela Perrone-Bertolotti 5,
Juan L. P. Soto6, Philippe Kahane 7, Jean-Philippe Lachaux8, Aymeric Guillot 2 & Karim Jerbi 1,9,10

Limb movement direction can be inferred from local field potentials in motor cortex during movement
execution. Yet, it remains unclear to what extent intended hand movements can be predicted from
brain activity recorded during movement planning. Here, we set out to probe the directional-tuning of
oscillatory features during motor planning and execution, using a machine learning framework on
multi-site local field potentials (LFPs) in humans. We recorded intracranial EEG data from implanted
epilepsy patients as they performed a four-direction delayed center-out motor task. Fronto-parietal
LFP low-frequency power predicted hand-movement direction during planning while execution was
largely mediated by higher frequency power and low-frequency phase in motor areas. By contrast,
Phase-Amplitude Coupling showed uniform modulations across directions. Finally, multivariate
classification led to an increase in overall decoding accuracy (>80%). The novel insights revealed here
extend our understanding of the role of neural oscillations in encoding motor plans.

The direction of arm movements can be inferred from the firing pattern of
individual neurons in the primarymotor cortex (M1)1,2. Critically, the firing
rate ofM1neurons has been shown todependon themovement direction, a
well-established phenomenon known as directional tuning. A directionally
tuned neuron exhibits maximum firing rates during arm movement in its
“preferred direction” and gradually lower rates for other directions. Most
studies have used single unit activity (SUA) to decode movement para-
meters in non-humans3–6 or humans7.

A growing body of research suggests that multi-unit activity (MUA)
andLocal FieldPotential (LFP) signals canalsobeused topredictmovement
directions from themonkeymotor cortex8–12. Further evidence inmacaques
has revealed clear task-related LFP modulations in the gamma band in the
posterior parietal cortex during both the planning and execution of armand
eye movements13,14. In humans, LFP-based movement type identification
and directional tuning have been investigated with intracranial EEG (iEEG)
data acquiredduringpre-surgical evaluations inpatientswith drug-resistant
epilepsy11,15–19. Interestingly, when comparing the decoding power achieved

by the different frequency components of the iEEG signal, these studies
show that the highest directional tuning is often found in the low-pass
filtered signals (<4 Hz) and in the power of the so-called broadband gamma
band (~60–140Hz). This corroborates directional tuning findings reported
in monkeys9,16,20 and non-invasively in humans21. The ability to infer
movement type and direction from invasive and non-invasive recordings
has a direct clinical application for brain–computer interfaces22–24.

The above studies provide compelling evidence that limb movement
direction canbedecodedusing spectral powerproperties of both invasive and
non-invasive motor cortex recordings during movement execution. How-
ever, it is still not clear whether other frequency-domain features, such as
oscillation phase and cross-frequency interactions, exhibit directional tuning.
Furthermore, little is known about the temporal dynamics with which
movement direction is represented in the brain during planning. To address
these gaps, we investigated whether the classification of arm movement
directions was possible using phase, amplitude, and phase–amplitude cou-
pling (PAC) features during both planning and execution. We then asked
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whether movement directions share common neural representations during
both phases. To tackle this question, we trained a classifier at execution and
tested whether it was able to decode movement directions at planning and
conversely. Investigating the cross-temporal generalizations in both direc-
tions was aimed at probing similarities of neural representations of move-
ment directions between planning and execution. Importantly, we were able
to explore this question using depth recordings from over 700 cortical sites
across six epilepsy patients. Local field potentials were continuously mon-
itoredusing stereotactic-EEG(SEEG)while participants performedaclassical
delayed center-out motor task. We hypothesized that movement decoding
should be possible from the moment movement planning starts, i.e. during
the delay period precedingmovement onset (0–1500ms). In addition, based
on previous work emphasizing the importance of phase and PAC in motor
tasks25–28, we also hypothesized that these features, alongside spectral power,
would display directional tuning.

Our results provide evidence for successful prediction (up to 86%) of
intended armmovements in humans, using combinations of oscillatory phase
and power features extracted from LFPs in motor and non-motor structures.
Single-feature direction decoding revealed the prominent role of alpha oscil-
lations and broadband gamma activity during planning and execution,
respectively. Finally, our multi-site electrophysiological decoding framework
reveals insights into the temporal dynamics of movement encoding.

Results
In the following we present the findings of decoding arm movement
directions in human epileptic patients implanted with intracranial electro-
des and performing a center-out motor task (Fig. 1). We begin with (i) the

results of single-feature classification of movement directions, followed by
(ii) insights on the temporal evolution and generalization of the decoding,
and finally (iii) the multivariate classification results. But, first, we illustrate
the features probed in this study; Figs. 2–4 illustrate the extracted features for
a representative premotor electrode, and they show the temporal evolution
including (i) pre-stimulus rest, (ii) planning, and (iii) executionwindows for
the amplitude andphase features.ThePAC illustrations are shownusing co-
modulograms for each direction in both planning and execution periods.
These represent the features that were computed for 748 sites from all
participants in this study.

