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Cognitive function is an indicator for global physical and mental health, and cognitive

impairment has been associated with poorer life outcomes and earlier mortality. A standard

cognition test, adapted to a rural-dwelling African community, and the Oxford Cognition

Screen-Plus were used to capture cognitive performance as five continuous traits (total

cognition score, verbal episodic memory, executive function, language, and visuospatial

ability) for 2,246 adults in this population of South Africans. A novel common variant,

rs73485231, reached genome-wide significance for association with episodic memory using

data for ~14 million markers imputed from the H3Africa genotyping array data. Window-

based replication of previously implicated variants and regions of interest support the dis-

covery of African-specific associated variants despite the small population size and low allele

frequency. This African genome-wide association study identifies suggestive associations

with general cognition and domain-specific cognitive pathways and lays the groundwork for

further genomic studies on cognition in Africa.
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Normal cognitive function is an essential determinant for
health and quality of life indicators. Evolutionary evi-
dence suggests that along with increased cranial com-

plexity, humans developed complex communication, abstract
thought, and reasoning through their increased capacity for social
learning1. Genome-wide association studies (GWAS) for cogni-
tive function have been challenging despite twin studies sug-
gesting heritability scores up to ~80% for various cognitive
phenotypes1–10. The question of heritability is further compli-
cated by evidence that it varies across the lifespan and has dif-
ferent trajectories throughout the life course, with relative stability
observed from middle to old age4,9–13. Despite the complex,
polygenic, and pleiotropic nature of neurocognitive phenotypes,
meta-analyses with larger sample sizes (>50,000) were able to
detect associations with single nucleotide polymorphisms (SNPs)
and have successfully replicated findings with genome-wide sig-
nificance (p < 5 × 10−8)3,6,14–17. In order to perform these meta-
analyses, general cognitive ability (or Spearman’s g) was derived
from diverse positively but not perfectly correlated cognitive
performance tests (capturing ~40% of phenotypic variance), or
proxy phenotypes such as educational attainment3,6,9,14–18. Stu-
dies have used different metrics, measures, and tests to describe
traits such as intelligence (fluid or crystallised), general cognitive
function, and domain-specific cognitive outcomes hence the
adoption of g to account for testing heterogeneity2–4,9,18–20.
Functional studies have shown that each of the cognitive
domains has an impact on gene expression in different regions of
the brain, making latent cognitive ability an amalgamation of
activity within the brain acting through different biological
pathways4,9,21–29. A further limitation of these studies is that they
suffer from sample heterogeneity in terms of the age of partici-
pants, socio-economic status (SES), and participant’s access to
education3,12,15,20. As noted, cognitive trajectory changes
throughout lifespan require participants to be within similar age
ranges to accurately capture cognitive ability for comparative
studies4,11–13. Education is also a major moderating factor for
assessing cognitive ability, with evidence suggesting that genes
associated with educational attainment are an artefact of
positive selection1,9. Cognitive performance tests typically rely on
literacy and numeracy, which is a source of bias in many low-
income populations2,4,9,13,18,20,30,31. In some settings, SES is a
major determinant influencing access to education, so cognitive
batteries may be measuring educational exposure rather than
innate cognitive function2,4,13,18,20,30,31.

There is little research on the genetics of cognitive function in
African populations, or in those of African ancestry4,5,32–34. The
lack of diverse ethnic representation in studies to date limits the
discovery of associated variants as differences in linkage dis-
equilibrium (LD) (with generally smaller LD blocks in Africans
compared to Europeans), could enhance the discovery of causal
variants in African populations35. The Health and Aging in
Africa: A Longitudinal Study of an INDEPTH Community in
South Africa (HAALSI) collected baseline cognition data for over
5000 older adults in Bushbuckridge, rural Mpumalanga, South
Africa (SA)36. A sub-set of 2246 participants from this study were
also recruited as part of the Africa Wits-INDEPTH Partnership
for Genomic Studies (AWI-Gen) for whom genotype data were
available from the Illumina Human Heredity and Health in Africa
(H3Africa) array37,38. The combined dataset with phenotype and
genotype data was used to explore genetic associations with latent
cognitive ability based on multiple quantitative traits (total cog-
nition score, verbal episodic memory, executive function, lan-
guage, and visuospatial ability) for ~2000 individuals in five
independent GWAS using LD structure specific to those of
African ancestry in SA. To the best of our knowledge, this is the
first large study in Southern Africa to explore genetic contribu-
tions to non-pathological cognitive performance.

