
ARTICLE

Multivariate information theory uncovers
synergistic subsystems of the human
cerebral cortex
Thomas F. Varley 1,2,4✉, Maria Pope1,3,4, Joshua Faskowitz2,3 & Olaf Sporns1,2,3

One of the most well-established tools for modeling the brain is the functional connectivity

network, which is constructed from pairs of interacting brain regions. While powerful, the

network model is limited by the restriction that only pairwise dependencies are considered

and potentially higher-order structures are missed. Here, we explore how multivariate

information theory reveals higher-order dependencies in the human brain. We begin with a

mathematical analysis of the O-information, showing analytically and numerically how it is

related to previously established information theoretic measures of complexity. We then

apply the O-information to brain data, showing that synergistic subsystems are widespread in

the human brain. Highly synergistic subsystems typically sit between canonical functional

networks, and may serve an integrative role. We then use simulated annealing to find

maximally synergistic subsystems, finding that such systems typically comprise ≈10 brain

regions, recruited from multiple canonical brain systems. Though ubiquitous, highly syner-

gistic subsystems are invisible when considering pairwise functional connectivity, suggesting

that higher-order dependencies form a kind of shadow structure that has been unrecognized

by established network-based analyses. We assert that higher-order interactions in the brain

represent an under-explored space that, accessible with tools of multivariate information

theory, may offer novel scientific insights.
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Perhaps the most ubiquitous model used in complex systems
is the network, which represents pairwise interactions
between different elements of a system as directed or

undirected graphs1,2. While network models can be extremely
powerful, they are also fundamentally limited by the rule that
every interaction between elements is strictly bivariate. Hence,
interactions between three or more nodes must be indirectly
inferred, using methods such as motifs3, transitivity or clustering
coefficients4, and mapping cores or mesoscale communities5,6.
Increasingly, statistical interactions involving more than two
elements (termed higher-order interactions) are recognized as
being a key feature of complex systems7,8. This makes the task of
recognizing and modeling higher-order structures an important,
developing field. However, a lack of well-developed, formal tools,
as well as the inherent computational and combinatorial diffi-
culties associated with higher-order interactions, have limited
their application. In neuroscience, higher-order interactions have
been theoretically implicated as building blocks of complexity9,10

and functional integration11. Empirically, they have been found at
multiple scales, including in neuronal networks12–17, electro-
physiological signals18,19, and fMRI BOLD data20–22, where
higher-order interactions have been proposed to relate to emer-
gent mental phenomena and consciousness23.

Recently, Rosas and Mediano24 proposed that information
theory could be used to identify higher-order interactions in
multivariate systems, and furthermore, that it is possible to dis-
entangle qualitatively different kinds of interactions, character-
ized by pairwise redundant and synergistic modes of information
sharing. Intuitively, redundant information corresponds to
information that is copied over many different elements such that
the observation of a single element resolves the corresponding
uncertainty in all of the other elements. In contrast, synergistic
information sharing occurs when uncertainty can only be
resolved by considering the joint state of two or more variables.
This space of redundant and synergistic interactions in the brain
remains largely unexplored, as it comprises interactions that are
typically inaccessible to a bivariate, functional connectivity net-
work analysis. Synergy is of potential interest because it tracks the
ability of the brain to generate novel information through the
interactions of multiple brain regions (sometimes called infor-
mation modification)25. In studies of cortical neural networks,
synergy has been associated with neural computation (the genesis
of new information through a non-trivial interaction of multiple
inputs)12–15,17,26.

Much of the previous work on higher-order information in
neuroscience has used the partial information decomposition
(PID) framework27,28, which provides a complete decomposition
of the joint mutual information into atomic information com-
ponents. While powerful, the PID framework has some fairly
strict limitations that have hindered its adoption by the wider
complex systems community. The first is that it requires parti-
tioning a system into sources and targets, and does not allow
analysis of the whole system qua itself. The second is that, due to
the combinatorial explosion of information atoms, analysis of
more than five or six elements is impossible. Given that even
small systems can have hundreds, or even thousands of elements,
this is a severe limitation. Finally, the PID is unusual in that,
while it reveals the structure of multivariate information, actually
calculating values from data requires an additional step: the
selection of a redundancy function that quantifies some notion of
redundant information. This is a surprisingly difficult task, as
many redundancy functions have been proposed, and different
choices can lead to radically different descriptions of the same
system29,30.

Rosas et al. introduced the O-information24 as an alternative
measure, which gives an overall estimate of the extent to which a

system is redundancy dominated or synergy dominated, without
requiring the incredible computational cost or ad hoc choices
required by the PID. The O-information reveals the global
structure of the information-sharing dependencies in a system.
Negative O-information indicates the presence of predominantly
synergistic interactions, while positive O-information indicates
predominately redundant interactions. Despite its strong appeal
as a quantitative metric, the origins and neural manifestations of
O-information have remained elusive, if not enigmatic31.

In this work, we apply a range of information-theoretic mea-
sures to resting state fMRI data acquired from human cerebral
cortex with the aim of identifying ensembles of regions (sub-
systems) that express specific modes of higher-order statistical
dependencies. First, we introduce the mathematical machinery
required to derive the O-information, and its interpretation in the
context of multivariate information sharing processes. We derive
an analytic relationship betwee the O-information and other,
more well-known, multivariate metrics such as the Tononi-
Sporns-Edelman complexity10. Then we apply multivariate
information metrics to brain data and uncover the presence of
abundant and widely distributed subsystems expressing synergy
(negative O-information) across the entire cerebral cortex.
Finally, we discuss what our insights reveal about the structure
and functional roles of higher-order relations in brain activity.

Results
Theory
Integration, segregation, redundancy, synergy. A fundamental idea
in modern theoretical neuroscience states that the nervous system
maintains a balance between integration and segregation9. The
integration-segregation balance principle is based on the insight
that the nervous system combines regional elements of functional
specialization, with system-wide functional integration. Con-
siderable empirical work has gone into the neural integration-
segregation hypothesis, and the on-going balance of integrated
and segregated dynamics has been found to be regulated by
distinct neuromodulatory systems32,33, and correlates with con-
scious awareness34–38.

The segregation-integration spectrum is typically visualized as
a one-dimensional space: on one extreme the system is totally dis-
integrated and every element is behaving entirely independently
of all the others. On the other extreme is the case of total
integration: every element synchronizes with every other element
so that the whole system is densely connected. In the middle there
is a complex regime where the system combines elements of
independence and integration. As it was originally formulated,
integration and segregation were discussed in the contexts of
networks, and higher-order interactions were inferred via
partitioning the system into subsets of varying numbers of
nodes9. These arguments pre-dated the rigorous, mathematical
distinction between redundancy and synergy, introduced in the
work of Williams and Beer almost two decades later27. Building
on these foundations, as well as the definition of O-information
from Rosas et al.24, we argue that the notion of integration can be
expanded to include redundant integration and synergistic
integration. The result is a rich space described by distinct
dimensions of integration, segregation, redundancy, and synergy
(although these do not form an orthogonal basis). This high-
dimensional, qualitative configuration space may be viewed as an
informational morphospace39–41 and provides a framework for
the detailed comparison of different systems.