Decoding movement directions: single features findings
Significant decoding of movement direction during both planning and
execution periods using power and phase features were prominent in
motor areas (i.e. supplementary motor area (SMA), premotor cortex
(PMC) and primarymotor (M1)) and parietal brain regions showed (Fig.
5). During the planning period, the highest decoding accuracy of 49.37%
(chance level 25%, p < 0.05) was found using alpha power in the posterior
middle frontal gyrus (pMFG), anterior middle temporal gyrus (aMTG),
posterior cingulate and ventral precuneus. The anterior pre-SMA and
ventral precuneus also showed significant decoding using alpha power
during the execution period. The spatial distribution of significant
decoding during planning using beta power was similar to the decoding
patterns obtained using the alpha band but the maximum of decoding
accuracy was slightly smaller (46.25%, p < 0.05). During execution, hand-
movement direction classification using beta power reached a maximum
of 50.75% (p < 0.05) in the PMC. High-gamma (60–200 Hz) power led to

Fig. 1 | Representation of intracranial implantation and brain coverage across
subjects projected on a standard 3DMNI brain and experimental design. a Top,
front and right views of the depth-electrode recording sites. b Top, left and right
views of the number of recording sites that contribute to each vertex (i.e. spatial
density). c SEEG locations per subject d Experimental design of the delayed center-

out motor task. After a 1 s rest period (rest, −1000 to 0 ms) a first cue (Cue 1)
instructed subjects to prepare to move their hand (motor planning, 0–1500 ms).
Next, a go signal (Cue 2) appeared prompting participants to execute the movement
(motor execution, 1500–3000 ms).
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62.94% (p < 0.05) correct classification during the execution in the pos-
terior pre-SMA. Decoding results clearly surpassed those obtained in the
lower-frequency bands. Still, during the execution, high-gamma power
also revealed statistically significant decoding in M1. Interestingly, the
posterior pre-SMA and the ventral precuneus also showed significant
decoding for both planning and execution. Among all non-power fea-
tures, only the VLFC phase exhibited brain areas with significant
decoding (i.e., posterior pre-SMA) during the executionwith amaximum
of 44.38% (p < 0.05).

As far as PAC is concerned, we found an increase of alpha-gamma
coupling in the dorsal sensorimotor and premotor cortices during move-
ment planning, followed by a decrease during execution. Although subtle
differences in PACwere observed across directions, the differenceswere not
sufficient to allow for significant PAC-based movement classification.

Decoding network associated with intended and executed limb
movements
Several brain structures allowed for directionprediction at variousmoments
in time during either planning or execution. To explore the spatial and

temporal dimensions of the decoding, we computed and visualized for, at
each time bin and within various regions of interest (ROIs), the number of
sites with statistically significant decoding (Fig. 6). This figure was obtained
using a univariate gaussian kernel estimate (kdeplot from the Python
package Seaborn). To isolate the features that presented decoding robust-
ness across time, we kept only features with significant decoding in at least
three consecutive time bins after correction for multiple comparisons
(p < 0.05). Through the task, alpha power was the first feature to enable
decoding during the planning period starting in the pMFG [150, 1150ms]
and almost simultaneous in the ventral precuneus [250–450ms]. Interest-
ingly, this last structure is the only one that also revealed a secondwindowof
decoding during the execution [2250, 2600ms]. Gamma power then took
over, allowing for a decoding starting from the end of the planning period in
the anterior pre-SMA [1050, 2650ms] followed by the posterior pre-SMA
[1550, 2650ms]. It is interesting to note that around 2000ms, the density of
significant time bins decreased in the anterior pre-SMAwhile increasing in
the posterior pre-SMA. In the PMC, the executed direction was successfully
predicted between [1700, 2650ms] using the gamma power and in an
almost identical time interval [1800, 2600ms] using the beta power.

Fig. 2 | Relative power modulations per directions (up/right/down/left) relative to baseline ([−750, −250] at rest) for a premotor SEEG site. a Time–frequency
representation. b Singe-trial high gamma [60, 200 Hz] power modulation.

Fig. 3 | Phase modulations per directions (up/right/down/left) for a premotor SEEG site. a Phase-locking factor across trials. b Singe-trial very low-frequency phase
(VLFC, [0.1, 1.5 Hz]) modulation.

https://doi.org/10.1038/s42003-024-06151-3 Article

Communications Biology |           (2024) 7:506 3



Time-resolved modulations and decoding
To exploit the temporal resolution of the SEEG-based decoding framework,
we chose to illustrate the temporal dynamics of modulation and classifi-
cation across movement direction in three key sites. Figure 7 illustrates the
time-resolved directional tuning and single feature decoding in three sites,
using power in alpha and gamma bands andVLFC phase. Two sites located
in the pMFG (Fig. 7a, b) shared the same alpha power pattern: a uniform
alpha power across the four directions during rest, followed by directional
tuning during planning and finally, a similar alpha desynchronization
during execution. It is worth noting that alpha power inter-trial variability
(assessed by the standard error on the mean) across directions was higher
during the planning, compared to the execution period. For the first site in
the pMFG(Fig. 7a), the four directionswere independentlymodulated from
300ms after the onset of the planning period (Cue 1). The power difference
across directions was maximal around 1050ms. This was also the time
associated with themaximal decoding accuracy of 43.6% (p < 0.05). For the
second site in the pMFG (Fig. 7c), direction-specific modulations were
observed earlier, around 200ms before the onset of planning and single-
feature maximum decoding of 47.4% was reached around 250ms. Inter-
estingly, planning horizontal movements (i.e left and right directions) were
clearly dissociated with alpha power modulations going in opposite direc-
tions. Conversely, vertical movements (i.e up and down directions) seemed
to be stable during planning. In comparison, the gamma power in the pre-

SMA posterior presented no direction-specific patterns during rest and
planning (Fig. 7c). Instead, gammapower allowed decoding directions from
200ms after the execution onset (Cue 2), with a maximum decoding
accuracy of 62.5% at 2250ms (i.e., 750ms after Cue 2). Interestingly, in this
same site in posterior pre-SMA, significant direction classification (46.4%,
p < 0.05) was also achieved usingVLFC phase (Fig. 7d). Similarly to gamma
power, the VLFC phase happened to have a consistent behavior across
directions during rest and planning phase, but showed direction-specific
modulations during execution. Intriguingly, VLFC phases showed the
highest differences during the execution at approximately the same time as
gamma power (around 2245ms), which led to a significant decoding.