Results
Genome-wide association study results. We performed GWAS
for five cognitive traits (Table 1). This sample had more women
(~58%) than men. The participants had little access to education,
where ~77% of the sample population had not progressed beyond
primary school. After rank normalisation, cognitive domain data
were available for 1887 genotyped participants. The ranges dis-
played in Table 1 are for the population-standardised z-scores
and show a particularly wide range of performance for visuos-
patial cognition. Total cognition score data were available for all
2211 genotyped participants. The imputed dataset included
13,972,012 SNPs.

The GWAS for verbal episodic memory, identified a genome-
wide significant signal for rs73485231 (p= 7.70 × 10−9, β= 0.24,
SE= 0.04) on chromosome 13 (Fig. 1a shows the Manhattan plot,
b the QQ-plot with λ= 0.99, c and the Locus zoom plot). The
mean episodic memory score was significantly lower in G
homozygotes (p= 5.4 × 10−4) (Supplementary Fig. 1a). This
intergenic SNP between GNG5P5 and HTR2A had a notably

Table 1 Descriptive statistics showing cognitive trait and covariate distribution.

Measure n Range (Median[IQR]) Mean or percentage SD

Age (years) 2211 40 to 80 (57 [49–67]) 57.69 10.93
Sex 2211
Female 58.53% (1294)
Male 41.47% (917)
Level of education 2211
No formal education 39.85% (881)
Primary 37.63% (832)
Secondary 18.72% (414)
Tertiary 3.80% (84)
Cognitive measures
Total cognition score 2211 0–24 (12 [9–14]) 11.68 4.38
Cognitive domainsa 1887
Executive function −4.69 to 4.33 (−0.14 [−1.32–1.30])
Episodic memory −3.91 to 1.46 (0.29 [−0.54–0.79])
Language −2.53 to 1.28 (0.13 [−0.41–0.51])
Visuospatial cognition −10.63 to 4.77 (0.49 [−1.75–2.33])

aCognitive domain data given as z-scores prior to rank normalisation with median and interquartile ranges rounded up to two decimal places.
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higher minor allele frequency (MAF) in Africans (AFR) (MAF=
0.13), compared to Europeans (EUR), Americans (AMR) and
Asians (EAS and SAS) 1000 G Project super population groups
(Table 2). Although no previous associations with cognition had
been reported, GWAS Catalog reported this SNP to be associated
with adolescent idiopathic scoliosis (Fig. 1c). A suggestive signal,
rs140372794 (p= 1.04 × 10−7, β= 0.33, SE= 0.06), was observed
on chromosome 8 (Supplementary Data 1). This SNP, along with
a second suggestive variant (rs62529410, p= 7.02 × 10−7) within
27 kb of it, falls within 100 kb of LINC02055, a long intergenic
non-protein coding RNA gene harbouring several SNPs pre-
viously associated with mathematical ability and general cognitive
function. Gene-based association (Supplementary Table 1)
yielded two suggestive gene signals; one for TRPM6 on
chromosome 9 (minimum p= 2.31 × 10−6), which encodes a
magnesium channel protein39,40, and another for BACE2 on
chromosome 21 (minimum p= 3.08 × 10−6) which codes for an

essential enzyme for the cleavage of β-Amyloid and the
development of Alzheimer’s disease (AD)41–43.

Our GWAS for language detected a near genome-wide
significant association on chromosome 6 (rs140578927,
p= 6.99 × 10−8, β= 0.65) (Fig. 2a, b). The MAF (C allele) for
rs140578927 was 0.01 in our cohort and had not been reported in
population groups other than the African supergroup in the
1000 G Project (Table 2). Despite its rarity, heterozygous
individuals had higher mean language performance scores
than homozygous individuals (Supplementary Fig. 1b). FUMA
output indicated the nearest gene to be PLEKGH1 which has
been associated with blood pressure, white matter intensity,
and cortical volume44–46. Regional lookup places it downstream
of MTHFD1L, which had been associated with late-onset
Alzheimer’s disease and coronary artery disease47,48. A series of
suggestive signals associated with language in this cohort
are listed in Supplementary Table 1. Gene-based output

Fig. 1 Genome-wide and suggestive associations with verbal episodic memory. aManhattan plot. Genome-wide significance cut-off 5 × 10−8 is shown by
red line and suggestive cut-off 5 × 10−6 is shown by blue line. b QQ-plot (λ= 0.99) for association summary statistics c Locus zoom plot for rs73485231.
LD is based on a South African LD panel.
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(Supplementary Table 1) suggested two genes encoding mito-
chondrial proteins on chromosome 15; MRPL46 associated with
depressive disorders (minimum p= 6.24 × 10−5)49,50 and
MRPS11 (minimum p= 3.16 × 10−6) linked to body-mass index
(BMI)51.

