Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysis

Abstract

The recent surge in applications of deuterated pharmaceutical agents has created an urgent demand for synthetic methods that efficiently generate deuterated building blocks. Here, we show that N-heterocyclic carbenes promote a reversible hydrogen–deuterium exchange reaction with simple aldehydes, which leads to a practical approach to synthetically valuable C1 deuterated aldehydes. The reactivity of the well-established N-heterocyclic carbene-catalysed formation of Breslow intermediates from aldehydes is reengineered to overcome the overwhelmingly kinetically favourable benzoin condensation reaction and achieve the critical reversibility to drive the formation of desired deuterated products when an excess of D2O is employed. Notably, this operationally simple and cost-effective protocol serves as a general and truly practical approach to all types of 1-D-aldehydes including aryl, alkyl and alkenyl aldehydes, and enables chemoselective late-stage deuterium incorporation into complex, native therapeutic agents and natural products with uniformly high levels (>95%) of deuterium incorporation for a total of 104 tested substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for the synthesis of deuterated aldehydes.
Fig. 2: Exploration and the scope of NHC-catalysed HDE with aromatic aldehydes (61 examples).
Fig. 3: Scope of NHC-catalysed HDE with enals (20 examples) and aliphatic aldehydes (23 examples).
Fig. 4: Gram-scale synthesis, recycling and reuse of D2O and a synthetic application.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).

    Article  CAS  Google Scholar 

  2. Mullard, A. Deuterated drugs draw heavier backing. Nat. Rev. Drug Discov. 15, 219–221 (2016).

    Article  CAS  Google Scholar 

  3. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    Article  CAS  Google Scholar 

  4. Schmidt, C. First deuterated drug approved. Nat. Biotechnol. 35, 493–494 (2017).

    Article  CAS  Google Scholar 

  5. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C–H functionalization for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    Article  CAS  Google Scholar 

  6. Sattler, A. Hydrogen/deuterium (H/D) exchange catalysis in alkanes. ACS Catal. 8, 2296–2312 (2018).

    Article  CAS  Google Scholar 

  7. Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    Article  Google Scholar 

  8. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    Article  CAS  Google Scholar 

  9. Koniarczyk, J., Hesk, D., Overgard, A., Davies, I. W. & McNally, A. A general strategy for site-selective incorporation of deuterium and tritium into pyridines, diazines and pharmaceuticals. J. Am. Chem. Soc. 140, 1990–1993 (2018).

    Article  CAS  Google Scholar 

  10. Hale, L. V. A. & Szymczak, N. K. Stereoretentive deuteration of α-chiral amines with D2O. J. Am. Chem. Soc. 138, 13489–13492 (2016).

    Article  CAS  Google Scholar 

  11. Valero, M., Weck, R., Ggssregen, S., Atzrodt, J. & Derdau, V. Highly selective directed iridium-catalyzed hydrogen isotope exchange reactions of aliphatic amides. Angew. Chem. Int. Ed. 57, 8159–8163 (2018).

    Article  CAS  Google Scholar 

  12. Wang, X. et al. General and practical potassium methoxide/disilane-mediated dehalogenative deuteration of (hetero)arylhalides. J. Am. Chem. Soc. 140, 10970–10974 (2018).

    Article  CAS  Google Scholar 

  13. Puleo, T. R., Strong, A. J. & Bandar, J. S. Catalytic α-selective deuteration of styrene derivatives. J. Am. Chem. Soc. 141, 1467–1472 (2019).

    Article  CAS  Google Scholar 

  14. Liang, X. & Duttwyler, S. Efficient Brønsted‐acid‐catalyzed deuteration of arenes and their transformation to functionalized deuterated products. Asian J. Org. Chem. 6, 1063–1071 (2017).

    Article  CAS  Google Scholar 

  15. Taddei, M. & Mann, A. Hydroformylation for Organic Synthesis Vol. 342 (Topics in Current Chemistry, Springer, 2013).

  16. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    Article  Google Scholar 

  17. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  Google Scholar 

  18. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

    Article  CAS  Google Scholar 

  19. Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

    Article  CAS  Google Scholar 

  20. Bugaut, X. & Glorius, F. Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chem. Soc. Rev. 41, 3511–3522 (2012).

    Article  CAS  Google Scholar 

  21. Phillips, E. M., Chan, A. & Scheidt, K. A. Discovering new reactions with N-heterocyclic carbene catalysis. Aldrichimica Acta 42, 55–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahatthananchai, J., Bode, J. W. & On, J. W. The mechanism of N-heterocyclic carbene-catalyzed reactions involving acyl azoliums. Acc. Chem. Res. 47, 696–707 (2014).