Temporal generalizationof thedecodingofmovementdirections
We then tested whether movement direction representation was shared
betweenplanning andexecution.To this end,weusedTGusing either single
ormultiple power features (e.g., alpha aloneor in combinationwith gamma)
to find if some SEEG sites were able to decode during the execution while
training the classifier during the planning period and conversely (Fig. 8).
Panels a–c represent TG using single power features respectively in pMFG
(alpha), and two distinct motor sites in the posterior pre-SMA (high-
gamma)while panelD is theTG for those three combined sites and features.
In pMFG,TGanalysis showed that classifiers trained during thefirst 500ms
of planning were able to generalize to data from 0 to 1000ms after Cue 1

Fig. 4 | Phase-amplitude coupling modulations per direction (up/right/down/
left) during planning [0, 1500ms] and execution [1500, 3000ms] windows for a
premotor iEEG recording site. Comodulograms representing PAC as a function of
frequency for phase and amplitude during planning (a) and execution (b). Singe-

trial PAC modulations, per direction, for delta [2, 4 Hz], theta [5, 7 Hz] and alpha
[8,13 Hz] phase coupling with high-gamma [60, 200 Hz] amplitude for planning
c and execution d windows.
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with a maximum decoding of 48.75% using alpha power modulations
(Fig. 8a). In the posterior pre-SMA, classifiers were able to generalize to data
within the execution period and reached a maximum of 63.13% (Fig. 8b).
This execution-related sustained neural pattern did not share enough
common representation with the planning period in order to show gen-
eralization. By contrast, Fig. 8c presents another SEEG site located in pos-
terior pre-SMA forwhich part of the information about handdirectionswas
shared between planning and execution. Indeed, a classifier trained during
execution provided significant decoding during execution (max. 50.63%)
but alsoduring theplanningphase (max. 44.38%). Interestingly, training the
classifier during the planning did not lead to significant decoding during the

execution (i.e., non-symmetrical behavior). Finally, significant decoding
patterns of the three previous TGs were conserved when features were
combined (Fig. 8d); Training during the execution and testing during
planning reached a maximum of 55% (i.e.+4% compared to the posterior
pre-SMA site only). Moreover, a distinct decoding pattern emerged when
the classifier was trained during the planning phase (~200–600ms) and
tested during the execution (~2300–2500ms).

Decoding results of the multi-feature procedure
To explore the joint relevance of multiple features in predicting movement
directions, we extended the decoding process to a multi-feature (MF) fra-
mework combining all computed feature types (power, phase and PAC), all
frequency bands and SEEG sites (Fig. 9). The MF classification was carried
out using feature selection (see the “Methods” section) for each of the 67
time points, leading to a distinct set of features at each time bin. The time-
resolved decoding accuracy in subject S1 (Fig. 9a) yielded two clear bumps:
during the movement intention phase, with a maximal decoding of 76.12%
at 850ms, followed later on by a second bump during the middle of the
execution phase and a maximum decoding of 84.25% at 2050ms. Because
the decoding performance at each time bin was based on a distinct set of
features, we counted the number of times each feature appeared (i.e.
occurrence) during the entire planning and execution period, and we also
grouped those features by Brodmann areas (BA) (Fig. 9b). The most fre-
quently selected features were predominantly power-based but the impor-
tance of each frequency band varied between preparation and execution
periods. Among all of the non-power features (i.e. phase and PAC), the
VLFC phase and the coupling between delta phase and gamma amplitude
(delta-gamma) were the most selected features during the execution only.
For planning, slow oscillations (i.e. beta and alpha) were predominantly
selected. Unlike planning, the execution was predominantly decoded using
high-frequency power features. We also summarized the maximum
decoding reached across subjects for both planning and execution (Fig. 9c),
aswell as themost frequently selected features across subjects (Fig. 9d). Both
decoding ofmotor planning and execution reached amaximumof 86% (S1,
for both hands). In general, the decoding of movements during execution
was higher (or at least equal to) the accuracies obtained during planning
except for subject 5. This subject presents a 14% difference (i.e. 84% for
planning and 70% for execution) which probably reflects the fact that this
subject has an SEEG implantation that is more suitable for intention pre-
diction. Subjects 4 and 6 did not present significant decoding even with the
multi-features procedure. The MF direction decoding during the planning
phase was primarily achieved using slower frequencies (i.e. delta, theta,
alpha, and beta) in premotor, prefrontal, and parietal areas (BA6-9-40).
During execution, decoding directions more frequently involved high fre-
quency power (i.e. low and high gamma), especially in pre and primary
motor areas (BAs 4-6-8-11).