Genome-wide analysis results for executive function yielded
only suggestive signals (Fig. 3a and Supplementary Data 1);
however, rs3845674 is of particular interest due to its proximity to
BIN1 (Fig. 3c). This gene has been reported in multiple AD
studies52–54. The effect allele of rs3845674 (G) has an allele

a

b c

Fig. 2 Genome-wide and suggestive associations with language. aManhattan plot. Genome-wide significance cut-off 5 × 10−8 is shown by a red line, and
suggestive cut-off 5 × 10−6 is shown by a blue line. b QQ-plot (λ= 1.00) for association summary statistics. c Locus zoom plot for rs140578927. LD values
are based on a South African LD panel.

Table 2 Minor allele frequency distribution of reported association signals in our sample compared to 1000 genomes super
populations.

Trait Variant ID Minor allele MAF this study MAF AFR MAF AMR MAF EAS MAF EUR MAF SAS

Memory rs73485231 A 0.14 0.13 0.02 0.02 0.02 0.07
Memory rs140372794 A 0.05 0.04 0.01 0 0 0
Language rs140578927 C 0.01 0.01 0 0 0 0
Executive function rs3845674 T 0.23 0.23 0.30 0.40 0.25 0.20
Visuospatial ability rs191611493 T 0.03 0.03 0.00 0 0 0
Total cognition score rs138832740 C 0.03 0.04 0 0 0 0

1000 Genomes Project Super Populations groups AFR (African), AMR (Admixed American), EAS (East Asian), EUR (European), and SAS (South Asian).
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frequency of ~77% in our sample, and homozygous carriers of
this allele had significantly reduced executive function compared
to heterozygous and homozygous T individuals (Supplementary
Fig. 1c).

No genome-wide associations were observed for visuospatial
ability (Fig. 4a, b), but a series of suggestive signals in LD falling
within the gene LMBRD2 are shown in Fig. 4c represented by
rs191611493 which had the lowest p value (p= 1.23 × 10−6,
β= 0.39, SE= 0.08) (Fig. 4a, b). The frequency of the effect allele
was very low (Supplementary Data 1) and it did not have a
significant effect on performance in this cohort (Supplementary
Fig. 1d). Along with LMBRD2, gene-based analysis results
implicated DHX15, TRPC7, DTX2, UPK3B and POMZP3
(Supplementary Table 1).

Although no SNPs reached genome-wide significance for
association with the total cognition score (Fig. 5a, QQ-plot 5b,
and Supplementary Data 1), the lead SNP rs138832740
(p= 1.61 × 10−7, β=−2.01, SE= 0.38) was African ancestry-
specific according to the 1000 G Project dataset (Table 2). No
previous associations had been reported for rs138832740, likely due
to its low frequency and apparent continental specificity. The closest
gene to this SNP is RN7SL831P which has been reported in
behavioural traits and BMI. Only one participant was

homozygous for the C allele, but a significant difference
(p= 2.4 × 10−3) between performance was observed between
heterozygous individuals and those who were homozygous for the
major allele (Supplementary Fig. 1e). Two genes (RBFOX3 and
MACROD2), although they did not meet gene-wide significance,
code for proteins which are highly expressed in the central nervous
system and integral to neuron development (Supplementary
Table 1).

GWAS replication. Exact replication of previously reported
genome-wide significant variants associated with various cogni-
tive function phenotypes was not achieved; however, using
window-based methods proved to be sufficient to represent
replication of our signals in other studies. The top observed
association signals for each cognitive trait (Supplementary
Data 1) were used for our window-based replication analysis. We
reported replication of previously reported genome-wide sig-
nificant SNPs (marked with an asterisk in Supplementary Data 2)
and suggestive signals for memory and total cognition score.

The lowest p value observed for episodic memory window-
based replication was for rs10773290 (p= 3.68 × 10−4), which
was previously reported by ref. 55 as a suggestive signal for

 
a 

b c 

Fig. 3 Genome-wide and suggestive associations with executive function. a Manhattan plot. No genome-wide or near genome-wide significant signals.
Suggestive cut-off 5 × 10−6 shown by a blue line. b QQ-plot (λ= 1.00) for association summary statistics. c Locus zoom plot for rs3845674. LD values are
based on a South African LD panel.
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working memory along with two other markers. For rs8067235
(our study p= 4.55 × 10−4), a near genome-wide significant
signal (p= 6.00 × 10−8) was observed by ref. 56 for association
with memory performance.