Information theory and higher-order information-sharing. In this
section, we introduce the basics of information theory necessary
to understand its application to higher-order relationships. For a
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more thorough introduction, readers may be interested in Cover
& Thomas42. The basic object of study in information theory is
the entropy43, which quantifies the uncertainty that we, as
observers, have about the state of a variable X. If the states of X
are drawn according to the probability distribution P(X= x) with
Support Set X , then the entropy of X is:

HðXÞ ¼ � ∑
x2X

PðxÞlog2PðxÞ ð1Þ
This classic formulation of entropy assumes that X is a discrete

random variable, although for continuous data, the generalization
to differential entropy is reasonably straightforward (see Sec.
Gaussian Information Theory).

Now consider two variables X1 and X2: how does knowing the
state of X1 reduce our uncertainty (the entropy) about the state of
X2? The answer is given by the mutual information43, which can
be written in two mathematically equivalent forms:

IðX1;X2Þ ¼ HðX1Þ þHðX2Þ �HðX1;X2Þ ð2Þ

¼ HðX1;X2Þ � ½HðX1jX2Þ þ HðX2jX1Þ� ð3Þ
The bivariate mutual information is often applied in the study

of complex systems for the inference of functional connectivity
networks (e.g., refs. 44–48), which can reveal the structure of
dyadic interactions between different elements49. While func-
tional connectivity networks are extremely powerful, they are
fundamentally limited by their pairwise structure and are
insensitive to higher-order interactions between three or more
variables.

The natural place to begin an analysis of higher-order
structures in neural data, then, is by attempting to generalize
the mutual information to account for more than two variables.
Unfortunately, there is no single unique generalization, and at
least three are known to exist: the total correlation, the dual total
correlation, and the interaction/co-information (which we will
not explore in detail here)42. The total correlation (also referred
to as the integration in ref. 9), is formally a straightforward
generalization of Eq. (2):

TCðXÞ ¼ ∑
N

i¼1
HðXiÞ � HðXÞ ð4Þ

¼ DKLðPðX1; ¼ ;XNÞÞjj
YN
i¼1

PðXiÞÞ ð5Þ

where X is a macro-variable comprised of an ensemble of
multiple random variables: X= {X1, X2,…, XN} and DKL() is the
Kullback-Leibler divergence from prior distribution Q(x) to
posterior distribution P(x):

DKLðPjjQÞ ¼ ∑
x2X

PðxÞ log PðxÞ
QðxÞ ð6Þ

The total correlation is low when every variable is independent,
and high when every variable is individually highly entropic but
the joint-state of the whole has low entropy. This occurs when the
whole system is dominated by redundant interactions: the state of
a single variable discloses a large amount of information about
the state of every other variable.

The second generalization of mutual information is the dual
total correlation, formally a generalization of Eq. (3):

DTCðXÞ ¼ HðXÞ � ∑
N

i¼1
HðXijX�iÞ ð7Þ

where H(Xi∣Xi) refers to the residual entropy50: the uncertainty
intrinsic to the the ith element of X that is not resolved by any
other variable, or collection of variables, in X. The difference
between the joint entropy and the sum of the residual entropies is

all the entropy that is shared between at least two elements of X
(i.e., is redundantly common to two or more elements).
Curiously, while total correlation monotonically increases as X
transitions from randomness to synchrony, the dual total
correlation is low both for totally random, and totally
synchronized systems, peaking when X is dominated by shared
information.

Rosas et al.24, propose that the difference between TC(X) and
DTC(X) (first explored by James and Crutchfield as the enigmatic
information31) could provide a measure of the overall balance
between redundancy and synergy in multivariate systems: if
TC(X) > DTC(X), then the global constraints on the system
dominate and force a redundant dynamic, while if TC(X) <
DTC(X) the system is dominated by information that is both
shared, but not redundant. Rosas et al., rechristen this measure
the organizational information:

ΩðXÞ ¼ TCðXÞ � DTCðXÞ ð8Þ
In the specific case of three variables, Ω(X1, X2, X3) is

equivalent to the co-information24, which Williams and Beer
showed is itself equivalent to the redundancy minus the
synergy51. This is in keeping with the intuition that positive
O-information implies a redundancy-dominated structure and a
negative O-information implies a synergy-dominated structure,
although the direct link between Ω and the co-information is only
direct for three variables and the measures are not identical for
larger sets.

While O-information has been applied in a variety of contexts
(such as to questions about the aging brain22, information flow in
neuronal circuits52, and music composition16), there remains
considerable uncertainty around how synergy should be intui-
tively understood. To help elucidate the answer, we relate
O-information to the original measure of integration/segregation
balance proposed by Tononi, Sporns, and Edelman: the TSE
complexity9 and show that a geometric interpretation of the
O-information exists that brings with it a novel perspective on
redundancy and synergy.

The TSE-complexity admits two formulations:

TSEðXÞ ¼ ∑
bN=2c

i¼1
E½IðXγ;X�γÞ�jγj¼i

ð9Þ

¼ ∑
N

i¼1

i
N
TCðXÞ �E½TCðXγÞ�

� �
jγj¼i

ð10Þ

The first (Eq. (9)) defines the TSE complexity as the average
mutual information between the pairs of every possible biparti-
tion of the system X. For every integer i between 1 and ⌊n/2⌋, we
compute all possible subsets of X with i elements (notated by Xγ)
and compute the mutual information between that set and it’s
complement (X−γ). The second equation (Eq. (10)) provides an
alternative interpretation: the TSE complexity quantifies the
difference, at every scale, between the expected integration of the
scale if the system were fully integrated, and the actual integration
of that scale (calculated as the average total correlation of every
subset of size k). In this interpretation, the TSE complexity is
highest when the smallest scales are relatively dis-integrated, but
the macro-scales are relatively more integrated. This balance of
integration and segregation is emblematic of TSE complexity. For
a visualization of the TSE complexity calculation as the difference
between the expected and empirical values, see Fig. 1.