    Article  CAS  Google Scholar 

  23. Namitharan, K. et al. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions. Nat. Commun. 5, 3982 (2014).

    Article  CAS  Google Scholar 

  24. Ren, Q., Li, M., Yuana, L. & Wang, J. Recent advances in N-heterocyclic carbene catalyzed achiral synthesis. Org. Biomol. Chem. 15, 4731–4749 (2017).

    Article  CAS  Google Scholar 

  25. Adcock, H. V., Chatzopoulou, E. & Davies, P. W. Divergent C–H insertion–cyclization cascades of N–allyl ynamides. Angew. Chem. Int. Ed. 54, 15525–15529 (2015).

    Article  CAS  Google Scholar 

  26. Olsen, E. P. K., Singh, T., Harris, P., Andersson, P. G. & Madsen, R. Experimental and theoretical mechanistic investigation of the iridium-catalyzed dehydrogenative decarbonylation of primary alcohols. J. Am. Chem. Soc. 137, 834–842 (2015).

    Article  CAS  Google Scholar 

  27. Spletstoser, J. T., White, J. M. & Georg, G. I. One-step facile synthesis of deuterium labeled aldehydes from tertiary amides using Cp2Zr(D)Cl. Tetrahedron Lett. 45, 2787–2789 (2004).

    Article  CAS  Google Scholar 

  28. Spletstoser, J. T., White, J. M., Tunoori, A. R. & Georg, G. I. Mild and selective hydrozirconation of amides to aldehydes using Cp2Zr(H)Cl: scope and mechanistic insight. J. Am. Chem. Soc. 129, 3408–3419 (2007).

    Article  CAS  Google Scholar 

  29. Ibrahim, M. Y. S. & Denmark, S. E. Palladium/rhodium cooperative catalysis for the production of aryl aldehydes and their deuterated analogues using the water–gas shift reaction. Angew. Chem. Int. Ed. 57, 10362–10367 (2018).

    Article  CAS  Google Scholar 

  30. Zhang, M., Yuan, X., Zhu, C. & Xie, J. Deoxygenative deuteration of carboxylic acids with D2O. Angew. Chem. Int. Ed. 58, 312–316 (2019).

    Article  CAS  Google Scholar 

  31. Bergin, E. Deoxygenative deuteration. Nat. Catal. 1, 898–898 (2018).

    Article  Google Scholar 

  32. Li, X. et al. One-pot synthesis of deuterated aldehydes from arylmethyl halides. Org. Lett. 20, 1712–1715 (2018).

    Article  CAS  Google Scholar 

  33. Kerr, W. J., Reid, M. & Tuttle, T. Iridium-catalyzed formyl-selective deuteration of aldehydes. Angew. Chem. Int. Ed. 56, 7808–7812 (2017).

    Article  CAS  Google Scholar 

  34. Isbrandt, E. S., Vandavasi, J. K., Zhang, W., Jamshidi, M. P. & Newman, S. G. Catalytic deuteration of aldehydes with D2O. Synlett 28, 2851–2854 (2017).

    Article  CAS  Google Scholar 

  35. Breslow, R. On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).

    Article  CAS  Google Scholar 

  36. Sohn, S. S., Rosen, E. L. & Bode, J. W. N-Heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc. 126, 14370–14371 (2004).

    Article  CAS  Google Scholar 

  37. Burstein, C. & Glorius, F. Organocatalyzed conjugate umpolung of α,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. 43, 6205–6208 (2004).

    Article  CAS  Google Scholar 

  38. Fujiwara, Y., Iwata, H., Sawama, Y., Monguchi, Y. & Sajiki, H. Method for regio-, chemo- and stereoselective deuterium labeling of sugars based on ruthenium-catalysed C–H bond activation. Chem. Commun. 46, 4977–4979 (2010).

    Article  CAS  Google Scholar 

  39. Mojtahedi, M. M., Akbarzadeh, E., Sharifi, R. & Abaee, M. S. Lithium bromide as a flexible, mild and recyclable reagent for solvent-free Cannizzaro, Tishchenko and Meerwein–Ponndorf–Verley reactions. Org. Lett. 9, 2791–2793 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the NIH (5R01GM125920-03), the National Natural Science Foundation of China (21702058 and 21202112), East China University of Science and Technology, the ‘111’ Project and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

H.G. and X.C. made equal contributions to this work. H.G., J.G., Y.Z., Z.S., P.Q. and J.C. conducted and analysed the experiments. X.C., S.Z. and W.W. planned, designed and directed the project and S.Z. and W.W. wrote the manuscript.

Corresponding authors

Correspondence to Xiaobei Chen, Shilei Zhang or Wei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary methods, Supplementary Fig. 1, Supplementary Tables 1–5 and Supplementary references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, H., Chen, X., Gui, J. et al. Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysis. Nat Catal 2, 1071–1077 (2019). https://doi.org/10.1038/s41929-019-0370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0370-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing