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Current capabilities and future perspectives of FCS:
super-resolution microscopy, machine learning,
and in vivo applications
Jagadish Sankaran 1✉ & Thorsten Wohland 2✉

Fluorescence correlation spectroscopy (FCS) is a single molecule sensitive tool for the

quantitative measurement of biomolecular dynamics and interactions. Improvements in

biology, computation, and detection technology enable real-time FCS experiments with

multiplexed detection even in vivo. These new imaging modalities of FCS generate data at the

rate of hundreds of MB/s requiring efficient data processing tools to extract information.

Here, we briefly review FCS’s capabilities and limitations before discussing recent directions

that address these limitations with a focus on imaging modalities of FCS, their combinations

with super-resolution microscopy, new evaluation strategies, especially machine learning, and

applications in vivo.

The year 2022 marks the golden anniversary of the first paper1 describing the fluctuation-
based spectroscopic technique called fluorescence correlation spectroscopy (FCS). FCS is
based on the fluctuation dissipation theorem and provides information about equilibrium

and reaction kinetics that could previously only be obtained by the various relaxation techniques
pioneered by Manfred Eigen2,3. In relaxation techniques, the return to equilibrium of a reaction
system whose temperature, pressure or electric field was perturbed provides information about
the system’s reaction kinetics (Fig. 1).

Fluctuations are spontaneous deviations from equilibrium that contain information about the
system’s relaxation to equilibrium and thus their analysis carries the same information as the
perturbation experiments. Therefore, without any external perturbation, FCS exploits the
information in fluctuations around the equilibrium state to understand the kinetics of the
system. Apart from being non-invasive, the use of fluorescence as the fluctuating quantity to
monitor the equilibrium provided better specificity and sensitivity over other fluctuation
monitoring techniques including scattering. Detailed descriptions of the theory4, experimental
realization5, and statistical accuracy6 of FCS have been published earlier.

Fluctuations in fluorescence intensity are defined mathematically as deviations from the mean
fluorescence intensity. For systems in equilibrium, the mean fluctuation in fluorescence intensity
is zero and hence is a challenging physical parameter to analyze and interpret. As a result, a
convenient way to analyze fluctuations is to use autocorrelation functions which measure the
self-similarity, of the fluctuating signal. Typically, while performing an FCS experiment, the
autocorrelation function of the detected fluorescence is first computed for different lag times.
Then, the computed function is approximated by a suitable theoretical model7 to determine the
underlying physical parameters of the fluctuating signal.

The initial FCS experiments were plagued by high background, limited computational cap-
abilities and long measurement times. The reduction in background by the use of confocal based
detection in FCS led to a breakthrough in the field8, which manifested as a ten-fold increase in
number of papers per year compared to the preceding decade. The commercialization of FCS by
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Evotec and Zeiss made it widely available and sparked an increase
in FCS applications especially in biology9.

The widespread use of confocal microscopy in biology and the
ability to perform FCS in live cells rendered FCS a suitable
technique for investigating various physicochemical phenomena
observed in cell10 and developmental biology11–13. FCS has been
used to investigate diffusion, convection, chemical kinetics14,
affinities15 for binding to both immobile and mobile structures,
concentrations, stoichiometry, or the microscale organization of
cell-membranes16. An overview of the versatility of FCS can be
gained from various reviews on the topic17–20. Apart from stan-
dard FCS, scanning FCS (line-scan21 or circular22) refers to the
group of techniques where the measurement volume is moved
across the sample and is very useful for investigating slow dif-
fusion on membranes. The interested reader is referred here for a
detailed description of scanning FCS23.

Measurements described so far enabled the quantification of
dynamics at only one confocal diffraction limited spot at a time.
Any attempt at covering larger areas required scanning the
sample one spot at a time which proved to be time consuming,
led to asynchronous measurements and was prone to photo-
bleaching. Raster Image Correlation Spectroscopy (RICS)
improved on this situation by using fast scanning and by utilizing
the intrinsic time structure of the scanning process to combine
spatial and temporal correlations24,25. As RICS can be

implemented at any available confocal microscope it is widely
accessible26,27. Typically employed as a single point method,
current implementations of RICS enable multiplexed detection
leading to creation of diffusion maps27–29. Further advances were
made using multiple confocal spots with multiple detectors30 or
detectors with multiple elements31–33 which have culminated in
so-called massively parallel FCS34–36.