For the total cognition score, we reported all window-based
replication signals with p < 5 × 10−4 in Supplementary Data 2.
Using the cut-off of 5 × 10−3, we managed to exactly replicate two
suggestive signals: one for cognitive performance (rs2616984,
p= 1.86 × 10−3), which also fell below our window-based
replication threshold (p= 1.44 × 10−4), and one for general
cognitive ability (rs1512144, p= 1.11 × 10−3 and window
p= 2.81 × 10−4). Through widow-based replication, we further
replicated 14 signals that had reached genome-wide significance
in their respective studies for the traits of general cognitive ability
and cognitive function. A further 40 SNPs were replicated for
previously reported suggestive signals for the traits, cognitive
performance, and generalised correlation coefficient along with
the other traits mentioned above.

For the rest of the remaining cognitive traits; language,
executive function, and visuospatial cognition, we failed to
replicate previously reported suggestive signals within our cut-
off threshold. These are presented in Supplementary Data 2.

Discussion
Few genetic association studies for cognitive traits have been per-
formed in continental Africans and meta-analyses suffer from the
limitations of grouping different cognitive phenotypes together, of
which data was collected using different screening tools4,57. Although
a number of recent epidemiological studies assessing cognitive
function and various associated phenotypes have been published,
there is still a dearth of genomic data available from Africa.

Traditional cognition batteries are often ill-adapted to screen-
ing populations with lower literacy and numeracy levels, con-
founding comparative analyses4,57. This is especially evident in
settings where educational attainment is strongly influenced by
SES1,4,9,57. Adaptations of the standard mini-mental state exam-
ination (MMSE) to screen for cognitive impairment linked to
ageing, and neurological and psychiatric conditions have been
used since its inception as a simple way to assess cognitive traits
such as orientation, comprehension, language, memory, and tasks
for reading, writing, and drawing58. The main limitation of the
MMSE is that it cannot be administered to individuals who are
illiterate, making it unsuitable for capturing cognitive function
data in communities with low literacy levels58. Spearman’s g
(derived from the Wechsler Adult Intelligence Scale (WAIS) and

 
a 

b c 

Fig. 4 Genome-wide and suggestive associations with visuospatial ability. a Manhattan plot. No genome-wide or near genome-wide significant signals.
Suggestive cut-off 5 × 10−6 shown by a blue line. b QQ-plot (λ= 1.00) for association summary statistics. c Locus zoom plot for rs191611493. LD values are
based on a South African LD panel.
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general cognitive ability, used in large meta-analyses, are also
problematic because the first is administered as an Intelligence
Quotient (IQ) test assessing verbal comprehension, perceptual
reasoning, working memory, and processing speed is said to
account for only up to half of the variation of cognitive function,
and the latter is composed of a number of imperfectly correlated
traits representing a single cognitive metric4,7,59–62.

This pioneer African GWAS used baseline cognitive function
data from a well-characterised rural South African cohort36,
genetic data enriched for common African variants and imputed
using an African-variant-enriched reference panel, and the OCS-
Plus cognitive assessment tool specifically developed for low-
income settings where access to formal education is limited, and
language may present barriers, to search for genetic associations
with population-standardised cognitive domain scores and total
cognition. Although of modest size, compared to many recent
meta-analyses of cognitive traits, several genome-wide signals
associated with related traits were replicated.

The genome-wide significant variant observed for association with
verbal episodic memory, rs73485231, is localised to an intergenic
region between G protein subunit gamma 5 (GNG5P5) and

5-hydroxytryptamine receptor 2A (HTR2A). Although this common
variant was significantly associated with better memory performance
in this sample, due to the low minor allele frequency of this SNP in
other population groups, this signal was not replicated. Multiple
SNPs within the same region corresponding to GNG5P5 have been
associated (although not at genome-wide significance) with gateway
drug initiation in families63. Although the suggestive signal
rs6252910 was located near Long intergenic non-protein coding RNA
2055 (LINC02055) from which independent variants have been
associated with self-reported mathematical ability64, educational
attainment65, and the relationship between schizophrenia and cog-
nitive function25 in large meta-analyses, this is insufficient to provide
evidence of association. Variants mapped to the suggestively asso-
ciated gene, Beta-secretase 2 (BACE2), were associated with both
educational attainment and mathematical ability by Lee, et al. (2018)
and Okbay, et al. (2022). BACE2, although originally thought to be a
β-amyloid precursor protein (APP)-cleaving enzyme, cleaves APP at
three sites, thereby inhibiting β-amyloid production as well as
actively degrading it41–43. Its overexpression in cultured cells was
found to significantly lower the concentration of intracellular β-
amyloid, and it has been hypothesised that it may influence