Fig. 5 | 4-directions decoding of intended and executed limb movements using
power, phase and PAC features over several frequency bands, Power features are
presented within alpha (α), beta (β) and high-gamma (high-γ) bands and VLFC
([0.1, 1.5 Hz]) phase. Each column summarized SEEG sites that present significant
decodings during the entire planning or execution period. Non-significant areas are
presented in gray (p < 0.05 after correction for multiple comparisons using max-
imum statistics through SEEG sites, time, and frequencies).

Fig. 6 | Sorted density of significant timings across
region of interest (ROI) and power features. This
density was obtained using single feature that pre-
sented at least three consecutive significant decod-
ings after correction for multiple comparisons
(p < 0.05 corrected for SEEG sites, features and time
using maximum statistics).
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Discussion
The goal of the present studywas to expandon the current understanding of
how neural oscillations encode movement direction. In particular, we
examined whether movements can be predicted from a range of oscillatory
features recorded during or even prior to execution (i.e. in the delay period
while participants waited for the go cue). To this end, we employed a
machine learning approach, where the success rate of each oscillatory brain
feature (or combination thereof) in predicting movement direction was
taken as ameasure of functional relevance to direction encoding. Alongside
well-established spectral power features, the supervised learning framework
we used also probed the predictive strength of phase and phase-amplitude
coupling, both of which have received very little attention in the context of
movement decoding. A further added value of the present studywas the use
of SEEG, providing multi-site LFP depth recordings in humans; This
allowed us to probe distributed network decoding patterns across time and
over widely distributed brain areas, not limited to primary motor regions.

Our findings show that the direction of upcoming movements can be
predicted using spectral features extracted duringmovement planning from
widely distributed human LFPs. In fact, the accuracy by which movements
were predicted from neural signals acquired during the delay period (up to
86%) was equivalent to the rate of successful decoding achieved with data

acquired during actual movement execution. However, the anatomical
locations and main frequency bands of the LFP features that led to the best
classifications during execution differed from those that allowed for the
highest predictions during planning. During execution, the best features
were high gamma power in motor and premotor areas, while the classifi-
cation ofmovement intentionswasmainly achieved through alpha and beta
power in premotor, prefrontal, and parietal regions. From a decoding
perspective, the highest decoding accuracieswere obtained in amultivariate
decoding framework combining multiple oscillatory signal features (e.g.,
power, phase, and phase–amplitude coupling) across multiple intracranial
recording sites (e.g., motor, premotor, but also non-motor-areas).

The fact that oscillatory power in multiple frequency bands, especially
in motor areas, carries directional information is well-established9,21.
Additionally, previous research suggests that phase signals can be used to
infer hand position, velocity, and acceleration through low-frequency
components26,29,30. Yet, to the best of our knowledge, this is the first study to
jointly explore the relative importance of amplitude, phase and PAC fea-
tures for decoding planned or executed limb movement directions in
humans. Our results confirm the prominent role of power features in
movement direction decoding and show that very low frequency (<1.5 Hz)
phase features also led to statistically significant direction prediction,

Fig. 7 | Time-resolved 4-directional tuning task-induced power and phase
modulations. (up: red; right; brown: down: blue; left: green) and associated decoding
accuracies (purple) using an LDA with a 10 times 10-fold cross-validation on three
SEEG sites. The power is computed every 50 ms using a 700 ms window. The two
vertical lines at 0 and 1500 ms, respectively, represent the onset of the planning phase
(Cue 1) and the execution phase (Go signal, Cue 2). The horizontal black plain line
represents the theoretical chance level (4-classes, 25%) and the red dotted line

represents the significance level computed from permutations at p < 0.05 after
correction for multiple comparisons through time points using maximum statistics,
a and b alpha power [8, 13 Hz] for two electrode contacts located in the posterior
middle frontal gyrus (pMFG), c high-gamma power [60, 200 Hz] of a posterior pre-
SMA electrode contact, d VLFC phase [0.1, 1.5 Hz] of the same posterior pre-SMA
site. Shaded areas represent the SEM.
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specifically during execution (Fig. 5). Furthermore, we previously reported
that PAC varies considerably across motor states, specifically when com-
paring intention and execution states28 but whether PAC is differentially
modulated across individual movement directions was so far unclear. The
results in the present study suggest that PAC varies only weakly across
directions and that these modulations are not sufficient for PAC-based
single-feature classification ofmovements. This is consistentwith a previous
study by Yanagisawa et al. (2012) who showed that PAC differs between
motor planning and execution, but not across movement type25. Taken
together, these data support the idea that PAC in sensorimotor areasmay be
a large-scale mechanism that constrains gamma activity during rest and
planning periods (into slow phasic amplitude fluctuations) and releases it
for the purpose of motor execution. Whether other PAC-related metrics
(such as the preferred phase, i.e. the phase at which binned amplitude is
maximum) might allow for better PAC-based movement decoding still
needs to be investigated.