Computing the full TSE complexity itself requires analyzing
every possible subsystem (or bipartition) of X: an insurmountable
task for all but the smallest networks, as the combinatorics grow
super-exponentially. A useful approximation is to look only at the
second-to-top layer of the full TSE complexity summation, which
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only requires finding the average total correlation for the N sets
X−i (where X−i is every X∈X excluding Xi). We refer to this
measure as the description complexity of X10,53. Formally:

CðXÞ :¼ TCðXÞ � TCðXÞ
N

�E½TCðX�iÞ� ð11Þ

The definition of C(X) can be understood as the successive
pruning of information: the first term, TC(X), is the total
integration of X. The second term,− TC(X)/N, is the expected
decrease in integration associated with a single element (on
average). Finally, �E½TCðX�iÞ�, is the actual decrease in
integrated associated with removing every element on its own.
C, then, computes the difference between the expected decrease in
integration associated with removing a single node and the actual
decrease. C has several obvious conceptual parallels with the DTC
and there is indeed an analytic relationship between DTC and C
(for proof, see Supplementary Note 1):

DTCðXÞ ¼ N ´CðXÞ ð12Þ
This result was independently derived in ref. 54. The relation-

ship between DTC and C allows us to rewrite the O-information
purely in terms of total correlations:

ΩðXÞ ¼ TCðXÞ � N ´CðXÞ ð13Þ

¼ ð2� NÞTCðXÞ þ ∑
N

i¼1
TCðX�iÞ ð14Þ

This allows us to re-conceptualize redundancy- and synergy-
dominance in terms of just redundancy: synergistic information is
information that is redundantly present in large ensembles of
elements considered jointly but not in any subset of those
ensembles. This is conceptually very similar to the definition of
synergy provided by the partial information decomposition27,
which defines synergy in terms of redundant information shared
by higher-order collections of elements. We can also propose a
geometric interpretation of the sign of the O-information: based
on Eqs. (8) and (13), we can see that Ω(X) < 0⇔ TC/N < C and
Ω(X) > 0⇔ TC/N > C. This means that a system X is synergy-
dominated if the removal of a single element (on average)
decreases the integration of the remaining N− 1 elements more
than would be expected in the null case of a totally integrated
system. The two possible cases (redundancy-dominated, with

Ω > 0 and synergy-dominated, with Ω < 0) are visualized and
discussed in the context of the TSE complexity in Fig. 1.

The framing of the O-information in terms of the change to
integration after removal of individual elements also has
conceptual links to the so-called gradients of O-information55.
Scagliarini et al., explore how individual elements can contribute
redundantly or synergistically to the O-information, defining the
gradient as the difference between the O-information of an
ensemble X and the O-information when single elements Xi are
excluded. While a detailed analytic exploration of the link is
beyond the scope of this paper, the property of gradients yield
valuable insights into the structure of higher-order dependencies
in complex systems.

Another heuristic approximation of the TSE complexity is the
sum of the total correlation and dual total correlation. Following
the notation from Rosas et al.:

ΣðXÞ ¼ TCðXÞ þ DTCðXÞ ð15Þ
James et al. previously termed this measure the exogenous

information and described it as a very mutual information:
quantifying all of the shared dependencies between each single
variable and every other subset of the system:

ΣðXÞ ¼ ∑
N

i¼1
IðXi;X

�iÞ ð16Þ

Given the obvious similarity to Eq. (9), Rosas et al.,
hypothesized that Σ(X)∝ TSE(X), which was verified to hold in
simple simulations with small N24. By leveraging the Gaussian
assumptions here, we can empirically estimate the correlation
between TSE and exogenous information and assess how well the
relationship holds as N gets large. Figure 2 confirms the strong
correlations between TSE complexity with both TC+DTC and
DTC alone. These correlations hold over a range of subset sizes,
from three to fifteen elements.

fMRI results. We set out to identify subsystems (subsets of
dynamically interacting elements) that express negative
O-information (synergy) in the human brain. Leveraging Gaus-
sian assumptions42 (see Methods), multivariate information
theoretic measures can be estimated from covariance (correla-
tion) matrices expressing empirically recorded functional con-
nectivity (FC). We computed long-time averages of FC derived

Fig. 1 Understanding O-information in the context of the TSE complexity. The TSE complexity provides a system-wide summary statistic of how
integrated the system is at every scale. The O-information can be understood as measuring how sensitive the global integration is to the removal of single
elements (on average). a The panel shows a TSE curve for a low-synergy system: TC(X)/N > DTC(X)/N, so Ω(X) > 0. The erasure of any single element,
on average, does not change the overall integration of the remaining (N− 1) elements much more than would be expected in the null case. b The panel
shows the case where TC(X)/N < DTC(X)/N, so Ω(X) < 0 and the system is synergy dominated. Intuitively, this can be understood by recognizing that, on
average, the removal of any of the N elements causes a large decrease in the integration among the remaining (N− 1) elements.
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from two normative samples of human resting-state fMRI, the
Human Connectome Project (main data set56) and an open-
source multimodal MRI dataset for Microstructure-Informed
Connectomics (MICA-MICs; replication data set;57). For both
data sets we computed a single FC matrix (HCP: 95 participants,
4 runs each; MICA-MICs: 50 participants, 1 run each). Both FC
covered the entire cerebral cortex parcellated into a common set
of 200 nodes58 and node time series were derived from BOLD
signals after performing global signal regression, which removes
signal components that are common to all nodes in the system,
i.e., globally redundant (Supplementary Fig. 1)59. For a brief
discussion of global signal regression in this context, see Sup-
plementary Fig. 6).

Computing O-Information on the full-size 200-node FC matrix
results in positive quantities for both data sets (HCP: Ω= 79.16
nats; MICA: Ω= 46.69 nats), indicating that the full structure is
redundancy-dominated, which might potentially obscure the
presence of higher-order, synergistic correlations. We asked if
smaller subsets of nodes were present within the full-size FC that
generated synergy, or negative O-information. Random sampling
of small subsets (between 3 and 16 nodes) indeed yields abundant
subsets that express negative O-information (Fig. 3a). Their
relative abundance declines rapidly with growing subset size,
reflecting the increasing dominance of redundant information
and exhaustive capture of unique information. While synergistic
subsets account for rapidly diminishing fractions of all subsets,
their total number can be non-negligible (10-node subsets: 0.41
percent and 9.23 × 1013, respectively). In a large random sample
of 10-node subsets, the O-information is positively correlated
with TSE complexity (Fig. 3b; ρ= 0.642, p= 0; HCP data).
Focusing on a separate random sample of 5000 10-node subsets
with negative O-information, we asked if the frequency with
which pairs of nodes participate in such subsets is related to their
pairwise FC. Indeed, the absolute pairwise FC is strongly
negatively correlated with the frequency of participation in
synergistic subsets (ρ=− 0.504, p= 0, HCP; ρ=− 0.485, p= 0,
MICA, HCP; Fig. 3c). This indicates that strongly positive or
negative FC between two nodes makes their joint inclusion in a
synergistic subset unlikely, while node pairs with low FC
magnitude could either be truly disintegrated, or participating
in a highly synergistic subsystem.