 
a 

b c 

Fig. 5 Genome-wide and suggestive associations for total cognition score. a Manhattan plot. No genome-wide or near genome-wide significant signals.
Suggestive cut-off 5 × 10−6 shown by a blue line. b QQ-plot (λ= 1.00) for association summary statistics. c Locus zoom plot for rs138832740. LD values
are based on a South African LD panel.
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susceptibility to AD41–43. The second suggestively associated gene,
transient receptor potential cation channel subfamily M member 7
(TRPM7), encodes a protein that has both ion channel and kinase
domains that may play a role in magnesium homoeostasis39,40. It
plays an essential role in embryogenesis and complete knockout is
lethal in murine models39,66. Studies in Xenopus have shown that it
is involved in neural tube closure and deficits result in a range of
neural tube defects39,66. We replicated four reported suggestive sig-
nals previously associated with memory phenotypes; working
memory, and memory performance. The replicated signal with the
lowest reported p value, rs8067235, was the focus of a study com-
bining computational modelling, GWAS data, and neuroimaging to
validate the association of brain-specific angiogenesis inhibitor
1-associated protein 2 (BAIAP2) with verbal memory tasks56. Uti-
lising functional MRI, they observed differences in mRNA expres-
sion between the anterior and posterior of the medial temporal lobe
(the part of the brain responsible for encoding, memory storage, and
recall)67, specifically when comparing recall of negative versus neu-
tral memory tasks56. The remaining replicated signals were reported
by Donati, et al. (2019) in a study looking at the overlap between
measures of latent cognitive function and education in adolescents55.

Our suggestive signal associated with language is located within
an intron of Pleckstrin homology and RhoGEF domain
(PLEKHG1). Although, previous associations for this African-
specific variant had not been reported for language or any other
cognitive performance phenotypes, other variants within
PLEKHG1 have been associated with cerebral white matter
intensities (an indication of susceptibility to vascular dementia) in
Europeans and systolic blood pressure in sickle cell
populations44–46. Suggestive signals associated with language
ability were replicated, with two SNPs (in Supplementary Data 2)
reported in a Danish family study assuming that receptive lan-
guage in children is subject to a parent-of-origin effect68. The
genes FUMA suggested were associated with language code for
large and small mammalian mitochondrial ribosomal subunits,
respectively. The association of MRPL46 with depressive dis-
orders was observed by Howard, et al. (2018) and Yao, et al.
(2021) in their studies assessing multiple neuropsychiatric phe-
notypes and the possible genetic overlap between them49,50.

The GWAS results for executive function yielded a genome-
wide significant replication of rs139493 associated with a trail-
making test in 78,547 UK Biobank donors62. Our suggestive
signal tagged Bridging Integrator 1 (BIN1) has been repeatedly
reported as a significant AD locus52–54. Although the exact
mechanism is unclear, there is evidence that there are numerous
ways in which BIN1 expression may alter brain pathology54. BIN1
binds Tau proteins and its overexpression is correlated with AD
pathology, possibly through increasing Tau production by sti-
mulating its release from microglial cells52–54. In a study using
transgenic mice, deposits of insoluble BIN1 were reported to
accumulate alongside β-amyloid plaques in the brains of AD
mice53. Furthermore, in knockout experiments, deficits appeared
to cause impairment in spatial recognition and memory69.

We replicated a suggestive signal previously reported for
association with visuospatial tasks in a Chinese population70. The
most interesting gene-based result was for limb development
membrane protein 1 domain containing 2 (LMBRD2). Malhotra,
et al. (2020) reported novel missense variants at this locus in ten
individuals, each exhibiting traits which are indicative of neuro-
developmental abnormalities71. These included motor and intel-
lectual delay, as well as structural abnormalities71.

By using window-based replication, we replicated several
genome-wide significant signals reported by Davies, et al. (2018) in
a study of over 300,000 individuals assessed for general cognitive
function6. This includes signals mapped to RNA Binding Fox-1
Homologue 1 (RBFOX1), a homologue to one of the suggestive