Alternatively, spatial fluctuations were utilized in Image Cor-
relation Spectroscopy (ICS)37,38 to investigate clustering and
aggregation of molecules or molecular complexes, even those with
sizes well below the diffraction limit, initially not including
dynamics. Later, ICS measurements were also collected in time to
evaluate the temporal development of spatial correlations39,40.

The true simultaneous analysis of spatial and temporal41 cor-
relations over whole images was made possible by the introduc-
tion of fast and sensitive array detectors (EMCCD42–45,
sCMOS31,46,47, and SPAD arrays48,49). The spatiotemporal ana-
lysis of image stacks is referred to as spatiotemporal ICS (STICS)
or Imaging FCS (Fig. 2).

Apart from multiplexing, i.e., the recording of multiple
simultaneous measurements, Imaging FCS allows calculating all
spatiotemporal correlations between any pixels or group of
pixels50. Therefore, a single measurement contains the data for
the analysis of the dynamics over many length scales by pixel
binning or by choosing any point of interest and analyze their

Fig. 1 Perturbation versus spontaneous fluctuation analysis:. a The kinetics of a process in equilibrium is quantified by two different methods-invasively,
by intentionally forcing the system away from equilibrium using an external stressor (perturbation analysis) or non-invasively by analyzing the spontaneous
deviation from equilibrium (fluctuation analysis). b In relaxation analysis, one characterizes the time needed for the system to dissipate the effect of the
perturbation, i.e., to return to the original equilibrium state, by fitting a theoretical model (smooth solid line) to compute the characteristic time constant.
c In equilibrium kinetics, the characteristic time of fluctuations around the equilibrium (left) is typically examined using temporal autocorrelation analysis
(right). To this aim, the autocorrelation function is computed for different lag times and plotted as a function of lag time to yield an autocorrelation curve
(red), which is then fitted using a theoretical model (black) to determine the characteristic decay time of the autocorrelation curve.
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relations. It also avoids sampling bias by recording and quanti-
fying the heterogeneity in an entire cell51. Other useful methods
to quantify heterogeneity are pair-correlation functions52,53 and
differences in the spatial correlation functions of adjacent pixels
(ΔCCF)50.

This capability of analyzing fast molecular dynamics over
whole images with single molecule sensitivity at physiologically

relevant concentrations made FCS an attractive tool for combi-
nation with super-resolution techniques, which provide superior
structural details but at much lower time resolution. This com-
bination of recording simultaneously fast dynamics and super-
resolution images was exploited either by combinations of cor-
relation spectroscopies with experimental or computational
super-resolution techniques.
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Combination of FCS and super-resolution. FCS has been
combined with experimental and computational super-resolution
techniques, leading to improved simultaneous spatiotemporal
resolution. On the experimental super-resolution front, correla-
tion spectroscopies have been integrated with stimulated emission
depletion microscopy (STED)54, DNA points accumulation for
imaging in nanoscale topography (DNA-PAINT)55, structured
illumination microscopy (SIM)56, and airyscan units57.

In STED, fluorophores are selectively depleted at certain
regions to improve the resolution providing access to measure
diffusion and concentrations on length scales as small as 30 nm54.
This was employed to distinguish free and anomalous diffusion
due to transient binding. A combination of FCS with DNA-
PAINT called localization-based FCS55 (lbFCS) enables the
quantification of absolute number/concentration of molecules.
SIM, which applies low laser powers with standard fluorophores
using patterned light sources in live cells, was combined with
STICS56,58,59 to measure transport velocities. As STICS calculates
spatial correlations, the better resolution of SIM resulted in
better-resolved velocity parametric maps. The combination of
STICS with SIM has also been extended to cross-correlations60.
By utilizing two different markers localized on cell-membrane
and cytoskeleton, correlations of the velocity parametric maps
demonstrated coupling between the flows of the cell-membrane
and cytoskeleton.