Participation of nodes in randomly sampled synergistic subsets
varies systematically across the cortex. Over a large random
sample of 100,000 10-node subsets, all nodes participate at least
once, with several nodes participating in more than 10,000
distinct synergistic subsets. Hence, the complete repertoire of co-
expressed synergistic subsets covers the entire cortex, with some
overlap between subsets, centered on high-participation nodes
that form “focal points” or clusters (Fig. 4a). Projecting the
participation of individual nodes (brain regions) onto the cortical
surface shows significant consistency between HCP (Fig. 4b) and
MICA data (Supplementary Fig. 4) (the two maps are correlated
with ρ= 0.579, p= 2.5 × 10−19, between the two data sets).
Functional systems60 distribute unevenly as well, with highest
frequencies of participation found in the frontoparietal (FP)
system, for synergistic subsets of 10 nodes (HCP: Fig. 4c; MICA:
Supplementary Fig. 2). For larger subset sizes, participation of
limbic (LIM) regions dominates over FP regions.

Combinatorics prevent exhaustive exploration of subsets of
even modest sizes, and the random sampling strategy employed
so far is likely to miss subsets that express maximal synergy. To
identify subsets with maximally negative O-information (max-
imal synergy), we used an optimization algorithm based on
simulated annealing (references and details are contained in the
Methods section). Multiple runs of the algorithm yielded
consistent and highly similar outcomes (Supplementary Fig. 3),
indicating convergence of the optimization while again high-
lighting the existence of a large reservoir of non-identical
(degenerate) subsets, all expressing highly negative
O-information. Deploying this algorithm while varying subset
sizes between 3 and 30 nodes, we identified large numbers of
subsets that express highly negative O-information, for subset
sizes 3-24 nodes (HCP; Fig. 5a) and 3–27 nodes (MICA;
Supplementary Fig. 4). No synergistic subsets are found for
subset sizes greater than 27 nodes, as redundancy starts to
overwhelm the unique informational contributions of individual
nodes at larger subset sizes.

To validate that our optimization algorithm was observing
truly synergistic ensembles, we tested each optimized subsystem
against a null (see Materials and Methods E). Since the ensemble
size k is fixed by the optimization algorithm, it is possible that the
apparent synergy of that ensemble is actually due to some subset

Fig. 2 Approximating TSE complexity with total correlation and dual total correlation. Data are from 100,000 randomly selected subsets of 10 nodes
(blue: HCP data; red: MICA data), with TSE complexity computed exactly, by sampling all subsystems. a Sum of TC+DTC versus TSE complexity; HCP:
R= 0.998, p= 0; MICA: R= 0.999, p= 0. b DTC versus TSE; HCP: R= 0.982, p= 0; MICA: R= 0.992, p= 0.
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of nodes within that ensemble (for example, a system of three
synergistic elements and two independent elements will appear to
be a synergistic system of k= 5, however, the real synergy is only
in the three entangled elements). To ensure that all elements in

the ensemble contributed to the synergy, we only considered a set
valid if it was impossible to remove any node without the
O-information increasing (i.e., the contribution of each element
was synergy-dominated). We found that, for small value of k, the

Fig. 3 Information measures computed from randomly sampled 10-node subsets. a Fraction (left) and number (right) of subsets with negative O-
information, obtained by randomly sampling subsets from the HCP (blue) and MICA (red) FC matrix. Fraction and number estimated from samples of
5000 (3–12 nodes) or 200 (13–15 nodes) subsets with negative O-information. As the size of the subset grows, the fraction expressing an overall synergy-
dominated structure (negative O-information) drops precipitously, while their absolute number continues to climb due to combinatorics. b The relation
between O-information and TSE complexity in 100,000 randomly sampled 10-node subsystems (HCP data). While very few randomly sampled sets have
negative O-information (see panel a), TSE complexity generally increases with the strength of the dependencies visible to the O-information
(R= 0.642, p= 0). c The participation quantifies, for each node pair, how often they are encountered as part of a subset with negative o-information (10
nodes, 5000 random samples, HCP data), The plot shows the relation of the participation against the FC, with each data point representing one of the
19,900 unique node pairs. Node pairs with strong mutual FC (positive or negative) are rarely encountered as part of the same synergistic subset, while
node pairs that are more frequently encountered tend to show weak FC. Spearman’s rho between absolute FC and participation: ρ=− 0.504, p= 0.

Fig. 4 Topography and functional specialization of randomly sampled synergistic subsets in the brain. Data in panels a and b was derived from a
random sample of 100,000 synergistic 10-node subsets (HCP data). a Drawing random sub-samples of 500 subsets, we computed their Jaccard similarity,
capturing the number of nodes in common between each subset pair. The similarity matrix was clustered using the kmeans algorithm, iterating between 2
and 30 clusters, with 10,000 repetitions. Optimal cluster quality was determined using the ‘silhouette’ criterion on the resulting cluster assignments.
Random samples consistently yielded around 9–11 optimal clusters, with one example (10 clusters) shown in this panel. A Jaccard similarity of 0.25
corresponds to two subsets having 4 out of 10 nodes in common. b Frequency of individual node participation across 100,000 synergistic subsets,
displayed on a surface rendering of the cerebral cortex indicating the boundaries of the 200 nodes used for constructing the FC matrix. c Each of the 200
nodes is affiliated with one of 7 canonical functional systems60. Frequency of participation of individual nodes in synergistic subsets (negative O-
information, subset size ranging from 3 to 15 nodes) is aggregated (averaged) for each functional system. The plot displays the ratio of empirical frequency
over the expected frequency if nodes were selected by chance. A ratio > 1 or < 1 indicates that the system is over-represented or under-represented,
respectively, in synergistic subsets. Sample sizes identical to those used in Fig. 4a.
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vast majority of optimized ensembles were valid (≈99.08% for
ensembles of size four, ≈92.92% for ensembles of size six,
≈84.14% for ensembles of size eight, and ≈64.04% for the
maximally synergistic ensemble size of ten). For collections much
larger than ten, the proportion of valid systems decreased rapidly:
for ensembles of size fifteen, only ≈0.04% were valid, and there
were no valid ensembles of size greater than fifteen, despite the
fact that the simulated annealing algorithm returned a large
number of results with Ω < 0. This implies that, although these
larger subsystems are synergy dominated, that synergy is
restricted to a core set of components and not attributable to
the whole.