gene-based association outputs from FUMA, and loci associated
with various neurological disorders6. The SNP with the lowest p
value for replication was rs11210871, which along with rs11577684,
corresponds to loci on chromosome 1, which have been previously
associated with intellectual disability and AD6. Loss of function
variants and CNV in proximal gene GATA zinc finger domain-
containing 2B (GATAD2B) have been associated with cases of
intellectual disability72,73. Our lead SNP is a rare African-specific
variant to which RNA 7SL cytoplasmic 831 pseudogene
(RN7SL831P) is the closest gene. Aside from appearing in studies
for educational attainment65 and mathematical ability64, single
SNPs in the intergenic regions have been listed as associated with
genome-wide significance to sleep-related phenotypes74–76 and
neuropsychiatric traits like attention deficit hyperactivity disorder
(ADHD)77,78, bipolar disorder79, eating disorders, and substance
use77,80,81. Gene-based analysis suggested that RNA Binding Fox-1
Homologue 3 (RBFOX3) and mono-ADP ribosylhydrolase 2
(MACROD2) were associated with total cognition score. RBFOX3
is an alternative splicing regulator expressed in neurons and is a
biomarker for neuron maturity82–84. Studies in mice and rats have
elucidated its involvement in neuronal differentiation, neuro and
synaptogenesis, and neurological disorders characteristic of hip-
pocampal dysfunction82–84. Rare microdeletions in this gene have
been found in patients suffering from childhood idiopathic epilepsy
presenting with or without seizures85. Alterations in RBFOX3 have
been associated with specific cases of developmental delay in
humans86 and impaired visual learning in knockout mice82.
RBFOX3 is expressed in neurons through all developmental stages
and has been shown to interact with binding sites outside of the
other RBFOX proteins83. Thus, it has also been suggested to play a
role in miRNA biogenesis (94). Immunohistochemistry of MAC-
ROD2 expression suggests that it may be involved in different
stages of cortical neuron development and affect synaptic
function87. Rare and de novo CNV within this gene have been
observed in ADHD patients88. Knockout mice exhibited hyper-
activity which increased with age despite slower observed move-
ment and unusual sleep patterns similar to that seen in ADHD89.
The most reported SNP for this locus, rs4141463, reached genome-
wide significance for association with autism spectrum disorder
(ASD) in a European study but was neither replicated in a later
European study, nor in a study of Han Chinese90–92.

We observed overlapping suggestive signals for the highly
correlated traits of language, executive function, and visuospatial
ability on chromosomes 6 and 3. This was expected as in early
childhood, executive function and language are intertwined as
children with higher executive function tend to have better lan-
guage skills93. In children with language impairments, lower
executive function and attention reduced the ease at which
visuospatial tasks were completed94. In the elderly, higher levels
of education improved performance on verbal and non-verbal
tasks requiring complex executive function95.

The adaptation of the US HRS cognition battery96 proved
adequate in our study as a robust assessment of total cognition
based on memory and orientation. Although this test originally
included questions on numeracy, these were excluded as they
were shown to be biased toward participants with higher levels of
education96. The widespread use of cognitive screening tests
derived from MMSEs provided a number of study phenotypes
which were similar to the total cognition score as we calculated it.
Using the highest level of education attained as a covariate
allowed us to observe similar signals to those in large meta-
analyses where educational attainment was used as a proxy for
intelligence. On their own, our reported signals and the ones we
replicated do not contribute to the overall heritability estimates
for these phenotypes in a significant way, but there are some
highly conserved loci which appear to contribute to the
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polygenicity of cognitive function. The OCS-Plus was a valuable
tool in our study community which is known to have long-
standing poor access to and quality of education, further limited
by low employment rates97. We captured intra-population
domain-specific cognition, rather than exploring the genetic
basis of educational attainment as a proxy for cognitive function,
as many other studies have done. Educational attainment is
known to be a biased and inadequate metric in communities such
as the one targeted in our research, where low levels of education
observed likely correspond to extreme educational inequality in
rural communities in South Africa during the apartheid era, when
these individuals were young20,31,96,97. Having a set of well-
defined traits that are population-standardised provides more
accurate phenotype distributions for isolating variants associated
with cognitive traits, as well as mitigating stigma attached to traits
labelled inappropriately as intelligence. The use of traits like g fails
to capture the variation observed in the actual trait vs that for g
itself62. The age of the sample population was a strength as the
literature states that the heritability of cognitive function changes
across the lifespan and that trends between domains differ pro-
gressively with age, but stabilise at older ages4,11. Despite being
limited by sample size, this study replicated previous genome-
wide significant signals using sliding windows mostly based on
studies that were performed in populations with European
ancestry, informing the need for larger African cohorts where
genomic and cognitive data have been collected.

The AWI-Gen/HAALSI collaboration is a trailblazer for genetic
studies on neurocognitive traits in South and sub-Saharan Africa
with evidence of novel associations and replication of previous
associations. Larger continental African cohorts with genomic and
cognitive screening data would increase the power to detect and
replicate findings in other population studies, as well as provide an
African cohort to use for replication of our work. Additionally,
functional magnetic resonance imaging (MRI) results from this
same cohort could be used to find signals linked to specific biolo-
gical pathways or regions of the brain. Incorporating the OCS-Plus
in future African studies may serve to establish usable datasets for
monitoring cognitive health in Africa at this stage of rapid health
and social transition. The generation of genomic data alongside
such data will contribute to a greater understanding of how var-
iation in African populations influences cognitive function.