On the computational side, correlation spectroscopies have
been combined with super-resolution optical fluctuation imaging
(SOFI)47,61–63, super-resolved radial fluctuation (SRRF)47, and
deconvolution47, with other potential techniques being mean-
shift super-resolution (MSSR)64, sparsity-based super-resolution
correlation imaging (SPARCOM)65, or multiple signal classifica-
tion algorithm (MUSICAL)66.

In super-resolved optical fluctuation imaging (SOFI)61, second,
fourth, or even higher order autocorrelation functions are
calculated on time-traces of fluorescent molecules which show
blinking behavior. As a result of higher order autocorrelation
analysis, the point spread function (PSF) is reduced leading to an
improvement in resolution. Typically, an nth order correlation
leads to a

ffiffiffi

n
p

improvement in resolution61. Super-resolution
radial fluctuations (SRRF)47 microscopy is a super-resolution
technique that performs a SOFI analysis on radiality stacks.

SOFI47,62 and SRRF47 are computational super-resolution
techniques and thus no hardware add-ons are necessary to be
installed with the microscope. They can be thus applied to the
exact same data as Imaging FCS. However, these techniques need
different acquisition strategies. Hence the initial raw imaging data
is collected at the best experimentally accessible spatiotemporal
resolution. The data is rescaled in space or time depending on the
needs of the individual technique. For instance, the super-
resolution techniques (SOFI, SRRF, and deconvolution) record
small pixels but typically illuminate longer to reach a certain SNR.
On the contrary, Imaging FCS uses larger pixels to be able to

record fast for the same reason. Therefore, in combinations of
super-resolution and Imaging FCS one typically acquires at the
best spatiotemporal resolution and then bins in time or space for
super-resolution microscopy or FCS, respectively, to reach a
sufficient SNR.

Using the strategy described earlier, both SOFI and SRRF have
been combined with Imaging FCS on a sample of LifeAct-labeled
actin fibers. This allowed correlating the dynamics measured by
Imaging FCS to the better localized actin fibers, providing
information how LifeAct interacts with actin18. Interestingly the
FCS data could also be used to remove artefacts from SRRF
images via the dynamics data. FCS has also been combined with
deconvolution microscopy47 which is a computational technique
aimed at reversing the blurring effects of the point spread
function of the microscope on the images.

The advantage of computational super-resolution techniques is
that they can use the same data as FCS and thus do not need any
specialized equipment. This makes these combinations immedi-
ately accessible without any modifications. On the other hand,
experimental super-resolution techniques, despite requiring
specialized equipment, typically reach better spatial resolution.
But not all modalities can be readily combined with FCS.
Although FCS has single-molecule sensitivity, it measures at
concentrations much higher than what would be acceptable for
single-molecule localization microscopy techniques. While this
can be overcome by using photoswitchable dyes and recording in
two colors, one at high, one at very low concentration, as has been
demonstrated in the combinations of FCS with single particle
tracking (SPT)67, it is difficult to do that in a single color.

Advances in data-handling and data processing in FCS.
Developments in optical instrumentation in the last three decades
described in the sections above leading to improvements in FCS
went together with improvements in the field of computing.
Computing power has roughly doubled every two years since the
seventies68 as predicted by Moore’s law. The use of a data-parallel
approach in FPGAs69 and later GPUs in multiplexed FCS has led
to a significant reduction in the time taken to calculate and fit the
autocorrelation functions35,47,70 since the same function can be
evaluated in every processing element of the GPU. In a further
boost to faster evaluation, currently direct camera readout stra-
tegies enable numerical analysis while the data is being
recorded71. As a result, we are at a stage where an experimenter
potentially generates data at the rate of hundreds of MB/s.
Number-crunching operations on this mammoth dataset is
complete within minutes and the experimenter is faced with the
complex task of choosing a suitable theoretical model to fit the
autocorrelation data. Some of the approaches to fit the data in
FCS include non-linear least squares or maximum entropy based
fitting routine (MEMFCS)72. The choice of a suitable fitting
model is typically parameterized as a classification problem in
computation.