Directional tuning of arm movements in the space of single-unit
activity in the motor cortex is widely established textbook knowledge1.
Moreover, it has also been shown that multi-unit activity and LFP signals
can be used to predict movement directions from monkey motor
cortex8–12. Interestingly, further evidence in macaques has revealed task-
related gamma-range LFP modulations in the posterior parietal cortex
during both planning and execution of arm and eye movements13,14. In
humans,movement-type decoding using LFP-based spectral featureswas
also shown in non-primary motor areas19. However, the question of
whether population activity recorded in brain areas outside the primary
motor cortex also exhibits directional tuning has not received much
attention. Our findings indicate that movement direction can be inferred
from primary and non-primary motor cortices, as well as from non-
motor areas including parietal and prefrontal areas. Using single-feature
decoding of movement planning, we first found a strong implication of
the posterior middle frontal gyrus (pMFG-BA6) especially using alpha

and beta power (Figs. 5, 6, 7a, b) with a maximum decoding of 49.37%.
Almost concurrently and using the same frequencies, motor direction
planning could also be decoded from the posterior cingulate/precuneus
(Figs. 5, 6), which could be consistent with the involvement of this area in
internal self-representation31 and previous reports suggesting that it
encodes motor intentions before complete awareness32,33. Decoding
motor execution was essentially possible through gamma power, essen-
tially in motor-related areas (Figs. 5, 6, 7c, d) and reached a maximum of
62.94%.We also observed that significant decoding via gamma activity in
pre-SMA began first in the anterior part followed by the posterior part.
Interestingly, the significant movement classification via gamma activity
in anterior SMAoccurred in the very early stages of the execution, around
the go signal, before the decoding in the primary motor cortex (Fig. 6).
Finally, the model achieved a modest but above-chance decoding of 44%
using the VLFC phase in the posterior pre-SMA during the execution.
The VLFC is intricately linked to the readiness potential, a brain signal
that arises in motor cortices during voluntary or self-paced movements
with a time-locked onset34,35. Consequently, it is plausible that the
observed decoding accuracy using the VLFC was influenced, at least in
part, by varying movement onset times corresponding to each direction.

Movement planning and execution shared a spatially overlapping
motor-related network36. To address the dynamics of movement direc-
tion representation in the brain during planning and execution, we
investigated the ability of classifiers to generalize to temporally distant
time points using different features. This was achieved using a temporal
generalization procedure37. Our illustrative analysis (Fig. 8) shows how
some premotor sites, involved in externally driven cued movement38,
decode directions only during planning or only during execution (i.e.
Fig. 8a, b) while others were able to generalize to both phases (Fig. 8c).
Thus, directional tuning of LFPs during planning and execution share
partly overlapping neural representations, mainly through alpha and
gamma oscillations. However, cross-temporal generalization decoding

Fig. 8 | Temporal generalization (TG) using power
features on three distinct SEEG sites. The vertical
and horizontal lines at 0 and 1500 ms stand
respectively for Cue 1 and Cue 2. White contoured
zones delimit statistically significant decodings at
p < 0.01 (binomial test) after Bonferroni correction
through time. No decoding are performed on the
diagonal, aTG in a pMFG site using alpha [8, 13 Hz]
power, b and c TG in two distinct SEEG sites located
in the posterior pre-SMA using high-gamma [60,
200 Hz] power, d TG of the three combined sites
(alpha pMFG+ high-gamma posterior pre-SMA).
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also showed that directional tuning of LFPs during planning and
execution reflects a single and sustained process rather than a dynami-
cally changing coding phenomenon39. It has been proposed that pre-SMA
acts as an interface to transform visual information into information
required for motor planning. Animal studies revealed that pre-SMA
neurons encode the spatial location of the target40. Therefore, it is possible
that the shared information between the execution and planning phase is
explained by the target location instead of movement parameters. Fur-
thermore, extending the temporal generalization to multi-feature clas-
sifiers (Fig. 8d) illustrates how multi-site feature combinations may lead
to models capable of bidirectional generalization (i.e. be trained on
execution data and generalize to the planning period, or be trained on the
planning and generalize to the execution widow).

We also addressed the decoding complementarity of the spectral
features using multivariate classification, where different features from
motor and non-motor areas are combined (Fig. 9). Using feature selec-
tion within the classification framework allows us to determine the
combinations of features that lead to the highest decoding accuracies. By
applying this procedure at each time point, we obtained an example of
time-resolved decoding reaching 84.25% during the execution and
75.12% during the intention phase (Fig. 9a). Interestingly, in addition to

power features, VLFC phase and delta-gamma coupling were also
selected by the algorithm, which suggests complementarity in terms of
the directional information these features provide (Fig. 9b). Such spectral
features can also be combined to graph-theoretical measurements to
further improve decoding performance41. Non-surprisingly, the result of
multi-features classification varied across subjects highlighting how
much the decoding accuracy depends on the intracranial implantation in
each patient (Fig. 9c). A general trend was that anterior superior frontal
gyrus and temporal implantations did not allow significant decoding,
even with multi-feature classification (S4 and S6) while implantations
with a majority of middle and medial frontal SEEG sites (S1-2-3-5)
allowed significant dissociation up to 86% of the 4-directions for both
planning and execution (Fig. 1c). Finally, the data-driven feature selec-
tion procedure highlighted the prominent role of the power of slower
oscillations (theta, alpha and beta) in the premotor, prefrontal and par-
ietal cortex (BA 6-9-40) for decoding motor intentions. Our findings of
directional tuning in BA9 and BA40 is consistent with their role in motor
processes, particularly the planning ofmovement directions18. BA40, part
of the posterior parietal cortex, is also involved in motor planning
processes14,42–44. This region is involved in the emulation of sensory
information into motor commands, especially during the coding of