Minimal O-information was achieved for subsets comprising
~10 nodes for both data sets. Mapping subsets of nodes
expressing near minimal O-information onto a surface plot of
the cerebral cortex reveals consistent topography. Figure 5b
shows the frequency with which individual cortical parcels
(nodes) were identified across 5000 runs of the optimization
algorithm, yielding 4021 unique solutions (HCP Fig. 5b; 4166
unique solutions for MICA data, Supplementary Fig. 4b). Brain-
wide nodal frequencies are significantly correlated across HCP
and MICA data sets (Spearman’s ρ= 0.522, p= 2.2 × 10−15).
When mapping these nodal frequencies to seven canonical
resting-state functional systems60, we find that each of these seven
systems contributes, but to different extent. In HCP data, for
optimally synergistic 10-node subsets, the visual, frontoparietal
and default mode networks are over-represented, while only the
FP system appears over-represented in the MICA data (Supple-
mentary Fig. 5).

The nature of negative O-information (synergy) requires that
individual nodes make largely unique (non-redundant) contribu-
tions to the multivariate information metric. This suggests that
nodes derived from different, informationally distinct (intrinsi-
cally redundant, but extrinsically non-redundant) functional
communities might be favored as constituents of synergistic
subsets. To test this hypothesis, we created sets of 20,000
randomly sampled subsets that were comprised of nodes derived
from between 1 and all 7 canonical functional systems (HCP,
Fig. 5c; MICA, Supplementary Fig. 4c). The mean O-information,

across all randomly chosen subsets, was found to be positive
regardless of how many FC systems were included in the subsets.
For samples derived from just 1 FC system, the O-information
was most positive (i.e., subsets were most redundancy-domi-
nated) for visual, somatomotor and attention systems, and they
were least redundancy-dominated for default, frontoparietal and
limbic systems. Importantly, the mean O-information decreased,
and the fraction of synergstic subsets increased, as subsets were
sampled from larger numbers of canonical systems. No subset
derived from a single functional system was capable of expressing
synergy. Subsets spanning 6 or 7 canonical systems were most
likely to express synergy, as indexed by the fraction of negative
O-information encountered in the sample. The finding supports
the notion that dividing the brain into canonical functional
systems prioritizes grouping nodes by redundant over synergistic
information, hence missing a potentially important substrate for
neural computation.

Discussion
In this paper, we have shown how the O-information24, a mea-
sure of higher-order interactions in multivariate data, can reveal
synergistic ensembles of brain regions that are invisible to
bivariate functional connectivity analyses. Our primary theore-
tical result is to provide a geometric interpretation of the
O-information. The interpretation unifies multiple disparate
measures of multivariate information into a single framework,
built around the Tononi-Sporns-Edelman complexity9. By re-
writing Ω(X) and DTC(X) in terms of the total correlation
between multiple subsets of X, we find that synergy occurs when
removing any single element causes the system to become less
integrated, and crucially, more-so than would be expected if
structure was uniformly distributed over X. Said differently,
synergy can be intuitively understood as that integration that is
present in the whole but not smaller subsets (in this case, the N
subsets created by removing each Xi). In this sense, synergy
captures how the whole can be greater than the sum of it’s
parts61. This intuition is conceptually similar to the formal defi-
nition of synergy from the partial information decomposition
framework27, which defines synergy as the information left over

Fig. 5 O-Information, brain topography, and functional specialization of optimally synergistic subsets identified by simulated annealing All panels
show data from the HCP sample. a Annealing was carried out 5000 times for each subset size. This plot shows O-information for each optimized subset
(gray dots) and their mean (blue line). Note that annealing fails to converge onto any synergistic subsets for subsets containing more than 24 nodes.
Optimally negative O-information is achieved for subsets between 8 and 12 nodes. For each subset of size k each node was removed individually and the
O-information of the remaining k− 1 nodes was calculated. If the O-information was lower than given by the original k node subset, the contribution of that
node was considered redundant and the synergy in the subset attributable to its k− 1 node counterpart. For the vast majority of subsets smaller than 12
nodes, no nodes could be removed in a way that increased synergy, indicating that these subsets consisted of nodes with irreducible synergy (red in
Fig. 5a). b Frequency of individual node participation across optimally synergistic 10-node subsets (4021 unique subsets out of 5,000 annealing runs),
displayed on a surface rendering of the cerebral cortex (cf. Fig. 4b). c Mean O-information (left) and fraction of synergistic subsets (right) encountered in
samples of 20,000 subsets that contained nodes belonging to between 1 and 7 canonical FC systems (HCP data). The mean O-information for samples
obtained exclusively from each of the 7 FC systems is indicated (red dots).
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when everything accessible in simpler combinations of sources
has been accounted for. The exclusive use of total correlations
also allows us to consider the O-information purely in terms of
Kullback-Leibler divergences from independent to joint prob-
ability distributions (Eq. (5). This shows us that all of these
measures can be understood in the context of inferences about
structure (relative to a disintegrated prior). In the context of
synergy, the extra information in the joint state is information
about something: specifically about the relative likelihood of a
configuration with respect to the maximum entropy case.

Applied to two separate fMRI brain data sets we find that
synergistic subsets of brain regions are ubiquitous and abundant,
spanning scales between 3 and 25 regions and extending over the
entire cerebral cortex. While redundant interactions dominate
functional connectivity at larger subset sizes, the application of
multivariate information measures demonstrates a previously
hidden repertoire of synergistic ensembles, each integrating
diverse and distinct sources of information. Recent work by Luppi
et al.,21 proposed a synergistic core to the human brain where
complex processing occurs. While we found that there is sig-
nificant over-representation of specific regions (including por-
tions reported by Luppi et al., such as prefrontal cortex, occipital
pole, the precuneus, and cingulate regions), synergy-dominated
subsystems could include any region of cortex, although some
regions contribute more reliably than others. This suggests that
synergy is a widespread property of multivariate information
emerging from resting-state brain activity. While there is dis-
crepancy between our results and those of Luppi et al., this dif-
ference is likely a reflection of the different analytical pipelines,
rather than a true conflict. Their approach was based on
decomposing the temporal mutual information, which considers
dependencies between past and future, while our approach does
not. Luppi et al., also only considered pairs of regions co-evolving
together, while we considered larger ensembles. Our approach
brings into view synergies of a much higher order than would be
possible in the approach by Luppi et al. Finally, the prior analysis
is based on a generalization of the partial information decom-
position and requires choosing one of several redundancy func-
tions. It is unknown whether the reported results would hold for
all plausible redundant information functions or not. Conse-
quently, different results likely reflect different kinds of synergies
(temporal, pairwise vs. instantaneous, higher-order) that can co-
exist in the brain.