Fig. 2 Schematic of current correlation-based techniques. Correlation-based techniques are classified based on whether they evaluate spatial, temporal, or
spatiotemporal correlations. ICS utilized spatial correlations to investigate clustering and aggregation of molecules or molecular complexes. FCS utilizes
temporal correlations to investigate diffusion, convection, chemical kinetics, affinities. RICS utilizes the intrinsic time structure of the scanning process to
obtain the correlations. Spatiotemporal analysis of image stacks is performed in STICS and Imaging FCS. Current methodologies making use of either point or
array detection have accordingly been combined with various super-resolution techniques. DNA-PAINT involves labeling single molecules with fluorescently
tagged DNA transiently binding to target sequences on the sample. Sequential detection and precise localization of single molecules result in super-resolved
images. STED involves depleting the fluorescence at the fringes of the excitation beam by stimulated emission leading to detection in sub-diffraction limited
volumes in the sample. SIM involves illuminating the sample with structured illumination patterns leading to detection of spatial frequencies in an image that
would otherwise be below the diffraction limit. Deconvolution microscopy is a technique that reverses the blurring effects of the point spread function of the
microscope on the images. SOFI calculates correlation functions, in which the PSF appears in higher powers, resulting in improved resolution. SRRF
determines the convergence point of the radial gradients of light distributions to estimate the localization of the source of the emission.
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One of the ways of solving this classification problem in FCS is
using Bayesian approaches73–77. The utility of other machine
learning classifiers including multilayer perceptron, random
forests, and support vector machines in FCS are under
investigation78. In the next section, we describe how deep
learning widely used in fluorescence microscopic image
processing79–81 is utilized for various applications in FCS.

Use of convolutional neural networks in FCS. Although pub-
lications are sparse, the most common deep learning network
architecture used in FCS are Convolutional Neural Networks
(CNNs)78,82–89. CNNs are powerful analysis tools applied to
image and time-series analysis (Fig. 3). The major uses of CNNs
in FCS are to decide the fitting model and to estimate the kinetic
and mobility parameters. Hence CNNs for FCS are designed to
solve classification or regression problems in a supervised man-
ner. Unsupervised learning approaches to cluster data to under-
stand its inherent structure in FCS remain to be explored.

Briefly, CNNs consist of multiple layers, each of which
performs a convolutional operation with a defined kernel and
variable weights. Data sets are propagated through the CNN and
the output is compared to a desired outcome or ground truth.
The weights are then adjusted in defined ways to reduce the
difference between the CNN’s output and the ground truth. This
operation is repeated with a large training set so that the CNN
gradually learns the properties of the data set. There are a number
of different CNN architectures but possible starting points to
construct CNNs for FCS are ResNet90 and Inception networks91

which can be used to construct deep networks and can evaluate
multiple scales in parallel, respectively, to reach a good
approximation for FCS. ResNet, for instance, has been used in
the construction of U-Net, which is widely used in super-
resolution and image segmentation.

The universal approximation theorem states that with
sufficient learning, neural networks can approximate mathema-
tical functions to a certain level of accuracy and precision92.
Hence deep CNNs are suitable to learn the autocorrelation
function from image stacks. The number of layers in the CNNs
determine the depth of the CNN. An increase in the number of
layers leads to an increased demand for computational resources
(memory and time). Hence one must maintain a delicate balance
between efficiency and computational demands while designing
CNNs suitable for FCS.

While training the CNN, one must exercise caution not to
overfit the data. Overfitted networks perform well only for the
training data and not for the test data. Overfitting typically occurs
when the size of the training dataset is small. Training on very
small datasets leads to over-parameterization of the input data
and the network tends to memorize the input and the behavior.
Hence the training data must be large enough encompassing a
large variety of experimental scenarios to sufficiently train the
network. As such the first step in any supervised machine
learning paradigm is to obtain labeled ground truth data for
training.

However, obtaining sufficient data with the corresponding
ground truth data in FCS for training is difficult for at least two

Fig. 3 Machine learning in FCS. a The input in Imaging FCS is an image stack. b In conventional non-linear least squares fitting approach, the
autocorrelations are calculated and then fitted to a theoretical model. The spatially resolved physicochemical parameters are the output from this
approach. c In the machine learning approach, there are two possibilities to estimate the physicochemical parameters. Autocorrelations are calculated and
used as a feature selection method. They are used to train a convolutional neural network. Otherwise, the raw intensity is used to train a convolutional
neural network. After successful training, when any image stack is given as an input to the network, the parametric maps are obtained as output. Another
network architecture relevant for Imaging FCS data analysis is the autoencoder. Autoencoders are used for data-compression and denoising. One of the
greatest challenges of using machine learning for FCS is the lack of training data. One solution to generate training data is to use a generative adversarial
network. These are two neural networks working together to generate data similar to the one given as an input. In all three types of architectures, the input
neurons are shown in red, the output neurons are shown in blue, the convolution neurons are shown in yellow, and the hidden neurons are shown in gray.
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reasons. First, it is very time consuming to acquire a large set of
FCS data that covers the full range of applicable parameters,
including diffusion coefficients, concentrations, and signal-to-
noise ratios among others. Second, while accurate estimation of
diffusion coefficients of standard samples was made possible by
2f-FCS93, standard samples do not cover the entire range of
diffusion coefficients accessible to FCS. Even if measured, the
diffusion coefficients will be estimated from non-linear least
squares fit of a model to the autocorrelation function which has
an inherent error associated with the procedure. Although not
impossible94, creating experimental training sets would suffer
from incomplete parameter coverage and inherent errors of the
measurements system in addition to time-consuming experi-
ments that need to be repeated for different instruments and
conditions, and – due to the required fitting of the data – is
model-dependent.

Instead, one can resort to simulations, with parameters chosen
that are matched as close as possible to the experimental
parameters95. In this way, the creation of the training set
becomes an automated task. Since any experimental or theoretical
illumination and detection geometry and any dynamic processes
can be simulated, the CNN becomes (fit) model independent.
This way evaluations can be achieved even in cases where no
closed-form solution of the correlation function exists, and non-
linear least-squares fitting is either not possible or can only be
achieved with numerical models that are very time-consuming to
evaluate. One should note, though, that a suitable noise model
must be incorporated into the simulations to represent experi-
mental conditions. The use of simulations for training has been
verified in FCS83–86 and SPT79. Some software currently available
to perform simulations (reviewed here96) are SimFCS24, PAM97,
and Imaging FCS98,99. Since CNNs are data-hungry, one of the
strategies is to simulate data on the fly without saving it to reduce
memory requirements.

The simulations for FCS100,101 are modeled on the funda-
mental physics of diffusion which is a stationary process. The
presence of deviations from stationarity (for instance due to
photobleaching or inhomogeneities) in the experimental data will
lead to errors of the estimates of physicochemical parameters
from the CNNs. Two different strategies can be followed here.
Either the simulated training sets include these non-stationary
processes, or the experimental data must be corrected (for
instance by bleach correction) before being evaluated by CNN.

One of the factors determining the precision of estimates
recovered from NLS fitting of FCS data is the length of the time-
series of the image stack. Empirically, it was shown that to obtain
at most a 20% coefficient of variation101 (standard deviation/
mean), the measurement time needs to be at least a hundred
times the diffusion time of the molecule being investigated.
However, we can train CNNs with many such shorter image-
stacks which are typically not sufficient for a good NLS fit. By
training the CNN on a large set of these small data sets over a
wide parameter range we can obtain a CNN that fits data at
significantly reduced measurement time, which an NLS fit could
not properly evaluate.