Fig. 9 | Decoding results of the multi-features procedure. a Time-resolved
decoding accuracy and associated deviation using theMF selection for the subject S1.
Cue 1 and Cue 2 are represented with two solid gray lines. Blue lines indicate the
maximum decodings reached respectively during the planning and execution per-
iods. The horizontal solid gray line represents the theoretical chance level of 25% and
the solid red line is the corrected decoding accuracy (p < 0.05 corrected using
maximum statistics across time points) obtained by randomly shuffling the label
vector (permutations). Shaded areas represent the SEM. bMost selected features
during planning (blue bars) and execution (red bars). For each barplot, the y-axis
show the number of times a feature was selected (occurrence), and the x-axis shows
the feature type (power, phase and PAC) as well as the name of the frequency band.

c Best decoding accuracies per subject for intention and execution. The solid black
line represents the theoretical chance level of a 4-class classification problem (25%)
and the dotted red line (~40%), the statistical chance level at p < 0.05 (corrected using
maximum statistics across subjects). d Most recurrent selected power features
during themulti-features procedure as a function of Brodmann area. For each power
frequency band and for each Brodmann area, we subtracted the number of features
selected during preparation from those during execution. Thus, blue and red colors
mean that a feature has been selectedmore times respectively during the preparation
and execution of themovement (specificity). In the same way, the white colormeans
that as many features have been selected for both conditions while black rectangles
stand for no selected features.
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spatial relationships44,45. For direction classification during movement
execution the feature selection algorithm predominantly used the power
in higher frequency bands (low and high gamma) in themotor, premotor,
frontal, and cingulate areas (BA 4-6-11-32) (Fig. 9d).

The present study has several limitations that need to be acknowl-
edged. First, intracranial recordings provide high-quality signals at the
cost of a heterogeneous and incomplete coverage of the brain. Even with
more than 500 recording sites, the probed brain areas were not equally
represented in our sample of patients. The implantations across the six
subjects (see Fig. 1) yielded a reasonable coverage of frontal (although the
right hemisphere was over-represented compared to the left hemisphere)
and central areas but the parietal cortex was under-represented. More-
over, four out of six patients had uni-lateral implantations, and the two
others had non-symmetrical implantation. Because of this limitation,
which is inherent to invasive recordings, it was not possible to separate
contralateral from ipsilateral effects on direction decoding. It would be a
great benefit to examine whether ipsilateral activity also carries direc-
tional information46. This could be assessed using group-level statistics on
a larger number of patients implanted with intracranial recordings47 or
with EEG or MEG recordings using a similar center-out paradigm.
Furthermore, althoughwe systematically excluded electrodeswith typical
epilepticwaveforms (e.g., epileptic spikes), themere fact that this research
was conducted in epilepsy patients may limit the generalizability to
healthy subjects. Future studies could investigate the feasibility of
reconstructing the continuous 3D hand position using deep learning
fitted on depth recordings48,49. Finally, we investigated the decoding of
only four directions of movement, mainly because of the limited time
with the patients. Several studies have addressed the decoding of a higher
number of directions during movement execution30,50,51. These studies
attempted to either decode 8 directions of movements using EEG or
ECoG recordings52,53 or attempted to provide a prediction of a continuous
movement using ECoG recordings11,26,54,55. However, predicting a con-
tinuous trajectory from movement planification signals still remains an
open challenge.

Conclusion
The present study investigated the feasibility of decoding planned and
executed limb-movement directions from human intracranial record-
ings, using a wide range of spectral features (i.e. power, phase, and
phase–amplitude coupling inmultiple frequency bands and brain areas).
We found that decoding during the planning phase mainly involved
lower frequencies of power (i.e. alpha and beta) in the posterior middle
frontal cortex and parietal areas. We also found significant decoding
during movement execution using high-gamma power in motor and
premotor areas but also using very low-frequency phase (1.5 Hz). These
findings, in addition to the illustrations of the feasibility of multi-feature
temporal generalization of directional tuning representation in the
human brain, advance our understanding of the role of spectral prop-
erties of brain activity in movement planning and control and open up
new paths that could be explored in next-generation brain-machine
interfaces.

Methods
Participants
We collected SEEG recordings from six drug-resistant epilepsy patients (6
females, mean age 22.17 ± 4.6, all right-handed). Multi-lead EEG depth
electrodes were implanted at the Epilepsy Department of the Grenoble
Neurological Hospital (Grenoble, France). Trials containing artefacts or
pathological waveforms were systematically excluded through visual
inspection in collaboration with the medical staff, as in previous
studies28,56–59. All participants provided written informed consent, and the
experimental procedures were approved by the Institutional Review Board,
as well as by the National French Science Ethical Committee. The demo-
graphic and clinical details of the patients are summarized in Table 1.