Information theoretic measures are not the only approaches to
higher-order structure in brain activity. Recently, Santoro et al.,62

proposed a metric they term hyper-coherence, which describes
higher-order co-fluctuations between sets of three and four
regions. Based on the edge time series framework63–65, the hyper-
coherence defines a higher-order activity in terms of simplicial
complexes of coherent activations. When applied to brain data,
Santoro et al., found that hyper-coherence was relatively lower in
systems that we found to be relatively higher in synergy (frontal
and default mode regions), and relatively higher in regions we
found to have high average O-information (somato-motor
regions). We conjecture that the hyper-coherence framework is
probably preferentially sensitive to redundancies rather than
synergies. This would be consistent with recent results from
Varley et al., who found that pairwise co-fluctuations were
positively correlated with redundant information and anti-
correlated with synergistic information66. An avenue of future
research may be to attempt to apply the filtering approach San-
toro et al., use to the O-information or other multivariate infor-
mation measures.

Interestingly, the randomly sampled ensembles that were most
likely to be synergy dominated were those that involved nodes
that spanned multiple canonical subsystems, while sets of regions

all within one system were strongly dominated by redundancy
(Fig. 5c). This would be consistent with the hypothesis that
functional connectivity, when viewed entirely as bivariate inter-
action, is largely sensitive to redundant, but insensitive to
synergistic, dependencies between brain regions. Consequently,
the functional connectivity matrix is not a complete map of the
statistical structure in a dataset, but only of dependencies char-
acterized by redundancy. This is consistent with findings from
Ince67, Finn and Lizier68, and Varley et al.66, who argued that
bivariate correlations are intrinsically redundancy-dominated.
Higher-order synergies represent, in a sense, a kind of shadow
structure and consequently are missed by network-focused
approaches that omit higher-order interactions. This hypothesis
finds some support in ref. 21, who found that the distribution of
synergies was anticorrelated with the functional connectivity
network structure, while the distribution of redundancies was
positively correlated.

Given the novelty of tools like the O-information, the sig-
nificance of these synergistic dependencies remains almost
entirely unknown, although the small number of studies to date
suggest intriguing patterns. One study found alterations to the
redundancy/synergy bias across the human lifespan22, while other
studies have suggested that loss of consciousness induced by
propofol is associated with decreased synergistic dynamics20.
Future avenues of work include deeper analyses of how higher-
order dynamics change between rest and task conditions, in cases
of psychopathology or brain injury, and non-human animals. We
should note that, in the context of the O-information, synergy is
not necessarily a causal measure: in related contexts, synergy has
been discussed as a measure of computation in neural circuits by
Sherrill et al., Newman et al., and others13–15,17,26,69, although it
remains unexplored how exactly these two approaches relate to
each-other. The O-information is an atemporal measure, sensitive
to instantaneous, higher-order correlation structures, but with no
notion of dynamics or a flow from past to future. In contrast, the
work by Sherill et al., is done in the context of information
dynamics25 and considers how the past informs on the future.
Future research may explore how a synergistic correlation
structure might facilitate computations within the system
over time.

In addition to the insights into synergy specifically, the results
presented here also have implications for researchers interested in
multivariate information theoretic analyses. For example, the TSE
complexity has long been an object of theoretical interest54, but
the intractable combinatorics have limited its applicability in
empirical data (although its use is not unheard of70). The finding
that the exogenous information Σ(X)∝ TSE(X) for reasonably
large N (first reported in ref. 24), even more so than the original
heuristic C, opens the door to applications in experimental neu-
roscience. The nature of this correlation merits further study as
well. One outstanding question is how redundancies and syner-
gies in the data differentially influence the relationship between
Σ(X) and TSE(X). Unlike the O-information, the S-information
does not obviously link to redundancies or synergies, and so how
these kinds of integration impact the relationship to TSE remains
unknown. Future work developing generative models with pre-
cisely controllable distributions of redundancies and synergies
may shed light on this question.

In a broader scientific context, our work contributes to the
increasing interest in higher-order interactions, beyond the
standard, pairwise network model8,71. The information-theoretic
approach (such as the work reported here, as well as in
refs. 16,20,21,52,69,72) is based largely on a statistical inference,
while alternative frameworks based on simplicial complexes,
algebraic topology, and hypergraphs has been developed largely
in parallel7,41,73–76. How these different mathematical
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frameworks relate to each other remains an open question, and
the potential for a more unified approach to understanding
higher-order interactions both in terms of topology and statistical
inferences is an alluring promise.

The optimization of maximally synergistic subsets via simu-
lated annealing can be thought of as an attempt to find a maxi-
mally efficient, dimensionally reduced representation of a
potentially large data set: when modeling a system, it is generally
desirable to capture as many statistical dependencies as possible
with the fewest required degrees of freedom. By finding a
representation that incorporates synergies while simultaneously
pruning redundant information that would be double counted,
we can attempt to build the most computationally efficient model
of a system under study77,78. While dimensionality reduction and
feature selection algorithms are widespread in many computa-
tional sciences, a rigorous treatment of the ways that synergistic
and redundant information can inform the analysis of brain
dynamics and functional networks remains a space of active
development (for an example, see refs. 78,79).

The O-information scales far more gracefully than related
measures of synergistic information (such as the partial infor-
mation decomposition, which is practically impossible to apply to
systems larger than 5 elements28). However, the combinatorics
associated with assessing every possible subsystem becomes
intractable as the system size grows, an issue first noted for the
TSE complexity. In standard functional and effective network
research, it is common to compute all pairwise interactions
(which only grows with N2), and then filter out spurious edges as
needed79. While this may be possible for very small subsystems, it
is intractable for larger ones. If one can pre-select a set of ele-
ments, then the computation of O-information is trivial up to
hundreds of items. However, the requirement to select subsets of
interest can itself be computationally intensive and time-
consuming. Consequently heuristic measures such as optimiza-
tion, random sampling, or pre-filtering subsystems to exclude
collections of elements will be required.

Since the O-information is a measure of relative redundancy/
synergy dominance, in highly redundant data, synergistic struc-
tures may not be strong enough to dominate the signal, resulting
in a positive (redundancy-dominated) O-information. By adding
increasing amounts of low-frequency redundancy to the BOLD
data, and re-running the optimizations, we found that the
maximally synergistic subsets extracted from the uncontaminated
data became impossible to retrieve (see Supplementary Fig. 6).
Those synergies still existed, they were merely swamped by
redundancy and made invisible. Adding global signal back in this
way provides a new insight into a commonly used step in fMRI
image pre-processing: global signal regression (GSR)80. We argue
that GSR can be understood as scrubbing global redundancies
from the data, and in doing so may reveal previously buried
synergies that would not have been accessible in the original,
unprocessed data.