Methods
Participants. Participants were enrolled in both the AWI-Gen and HAALSI studies.
Ethical approval was granted through the University of the Witwatersrand, Johan-
nesburg, Human Research Ethics Committee under the following certificate numbers:
AWI-Gen M121029 and M170880; HAALSI M141159; and the current study
M170916. Socio-demographic data, infection history, and cognitive performance data
were collected from 5059 consented participants (male (n= 2345) and female
(n= 2714)) aged 40 years and older recruited from Bushbuckridge, Mpumalanga
(November 2014 to November 2015) and a sub-set of 2246 of these participants (male
(n= 935) and female (n= 1311)) had genotype data. All participants provided
written informed consent. Descriptive statistics was performed using R (R Core
Team. 2020. R: A language and environment for statistical computing. R Foundation
for Statistical Computing. Vienna. Austria. https://www.R-project.org/).

Questionnaire-based cognitive assessment. The United States Health and
Retirement Study (US HRS) cognition screening tool was culturally adapted and
translated into the local vernacular Shangaan (also referred to as Xitsonga). This
tool consisted of questions representing the domains of memory and orientation,
and was scored from 0–2431,36,96.

Tablet-based cognitive assessment. The Oxford Cognition Screen Plus (OCS-
Plus) is an electronic cognitive assessment administered using a tablet and was
validated for use in this cohort20. It consists of nine domain-specific cognitive tests
which assess language, episodic memory, executive function, attention, and pattern
recognition20. A factor score was derived for each cognitive domain (episodic
memory, executive function, language, and visuospatial ability)31. This method is
based on Seidlecki, Honig, and Stern (2008), and produces population-standardised
domain z-scores for each participant31.

Genotyping and imputation. Genotyping of the full AWI-Gen dataset (10,900
participants) was performed using the H3Africa array by Illumina (San Diego, CA,
USA). This custom array of ~2.3 million SNPs was developed to be enriched for
common African variants (http://chipinfo.h3abionet.org)98. Data from AWI-Gen
were processed through the H3A GWAS pipeline (https://github.com/h3abionet/
h3agwas), where individuals with SNP missingness greater than 0.05 were removed
from the dataset99,100. SNPs were removed if they had genotype missingness above
0.05, minor allele frequency (MAF) below 0.01 and were not in Hardy–Weinberg
equilibrium (HWE) p < 1 × 10−6. SNPs were matched to Genome Reference
Consortium Human Genome build 37 (GRCh37) and ambiguous SNPs were
removed99,100. The 1.71 million SNP dataset was then imputed using the African
Genome Resources reference panel at the Sanger Imputation Server98. EAGLE2
was selected for the pre-phasing and positional Burrows–Wheeler transformation
(PBWT) algorithm for imputation. Poorly imputed SNPs with info scores (gen-
erated by the Sanger Imputation Service: https://www.sanger.ac.uk/tool/sanger-
imputation-service/) of less than 0.6, with MAF below 0.01 and HWE p value cut-
off <10−6 were excluded, and the final dataset included ~14 million SNPs. The info
score is an indicator of the certainty of imputation and is a score between 0 and 1,
with scores closer to 1 being more accurately imputed. The AWI-Gen HAALSI
samples were extracted from this dataset.

Population structure and affinities. Principal component analysis (PCA) using
EIGENSTRAT101 was performed to assess population stratification within the
samples as well as to find the genetic affinities of our cohort to other African
ancestry populations from the 1000 Genomes Project (1000 G Project) dataset102.
A cut-off of ±6 standard deviations (SD) was applied to the first five PCs resulting
in the removal of 35 population outliers. The sample size for further analysis was
then 2211 individuals. In Fig. 6a, little evidence of population heterogeneity was
shown and the PCA with other African Ancestry populations from the 1000 G
Project102 datasets showed a distinct clustering from East, West and Central-West
African populations, and African Americans (Fig. 6b).