CNNs have been trained on FCS data in two different ways so
far83–87 (Fig. 3). Either the CNN is trained on raw imaging data
and thus learns the dynamics directly from the intensity traces or
the CNN is trained on pre-computed features, i.e., in our case the
correlation functions of interest. The advantage of using
computed features is that this approach preselects features for
training reducing the dimensionality of the search space to
perform the optimization. For instance, while training for FCS,
one could train the neural networks on the raw images or on the
pixelwise autocorrelation functions. Assuming 50,000 frames of
128 × 128 images stored in 16-bit format are used, the size of one

training data is ~2 GB. Instead, if one uses the autocorrelation
function, which has generally <1000 points, as a pre-computed
feature, the size of the training dataset is ~65 MB, corresponding
to a reduction of training data size by a factor 25.

Both strategies have their advantages. While using the
correlation functions as training sets, the much smaller size of
the test data leads to smaller, more compact CNNs which do not
impose huge demands on the computational infrastructure. The
use of the raw images, on the other hand, has the advantage that it
is not limited by the temporal averaging performed by the
correlation functions. One of the other advantages of using the
raw imaging data is to avoid sampling artefacts due to the multi-
tau algorithm used to calculate the autocorrelation
function7,100,102

CNNs have the potential to address several limitations of FCS.
First, the measurement time required is dictated by the fact that
the autocorrelation function in FCS is a biased estimator103 and it
converges only at long measurement times101,104. Once properly
trained, CNNs learn the bias and produce more accurate and
precise parameter estimates even when using less data83–87.

Second, FCS resolution is limited in distinguishing multiple
particles with different diffusion times. Using conventional non-
linear least squares fitting on FCS data where the SNR is not a
limiting factor and when there is an equal distribution of fast and
slow particles, the ratio of the faster particle’s diffusion coefficient
to that of the slower particle’s must be at least 1.6 in order to
distinguish them as two different particles105. As the proportion
or the SNR varies, the minimum ratio of diffusion coefficients
necessary to be distinguished as two different diffusing particles
increases and can easily exceed a factor 10 in diffusion coefficients
(a factor 1000 in mass). CNN-based data analysis88 enabled
reliable estimation of diffusion coefficients of fast and slow
particles even in situations when the ratio of the faster particle’s
diffusion coefficient to that of slower particle was <1.6 in
simulations.

Third, CNN-based analysis also provides considerable
improvement in the time taken to estimate the parameters.
Sufficiently trained CNNs are faster than the iterative non-linear
least square fits which require multiple rounds of calculation to
reach the optimal value. This becomes even more evident in cases
where no analytical solution is available and numerical models
need to be employed95. Fourth, the knowledge gained by any
trained network on free diffusion also has the potential to be
adapted for novel but similar tasks (referred to as transfer
learning). Transfer learning for a similar task is faster to train
when compared to training a network ab-initio for the same task.
For instance, by transfer learning, networks trained for obtaining
mobility estimates could be utilized for spatial investigations such
as presence of diffusion inhomogeneities. Fifth, the effects of
systemic behavior affecting the autocorrelation functions (large
aggregates passing through the detection area, sample movement,
or photobleaching) can be mitigated using deep learning. In
principle, networks can be trained to correct for these artefacts
and thus lead to more robust and simpler FCS systems.

CNNs have the potential to be used in the classification of the
type of diffusion. In biological samples diffusion is often not free
as biomolecules move in a complex matrix and have many
opportunities to interact with their surroundings specifically or
non-specifically. This is often determined by measuring the
diffusion coefficient of a sample in dependence on the area
observed, a procedure commonly referred to as diffusion law
analysis106. Briefly, if one changes the size of the observation area,
e.g., by binning adjacent pixels in Imaging FCS, or by changing
the laser spot size in a confocal or STED microscope54,107, the
average time taken by molecules undergoing free diffusion to
traverse the areas of different size increase linearly with
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observation area. Any deviations from linearity imply different
diffusion modes, which can subsequently be identified from the
type and strength of the deviation106. Without calculating and
fitting the autocorrelation at different length scales as performed
in FCS diffusion law analysis, the spatiotemporal information
could be directly extracted from a raw image stack. As a result,
CNNs can be trained on raw image stacks of simulations of
various diffusion modes and hence can predict the diffusive
modes of the particle.