Electrode implantation and stereotactic EEG recordings
Stereotactic electroencephalography (SEEG) electrodes had a diameter of
0.8, 2 mm wide and 1.5 mm apart (DIXI Medical Instrument®). Each
electrode consistedof 10 to15 contacts according to the implanted structure.
This yielded a total of 748 intracerebral sites when pooling the sites of our
sample of patients (i.e., 126 sites in each patient, except for one patient who
had 118 recording sites). At the time of acquisition, a whitematter electrode
wasused as reference, anddatawas bandpassfiltered from0.1 to 200Hzand
sampled at 1024Hz. Electrode locations were determined using the ste-
reotactic implantation scheme and the Talairach and Tournoux propor-
tional atlas60. For each subject, electrode location was standardized on
Talairach space (based on post-implantation CT). The Talairach coordi-
nates of each electrode were finally converted into the MNI coordinate
systemaccording to standard routines56,61,62 (see SupplementaryTable 1).To
be able to visualize intracranial recording sites on a 3-D standardMNIbrain
(Fig. 1a) and to project SEEGdata to the nearest cortical surface (Fig. 1b), we
used an open-access visualization Python toolbox called Visbrain63. Each
SEEG site is represented by a color ball into the transparent brain. Cortical
projection was obtained by taking the intersection between the cortical
surface and a 10mm radius sphere around each site. Non-significant
decoding is systematically turned in gray. By convention, the left hemi-
sphere (LH) is presented on the left in all brain visualizations.

Experimental design
The experimental paradigm used in this study consisted of a classical
delayed center-out motor task28. After a rest period of 1000 ms (−1000 to
0 ms), the participantswere visually cued to prepare amovement towards
a visually presented target in one of four possible directions: up, down,
left, or right (Planning phase, 0–1500ms). Next, after a 1500 ms delay
period, A Go signal, a central cue switching from white to black,
prompting the subjects to move the cursor towards the target (Execution
Phase, 1500–3000 ms) (Fig. 1d).

Data preprocessing
The data were preprocessed using standard procedures, consistent with
our previous intracranial EEG work39,56,58. Data recorded in each SEEG
site was bipolarized. This procedure consists in subtracting the activity
from successive sites in order to remove or reduce artifacts, and increase

Table 1 | Patient demographics and clinical details: handedness, age, gender, and broad description of epilepsy type as
determined by the clinical staff of the Grenoble Neurological Hospital, Grenoble (France)

Handedness Age Gender Epilepsy Etiology EZ localization Lesion

S1 R 19 F Frontal Secondary Precentral gyrus (RH) Dysplasia

S2 R 23 F Frontal Cryptogenic Precentral gyrus (LH) Absent

S3 R 18 F Frontal Cryptogenic Fronto-basal (RH) Absent

S4 R 18 F Frontal Idiopathic Fronto-central (RH) Absent

S5 R 31 F Insula Secondary Operculum (RH) Cavernoma

S6 R 24 F Frontal Secondary Supra-sylvian posterior (LH) Vascular sequelae

Recording sites with epileptogenic activity were excluded from the analyses.
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the spatial specificity while minimizing the influence of distant sources.
Re-referencing each contact to its direct neighbor led to a spatial reso-
lution of ~3 mm56,64,65. This bipolarization led to 580 bipolar derivations
across all subjects. Finally, trials contaminated by epileptic activity and
electrodes located close to the extra-ocular eye muscles were removed
from the analyses by visual inspection of the time-series and
time–frequency decomposition and insights from the clinical staff. The
final number of trials retained for analyses across patients varied between
120 and 360 (215 ± 77).

Spectral analyses
A wide range of oscillatory brain features (power, phase and phase-
amplitude coupling) were extracted from the SEEG recording using the
Hilbert transform. To this end, we first filtered the data in the required band
using a two-way zero-phase lag finite impulse response (FIR) Least-Squares
filter implemented in the EEGLAB toolbox66. Then, phase and amplitude
components were computed using the Hilbert transform on filtered data.
The following frequency bands were considered: very low-frequency com-
ponent (VLFC) [0.1; 1.5 Hz], delta (δ) [2–4Hz], theta (θ) [5–7Hz], alpha
(α) [8–13Hz], beta (–) [13–30Hz], low-gamma (low γ) [30–60Hz] and
broadband gamma (high γ) [60-200 Hz]. Power featureswere computed for
δ, θ, α, β, low-γ and high-γ, while phase valueswere extracted forVLFC, δ, θ,
andα. PACwas computed between δ, θ, andαphases andhigh-γ amplitude.
Furthermore, in order to investigate the time course of decoding perfor-
mance, we systematically considered 67 points across time. The choice of
temporal resolution/windows was different and will be described in their
respective sub-sections. Eventually, each feature involved 67 time points.
For each SEEG site, 13 features were calculated (6 of power, 4 of phase and 3
of PAC) with 67 time points. Across all SEEG sites, this led to a total of
505180 ((6+ 4+ 3) * 67 * 580) independent features to classify.

Instantaneous power features estimation. From the band-specific
Hilbert transform, power modulations were computed by taking the
square of time resolved amplitude. For the specific case of the high-
gamma band, the [60, 200 Hz] was split into 10 Hz non-overlapping sub-
bands, and final gamma power modulations were obtained by taking the
mean of those multiple sub-bands, according to previous
routines56,58,62,67–70. Power was averaged using a 700 ms sliding window,
with a 50 ms shifting, leading to 67 time points. The classification was
applied to unnormalized power. We applied a normalization only for the
specific case of the visualization (time-frequency maps and single trial
representation, see Fig. 2). To this end, to each frequency band, we
subtracted then divided by the mean of a 500 ms baseline window, cen-
tered according to the pre-stimulus rest period ([−750, −250 ms]).