Statistics and reproducibility. A GWAS was performed for each of the five
cognitive phenotypes. The total cognition score was captured for the entire cohort,
whereas the OCS-Plus was administered to a subset of individuals. Only individuals
with accompanying genomic data were included in our study sample. Total cog-
nition was used as a continuous trait with scores ranging from 0 to 24 (n= 2211).
Cognitive domain scores for 1887 individuals from the OCS-Plus were rank nor-
malised using R (https://www.R-project.org/) as standardised z-scores were not
normally distributed. The association was performed on the full imputed dataset
using Genome-wide Efficient Mixed-Model Association (GEMMA)103 (https://
github.com/genetics-statistics/GEMMA#gemma-genome-wide-efficient-mixed-
model-association), adjusting for five PCs, age as a continuous covariate, sex, and
highest level of education attained (primary, secondary, tertiary) as a categorical
covariate. GEMMA was developed to perform quick association tests through
univariate linear mixed models in order to correct for population substructure as
well as cryptic relatedness103. LD scores from the 1000 G Project African reference
panel and a reference panel specific to AWI-Gen’s SA data were used to adjust for
LD structure99,100. Analyses were run on an automated H3Africa workflow for
GWAS (http://github.com/h3abionet/h3agwas/)99,100.

Visualisation and post-GWAS analysis. Association output files from GEMMA
were analysed using Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) (https://fuma.ctglab.nl/) for partitioning of signals
based on LD, visualisation and functional annotation104. Genome-wide significance
(5 × 10−8) was input for analysis and the cut-off used for suggestive signals was
5 × 10−6. Manhattan plots and QQ plots for both SNP and gene-based association
were generated using FUMA and R packages. Genomic inflation factors were
calculated using a local R script. Locus zoom plots105 were created for selected
association signals based on the summary statistics from GEMMA and SA-specific
LD panel99,100. Kruskal–Wallis plots were constructed for comparison of cognitive
function between individuals by genotype at each SNP99,100. GWAS Catalogue
(http://ebi.ac.uk/gwas/) and Phenoscanner v2 (http://www.phenoscanner.medschl.
cam.ac.uk/) were used to infer previous associations of the lead SNPs. We also
studied previous associations in 100 kb genomic regions on either side of each lead
SNP [accessed 10 October 2022]. Ensembl106 and literature mining were used to
assess the functional interpretation.

Replication. Considering the low likelihood of being able to replicate the indi-
vidual genome-wide and suggestive association signals observed in our study,
due to limited power and differences in LD between our study sample and
European population-based cohorts, we employed a window-based approach
similar to a study by Kuchenbaekar et al.107. Window-based replication was
performed utilising add-ons from the H3A GWAS pipeline with a P value cut off
of p < 1 × 10−399,100. This cut-off was decided on the basis of empirical estimates
from another study on South African populations by Mathebula, et al.108. Loci
reported, either reaching genome-wide significance or those reported as sug-
gestive, in previous studies of traits determined either by the similarity of
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methods of data collection, domain-specific tasks, and educational attainment as
a proxy were prioritised for this method of replication.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The HAALSI baseline data were publicly available at the Harvard Center for Population
and Development Studies (HCPDS) programme website [www.haalsi.org]. Data were
also accessible through the MRC/Wits-Agincourt Research Unit’s data repository
[https://data.agincourt.co.za/index.php/catalog/18], the Inter-university Consortium for

Political and Social Research (ICPSR) at the University of Michigan [www.icpsr.umich.
edu] and the INDEPTH Data Repository [http://www.indepth-ishare.org/index.php/
catalog/113]. Genome-wide genomic data from the AWI-Gen study are in the European
Genome-phenome Archive (EGA; https://ega-archive.org/) with accession number:
EGAD00010001996. The phenotype dataset is available at study number
EGA00001002482 [https://ega459archive.org/datasets/EGAD00001006425]. Summary
statistics for all five traits have been submitted to GWAS Catalogue under the study
number GCP000532.

Code availability
The H3A-African GWAS pipeline, QC, association testing and fine-mapping approaches
are available at (https://github.com/h3abionet/h3agwas)99,100. Software used for analysis

Fig. 6 Population structure and affinities of the HAALSI/AWI-Gen participants. Principal component analysis (PCA) of individuals from the HAALSI/
AWI-Gen showing PC1 and 2. a shows the absence of any major population structure after the removal of individuals outside of the 6 SD cut-off at five PCs.
b shows a PCA comparison of our study participants prior to removal of outliers with African population datasets (African Caribbeans in Barbados (ACB)
and Americans of African Ancestry in SW USA (ASW)), East (Luhya in Webuye, Kenya (LWK)), and West Africans (Yoruba in Ibadan, Nigeria (YRI),
Gambian in Western Divisions in the Gambia (GWD), and Mende in Sierra Leone (MSL)) from the 1000 Genomes Project.
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included PLINK 1.9 and GEMMA for GWAS analysis, EIGENSOFT and Genesis v0.2.6
for PCA analysis, R (https://www.R-project.org/)for descriptive statistics, and FUMA
(fuma.ctglab.nl/fuma.ctglab.nl/) for GWAS visualisation and interpretation.
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