Apart from use of CNNs to classify diffusion, CNNs also have
the potential to be used in number and brightness (N&B)
analysis108,109. N&B analysis is an offshoot of FCS providing only
the aggregation and concentration profiles of the dynamic system
under investigation. Typically, in N&B analysis, the observed
intensity of the pixel is deconstructed mathematically to reveal
the contributions of the concentration of the fluorophore and of
the aggregation state of the fluorophore. Current mathematical
methods are not efficient in deconstructing the aggregation states
when multiple aggregation states of the same molecule are
present at the same time. CNNs modeled as a regression problem
have the potential to improve the deconvolution of the
aggregation states in N&B analysis.

Apart from CNNs, other deep learning architectures which
have potential for FCS are autoencoders110, generative adversarial
networks111, and mixture density networks112. Mixture density
networks hold great promise in estimating the parameters of
combinations of probability distributions similar to the
MEMFCS72 approach.

As the name suggests autoencoders learn the important
characteristics of the input data and yield a lean representation
of the same data. Typically used for dimensionality reduction,
autoencoders serve as a denoiser for the raw data. Hence FCS data
have the potential to be denoised using an autoencoder before
being used for data analysis.

Generative adversarial networks are another class of neural
networks which consist of two networks working in tandem.
These are typically used to create datasets similar to the dataset
given as an input. The first ‘generative’ network creates the
dataset while the next ‘adversarial’ network discriminates whether
the created dataset is similar or dissimilar to the original dataset.
This is very useful for generating data for training with similar
noise structures to the experimental data used as an input. This
approach overcomes the need to have an analytical noise model
to create simulation data for training.

Power and current limitations in live tissues. A field that stands
to gain considerably by FCS advances involving super-resolution
microscopy and machine learning are measurements in live tissues
and organisms. Measurements of cell autonomous processes can be
conducted in cell cultures, at least qualitatively. But even here, there
are indications that quantitative results differ between cell and
in vivo measurements. Consequently, there have been a number of
investigations in various model organisms, albeit at a much lower
number than FCS applications in cells or in vitro. Today, FCS
has mainly been used to study transport45,46,75,98,113–130,
binding131–134, and organization135 in live organisms including
fish (reviewed here136–138), worms, and flies (Table 1).

The major advantage of FCS in live tissues is the power to
quantify the dynamics of various biological processes in the
presence of all relevant interaction partners, which can
significantly influence biomolecular interactions, and under
physiological environmental conditions. However, the use of
FCS in live tissues has been hampered by various challenges. First,
tissue movement cannot be avoided under all circumstances (for
examples, tissue development and growth, heartbeat, or blood

flow) distorting correlation functions and making data evaluation
unreliable. Second, measurements in live tissues often have higher
background and thus do not have a SNR as high as those in cells
or purified systems and thus limiting measurement accuracy. And
spherical aberration due to index heterogeneity in the tissue
further reduce resolution and SNR.

New developments are addressing at least some if not all these
issues. Direct camera-readout71 and online analysis of FCS data
enables identification of movement artefacts enabling user
intervention and avoiding unnecessary data loss. Alternatively,
while analyzing data from live tissues containing anomalies
including drifts, spikes, or unwanted fluctuations103, one can
apply a recently developed theoretical framework utilizing
temporal segmentation. It remains to be tested if machine
learning can aid in the analysis of data with distortions. Second, it
has been shown that CNNs can be constructed that require less
data to obtain the same parameter accuracy and better precision
compared to standard non-linear least-squares curve fitting.
Finally, adaptive optics shows great promise to improve data
acquisition in complex environments with heterogenous refrac-
tive index distributions139,140. Coupled with super-resolution and
FCS this could lead to new accuracy and precision of
spatiotemporal events even in complex environments.