One limitation of this study is that it is hard to disambiguate
between information that reflects computation in neural tissue,
versus what is attributable to the vascular physiology of the BOLD
signal. Recent work by Colenbier has shown that there are
synergistic interactions between the global signal, blood arrival
times, and functional connectivity structure59. Since the pairwise
covariance forms the foundation of the multivariate Gaussian
entropy estimator, it is likely that the same confounds influence
the estimates of entropy and mutual information. Future work
replicating these results using electrophysiological recordings
such as M/EEG should help untangle this issue. Another limita-
tion is that it operates on static distributions: every frame is
assumed to have been drawn from an unchanging multivariate
Gaussian distribution, with no memory or dynamics from

moment to moment. This is a standard assumption in functional
connectivity analyses, although there is growing interest in the
limitations this assumption produces and the need for analyses
that explicitly account for dynamics81. The field of information
dynamics provides a number of relevant analyses82,83, and there
is already interest in higher-order dynamics in the brain: in
addition to the aforementioned work by Luppi et al., recent work
by Faes et al. proposed a derivative of the O-information for
rhythmic processes (the O-information rate, or OIR)84. The OIR
has been used the describe brain-heart interaction dynamics and
opens up the frequency domain to higher-order, informational
analysis in addition to the time domain. Similarly, an application
of the O-information to the dynamic measure of transfer entropy
has been proposed and applied to optimizing ensembles of
maximally synergistic or redundant neurons52. Both of these
measures could be incorporated into a pipeline line the one
described here and may shed light on the similarities (and dif-
ferences) between dynamic and static analyses. Despite its lim-
itations, however, we are confident that the classic, static
O-information likely contains a wealth of as-yet unexplored
structure and will continue to provide insights into brain struc-
ture and function.

In this article, we demonstrate how an information-theoretic
measure of multivariate interactions (the O-information or
synergy) can be used to uncover higher-order interactions in the
human brain dynamics. We analytically show that the
O-information can be related to an older measure of systemic
complexity, the TSE complexity, and from this derive a novel
geometric interpretation of redundancy- and synergy-dominated
systems. With a combination of random sampling and optimi-
zation, we show that a large number of subsystems displaying
synergistic dynamics exist in the human brain and that these
systems form a highly distributed shadow structure that is
entirely overlooked in standard, bivariate functional connectivity
models. We conclude that the space of higher-order interactions
in the human brain represents a large, and under-explored area of
study with a rich potential for new discoveries and
experimental work.

Methods
Gaussian information theory. In this paper, we focus on higher-order informa-
tion sharing in fMRI BOLD signals. Since BOLD data is continuous (rather than
discrete), to quantify the entropy of a continuous signal, we use a generalization of
the the classic, discrete Shannon entropy (Eq. (1)): the differential entropy:

HðXÞ ¼
Z

x2X
PðxÞ logPðxÞdx ð17Þ

Computing the differential entropy from empirical data is generally difficult, as
it requires estimating P(x). However, if one is willing to make assumptions of
multivariate normality, closed-form estimators of the Gaussian joint entropy can be
leveraged.

Prior work has established that BOLD data is well-modeled by multivariate
Gaussian distributions85,86 and that more complex and highly parameterized
models provide little additional benefit87. While information theory was originally
formalized in the context of discrete random variables, in the specific case of
Gaussian random variables, closed-form estimators exist for almost all the standard
information measures (for an accessible review, see82 supplementary material). For
a univariate, Gaussian random variable X � N ðμ; σÞ, the entropy (given in nats) is
defined as:

HN ðXÞ ¼ lnð2πeσ2Þ
2

ð18Þ
For a multivariate Gaussian random variable X= {X1, X2, . . . XN}, the joint

entropy is given by:

HN ðXÞ ¼ ln½ð2πeÞN jΣj�
2

ð19Þ

where ∣Σ∣ refers to the determinant of the covariance matrix of X. The bivariate
mutual information (nats) between X1 and X2 is:

IN ðX1;X2Þ ¼
� lnð1� ρ2Þ

2
ð20Þ
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where ρ is the Pearson correlation coefficient between X1 and X2. Note that, since
the mutual information is a function of ρ for Gaussian variables, this special case of
mutual information is not generally sensitive to non-linear relationships in the data
in the way that non-parametric estimators are. Finally, the Gaussian estimator for
total correlation is:

TCN ðXÞ ¼ � lnðjΣjÞ
2

ð21Þ

From these, it is possible to calculate all of the measures described above (dual
total correlation, description complexity, O-information, and TSE complexity) for
multivariate Gaussian variables. While the assumption of linearity that comes with
a parametric Gaussian model can be limiting, the standard technique for assessing
functional connectivity (the Pearson correlation coefficient) makes identical
assumptions, so our work is consistent with assumptions made when applying
standard approaches to FC analysis.

Building an intuitive understanding of synergy in the context of linear systems
is difficult, since a multivariate Gaussian is defined in terms of pairwise
covariances. Barrett showed that higher-order synergies can exist in purely
Gaussian systems and that redundancy is related to the mutual information88, so
even in linear systems, beyond-pairwise dependencies can exist. This can be partly
understood by recognizing that the multivariate Gaussian is the maximum entropy
distribution subject to the constraints of pairwise covariance42. So, while pairwise
linear relationships are enough to uniquely specify the distribution, they do not
rule out the possibility that beyond-pairwise relationships exist. They do, however,
fix the structure of those higher-order dependencies.

Datasets. Two independent fMRI resting state data sets were employed in the
empirical analyses, one derived from the Human Connectome Project (HCP
data56) and the other from a recently published open-source repository (MICA57).
The HCP data, derived from a set of 100 unrelated subjects, have been used in
several previous studies (for more detailed description see ref. 89). All participants
provided informed consent, and the Washington University Institutional Review
Board approved all of the study protocols and procedures. A Siemens 3T Con-
nectom Skyra equipped with a 32-channel head coil was used to collect data.
Resting-state functional MRI (rs-fMRI) data was acquired during four scans on two
separate days. This was done with a gradient-echo echo-planar imaging (EPI)
sequence (scan duration: 14:33 min; eyes open). Acquisition parameters of TR=
720 ms, TE= 33.1 ms, 52∘ flip angle, isotropic voxel resolution= 2 mm, with a
multiband factor of 8 were used for data collection. A parcellation scheme covering
the cerebral cortex developed in ref. 58 was used to map functional data to 200
regions. This parcellation can also be aligned to the canonical resting state net-
works found in ref. 60.

Of the 100 unrelated subjects considered in the original dataset, 95 were
retained for inclusion in empirical analysis in this study. Exclusion criteria were
established before the present study was conducted. They included the mean and
mean absolute deviation of the relative root mean square (RMS) motion across
either four resting-state MRI scans or one diffusion MRI scan, resulting in four
summary motion measures. Subjects that exceeded 1.5 times the interquartile range
(in the adverse direction) of the measurement distribution in two or more of these
measures were excluded. Following these criteria, four subjects were excluded. Due
to a software error during diffusion MRI processing, one additional subject was
excluded. The remaining 95 subjects were 56% female, had a mean age of
29.29 ± 3.66, and an age range of 22 to 36.