Instantaneous phase features estimation. For a specific frequency
band, phase features were extracted from the angle of the Hilbert
transform. For classification, we selected a point every 50 ms from this
instantaneous phase. Finally, we used Rayleigh’s test to estimate sig-
nificant phase modulations71–73, using the circular statistics toolbox74.
This instantaneous phase is then used for the classification. To observe
phase-alignment consistency across trials, we compute the Phase Locking
Factor, defined as the mean across the modulus of a single trial phase71

(Fig. 3). In order to have consistency with power features, we selected the
instantaneous phase at each center of above defined 700 ms power time
windows, which led to 67 phase points across time.

Phase–amplitude coupling features estimation. First, the filter order
for extracting phase and amplitude was systematically adapted, using
three cycles of slow oscillations (for phase) and six cycles for amplitude75.
PAC estimations can be estimated by a large variety of measures76–80. We
tested several of them, mainly the mean vector length (MVL)81 and the
Kullback–Leiber divergence (KL)78. Bothmethods yielded similar results,
but after slightly adapting theMVL, we obtained PAC estimation leading
to better decoding accuracies compared to the KL method. In order to

improve PAC robustness, we generated surrogates by randomly swap-
ping phase and amplitude trials78. Then, the original modulus is z-scored
normalized using themean and the deviation of 200 generated surrogates
(Fig. 4). PAC algorithms used in this paper are all implemented into an
open-source Python package called Tensorpac82. The PACwas estimated
using the samewindows as power features, meaningwindows of length of
700 ms shifted every 50 ms, which led to the same number of 67windows.

Signal classification
Weexplored the feasibility of time-resolveddirectiondecoding fromhuman
LFP using two strategies of increasing dimensionality: (a) a single feature
approach to evaluate the performance of each feature, (b) an inter-site and
inter-feature approach using a feature selection procedure to estimate the
final decoding using all available intracranial EEG recordings. These two
strategies are performed at each of the 67 time points defined above, pro-
viding anoverviewofwhich feature,where andwhen they are decoding, and
how reliable they are. In contrast to brain decoding approaches with non-
invasive brain recordings (e.g. EEG orMEG), inter-subject cross-validation
is not straightforward for SEEG since electrode implantations differ across
subjects. We thus performed intra-subject cross-validation28. All classifica-
tions were implemented in Python 3 using the sci-kit-learn package83.

Single feature evaluation. We classified each feature at each of the 67-
time windows defined above for all subjects and all recording sites. We
compared the performance of several classification algorithms (linear
discriminant analysis (LDA), Naïve Bayes (NB), kth nearest neighbor
(KNN), and support vector machine (SVM) with linear and radial basis
function (RBF) kernels. They all provided similar performances, and we
finally chose the LDA for its efficiency. The performance of the classifier
was evaluated by computing the % decoding accuracy (i.e. proportion of
successfully classified samples in the test set), which was obtained fol-
lowing a standard stratified 10 times 10-fold cross-validation scheme. To
assess the statistical significance of the decoding performances, we used
permutation testing to generate null distributions by randomly shuffling
the data labels84,85. Correction for multiple comparisons was assessed by
generating a distribution of permutation maxima across time, space, and
frequency (i.e. maximum statistics)86,87.

Cross-temporal generalization of classification. To evaluate whether
a classifier trained during execution can be used to decode movement
directions during preparation (or vice versa), we used a temporal gen-
eralization (TG) procedure37. In principle, a classifier is trained at a
particular moment in the task (training time axe) and then tested at
another time (testing time axe). Note that we performed TG using both
single and multi-feature classification.

Multi-feature classifications using feature selection. To identify
groups of features that jointly lead to higher decoding performances
compared to single-feature classification results, we used multi-feature
(MF) classification. For each time sample, the MF procedure determines
the best possible combination across all feature types (power, phase, and
phase–amplitude coupling) and across all SEEG recording sites per
subject. We combined a wrapper method88–90 (Select k-best, with k
between [1,10]) with a filter method91,92 (false discovery rate, FDR with a
type 1 error rate of 5%) which are respectively the SelectKBest and the
SelectFdr functions of scikit-learn83. TheMF classificationwas performed
using a linear SVM for the whole MF pipeline. As recommended, we
linearly rescaled each attribute to be zero mean with a unit variance93.
Multi-feature pipeline: To estimate MF performances, we implemented
the following pipeline: (1) A first 10-fold cross-validation was defined to
generate a training and testing set, (2) the training dataset is used to fit
parameters of the transformation for data rescaling, then, this set is
rescaled. (3)We optimized the number of selected features for the k-best
using a 3-fold cross-validated grid search. We then took the union of
selected features determined by the k-best and FDR and got a reduced
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version of our training set, (4) we trained the linear SVM on this optimal
training set, (5) the testing set is rescaled with the same parameters used
for the training set. Then, the selected attributes of the training set are
used to select those on the testing set, (6) the already trained classifier was
finally tested to predict labels on this optimal testing set and turn this
prediction into decoding accuracy. For the statistical evaluation, this
whole pipeline is embedded in a loop of 200 occurrences where, for each
occurrence, the label vector is shuffled. Those 200 permutations allow
statistical assessments with p-values as low as 0.005.

Statistics and reproducibility
All data were analyzed using custom Python code. Statistical analysis was
performed using non-parametric tests.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Rawdata cannotbe shareddue toethics committee restrictions related to the
clinical acquisition setting. Intermediate as well as final processed data that
support the findings of this study are available from the corresponding
author (E.C.) upon reasonable request.

Code availability
The custom codes used to generate the figures and statistics are available
from the lead contact (E.C.) upon request.
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