Outlook. FCS has been widely used to study diffusion and
binding in biological systems. However, in its classical confocal
modality, FCS has been limited in multiple ways. It provided high
intrinsic resolution of molecular dynamics but was diffraction-
limited in its analysis. It provided only a single spot or at best a
few spots for measurements and did not provide a contiguous
image of a sample, making integration with imaging modalities
difficult. It required long measurement times to calculate corre-
lations that could be evaluated with sufficient accuracy and pre-
cision. Data analysis was also complicated due to a variety of
factors including the inhomogeneity of the errors of the corre-
lation functions, the fact that correlation function models could
be calculated only for the simplest cases when applying appro-
priate approximations, the choice of the model for the fitting
function and finally the large number of calculations required for
multiplexed approaches.

Many of these challenges have been met or are being
addressed. The use of STED-FCS achieved sub-diffraction
resolution for FCS. Later the use of fast and sensitive array
detectors in FCS enabled multiplexing. Online evaluation of sub-
micrometer spatially resolved structural data and sub-
millisecond temporally resolved dynamic data in a variety of
biological samples is already possible and parallel processing of
data using GPUs with multiple computing elements has
dramatically reduced the time taken for data-evaluation. The
use of machine learning in FCS promises user autonomous,
model-independent data analysis with increased time-resolution.

Table 1 FCS applications in vivo.

Model organism Technique Refs.

Zebrafish FCS 75,113–120,142

Scanning FCS 126–128

FCCS 131–134,143

Imaging FCS 45,98,125,135

Nematode FCS 122,123

Two photon FCS 129

Scanning FCS 129

Imaging FCS 46

Fruit fly FCS 114,121,122,144
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The combination of FCS and super-resolution, deep learning,
and the use of more powerful sensors141 permits creating new
imaging modalities that provide spatial and temporal informa-
tion on molecular processes with unprecedented resolution in
real-time and at a repetition rate of seconds. In combination with
computational super-resolution techniques these modalities do
not require specialized equipment. The integration of FCS and
super-resolution microscopy promises to provide unprecedented
spatiotemporal resolution in biological samples, even in vivo.
The implementation of machine learning algorithms in combi-
nation with GPU processing will allow real-time data analysis,
render data evaluation model-independent, and simplify experi-
ments, making these powerful techniques available to non-
expert users.

Box 1 – Important developments and future challenges of FCS
Important developments.

● FCS in its various forms and its hyphenated techniques
with super-resolution microscopy allows long-term obser-
vations of various biological processes across a variety of
biological scales including cells, tissues, organoids, and
whole organisms providing complementary information on
dynamics and structure within a single measurement.

● The introduction of online evaluation and GPU-based
parallel computing in FCS has led to a reduction in the time
taken to analyze the data. The use of machine learning in
FCS promises model-independent data analysis. This is
especially important in cases where currently no analytic fit
function is available.

Future challenges.

● Today, deep learning has the capacity to simplify and
accelerate data evaluation for the user making FCS more
applicable and easier to use for the wider biological
community. Which network architectures in deep learning
are useful for FCS analysis is an open question and will
need to be addressed in the future. Extensive benchmarking
and stress testing needs to be performed to understand the
advantages of deep learning over conventional regression
approaches including NLS fitting. The use of explainable AI
or interpretable AI in FCS will lead to a better
comprehension of the decision making of AI while
estimating the parameters in FCS.

● The combination of FCS with super-resolution has
combined dynamics with structure. The next frontier to
tackle is to combine functional assays with FCS and super-
resolution. From a single measurement, one will then be
able to obtain a spatially resolved map of structure,
function, and dynamics.

● Bringing these advances into live tissues and organisms will
be a major challenge. It will allow obtaining dynamics,
structure, and interaction maps in physiologically rele-
vant environments within a single measurement in real
time. The simultaneous measurement of these parameters
will provide new information and insights not available
to date.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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