The MICA dataset includes 50 unrelated subjects, who also provided written
informed consent. The study was approved by the Ethics Committee of the
Montreal Neurological Institute and Hospital. Resting state data was collected in a
single scan session using a 3T Siemens Magnetom Prisma-Fit with a 64-channel
head coil. Resting state scans lasted for 7 minutes during which participants were
instructed to look at a fixation cross. Imaging was completed with an EPI sequence,
and acquisition parameters of TR= 600 ms, TE= 48 ms, 52∘ flip angle, isotropic
voxel resolution= 3 mm, and multiband factor 6. The parcellation used in this
dataset was the same as the one used for the HCP data (described above).

Preprocessing. Minimal preprocessing of the HCP rs-fMRI data followed these
steps90: (1) distortion, susceptibility, and motion correction; (2) registration to
subjects’ respective T1-weighted data; (3) bias and intensity normalization; (4)
projection onto the 32k_fs_LR mesh; and (5) alignment to common space with a
multimodal surface registration91. The preprocessing steps described produced an
ICA+FIX time series in the CIFTI grayordinate coordinate system. Two additional
preprocessing steps were performed: (6) global signal regression and 7) detrending
and band pass filtering (0.008 to 0.08 Hz)92. After confound regression and fil-
tering, the first and last 50 frames of the time series were discarded, resulting in a
final scan length of 13.2 min (1100 frames).

Preprocessing of the MICA dataset was performed as described in ref. 57 for
resting state data. Briefly, the data was passed through the Micapipe93 processing
pipeline, which includes motion and distortion correction, as well as FSL’s ICA FIX
tool trained with an in-house classifier. Time series were projected to each subject’s
FreeSurfer surface, where nodes were also defined. Further details about the
processing pipeline can be found in ref. 93. The data was global signal regressed in
addition to the other preprocessing steps described in this pipeline.

For calculating the covariance matrix used in computing O-information, total
correlation and dual total correlation, the functional data from all scans and all
subjects were combined to create a single COV or FC matrix. Aggregation was
carried out by appending the nodal time series across all subjects and runs and then
calculating a single Pearson correlation for each node pair. An alternative approach
(taking the mean over the single-run, single-subject COV/FC matrices) yielded
virtually identical results. Following preprocessing and using the common 200-
node parcellation of cerebral cortex, the mean COV/FC matrices for the HCP and
MICA data sets were highly correlated (R= 0.851, p= 0).

Random sampling and optimization. Subsets of regions were selected from the
full-size (200 nodes/regions) FC matrices in two ways, by random sampling and by
search through optimization. Random sampling is simple to implement but
because of the vast repertoire of potential subsets ( N

k

� �
) it cannot fully disclose the

extent of variations in informational measures present in the data. Instead, search
under an objective function (optimization) can guide exploration to specific sub-
spaces enriched in subsets with distinct informational signatures.

To perform optimizations we implemented a variant of simulated annealing94.
As objectives we chose multivariate informational measures such as the
O-information (OI), total correlation (TC), and dual total correlation (DTC),
which could be maximized or minimized. Each run of the simulated annealing
algorithm was carried out in one FC matrix and for one subset size. We carried out
5000 runs, with subset sizes ranging from 3 to 30 nodes. A random selection of
nodes was chosen according to the given subset size to initiate each run. The
corresponding covariance matrix was extracted from the full COV/FC and used to
compute the information theoretic metric of interest. The composition of the
subset was then varied and variations were selected under the objective function.
Annealing operates by selecting variations stochastically, depending on a
temperature parameter that determines the amount of noise permitted in the
selection process. Initially, the temperature is high, resulting in the somewhat
random exploration of the landscape. As the temperature is lowered, the
optimization becomes more deterministic, focusing more and more on local
gradient descent. For each run the algorithm proceeded for a maximum of
10,000 steps. At each step, a new set of nodes was generated by randomly replacing
nodes, with the number determined by a normal distribution (frequencies of 1, 2,
and 3 element flips were 0.68, 0.27 and 0.04, respectively). A new covariance matrix
was computed for the new set of nodes and the objective function was calculated
for that set. The set was retained if its cost was lower than the current set or if a
random number drawn from the uniform distribution between 0 and 1 was less
than expð � ððCn � CÞ=TcÞ, where Cn is the cost of the new set of nodes, CL is the
cost of the current set of nodes and Tc is the current temperature. At each step, the
current temperature decays to a fraction of the initial temperature, as a function of
the number of steps completed:

TcðhÞ ¼ T0 ´ ðTexpÞh ð22Þ

where Tc is the current temperature, T0 is the initial temperature (set to T0= 1),
Texp governs the steepness of the temperature gradient, and h is the current
iteration step. By decreasing the temperature at every step, the algorithm becomes
progressively more deterministic.

Null model. Given some set X of k nodes with Ω(X) < 0, it is possible that not every
Xi∈X actually contributes to the synergy (for example, if there are some Xi that are
independent from every other node). However, this set may still be found as a
solution for an optimally synergistic subset of k nodes by the simulated annealing
algorithm. To ensure that the synergy found in a given subset is the maximally
synergistic set of nodes, each node in the subset was removed from the subset in
turn by setting the Pearson correlation of that node with all other nodes to zero.
After removal of a node, the O-information was recalculated. If removal of any
node decreased the O-information of the subset, then the subset was considered
reducible to the k− 1 subset, and was not included in further analyses.

Statistics and reproducibility. All statistics were computed using MATLAB 2020
and MATLAB 2021. The code for reproducing results is provided Supplementary
Software 1. Covariance matrices were computed from z-score BOLD time series
and squared off to ensure symmetry by averaging each matrix and its own
transpose. Information-theoretic estimators were computed using the formulae
given in Sec. Gaussian Information Theory (all code provided).

Random sampling of ensembles was done for ensembles of size 3–16, with
100,000 samples done for each size. Annealing was done using the provided code,
with 5000 replications for each ensemble size. All correlations computed using
Spearman’s ρ.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data used here are available from the Human Connectome Project56 (http://www.
humanconnectomeproject.org/) and the Microstructure-Informed Connectomics
Project57 (https://osf.io/j532r/). Data for reproducing figures Figs. 3, 5a, c is included
Supplementary Data 1 and Supplementary Data 2, respectively.

Code availability
MATLAB code for computing the TC, DTC, O-information, and S-information, as well
as the simulated annealing, is attached to this manuscript as Supplementary Software 1.
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