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Challengesandopportunitiesofdeep learning
for wearable-based objective sleep
assessment

Check for updates

In recent years the intersection of
wearable technologies and machine
learning (ML)baseddeep learning (DL)
approaches have highlighted their
potential in sleep research. Yet, a
recent study published in NPJ Digital
Medicine highlights the generalization
limitations of DL models in sleep-
wake classification using actigraphy
data. Here, this article discusses
some of the challenges and
opportunities presented by domain
adaptation and self-supervised
learning (SSL), innovative
methodologies that use large-scale
unlabeled data to bolster the
generalizability of DL models in sleep
assessment. These approaches not
only improve sleep-wake
classification but also hold promise
for extending to more comprehensive
sleep stage classification, potentially
advancing the field of automated
sleep assessment through efficient
and user-friendly wearable
monitoring systems.

D
eep learning (DL, Table 1), a subset of
machine learning (ML), has sig-
nificantly impacted the field of auto-
mated sleep assessment, especially

through the analysis of polysomnography
(PSG) data. PSG is the most accurate objective
sleep measurement method because it simul-
taneously assesses multiple physiological para-
meters, including overnight brain activity, and
can classify sleep into distinct stages1. DL
models trained on clinical PSG data have
attained performance levels comparable to
human experts, providing clinicians with
valuable tools for automated and comprehen-
sive sleep stage analysis2–5, across a range of

clinical datasets e.g., MESA6, SHHS7. However,
PSG’s suitability for long-term, at-home sleep
monitoring is limited due to its intrusive nature.
Even headband devices like Dreem™, though
less intrusive than traditional PSG technology
for brain wave-based sensing, can be cumber-
some/uncomfortable during extended wear8.
Recent developments inwearable andnearable

technologies have made it feasible to monitor
sleep in home settings3,9–11. Despite advance-
ments, the effectiveness of adopting wearable
devices andDLmethods for sleepanalysis is often
hindered by data scarcity, leading to model
overfitting12. For instance, to estimate sleep
parameters, a recent study published in NPJ
Digital Medicine by Patterson et al.13 evaluated
DL models based on actigraphy data in cross-
dataset settings and found that those models
often struggle with considerable domain
discrepancies13, which poses challenges for
effectively deploying DL models across varied
settings and devices. Many wrist-worn devices
now feature photoplethysmography (PPG) sen-
sors, alongside actigraphy, indicating their
potential for classifying sleep stages3,4,14. None-
theless,many investigationshave been conducted
on small datasets, yielding limited performance
outcomes. Conversely, fields such as natural
language processing use abundantly availability
datasets to aid the development of sophisticated
DL models, such as ChatGPT15. That disparity
highlights the potential benefits of using large
volumes of unlabeled data to enhance sleep
monitoring technologies.

Challenges: Wearable sensing and
deep learning
The frequent implementation of DL in various
fields is remarkable, yet it encounters two key
challenges when applied to sleep assessment
through wearable sensing-based methodologies.
Namely, (i) small-labelled dataset problem (i.e.,
data scarcity), and (ii) the balancing act between
achieving a high signal-to-noise ratio (SNR, a
method that compares the level of a desired signal

to the level of backgroundnoise) inwearables and
maintaining user acceptance for long-termusage.

Data Scarcity: Annotation and patient
availability
In sleep medicine, especially with wearable
computing, the development of supervised
learning models is impeded by a lack of richly
annotated datasets. Obtaining unlabeled data
from wrist-worn wearable devices is feasible and
pragmatic. However, annotating those data for
sleep classification requires simultaneous elec-
troencephalography (EEG) collection and expert
medical annotation. That contrasts with fields
such as computer vision, where the annotation is
more straightforward (i.e., requires less exper-
tise), underscoring the unique difficulties in
assembling annotated sleep-based datasets for
supervised DL wearable-based algorithms16,17.
Furthermore, limited research resources,

patient scarcity, and the challenge of recruiting a
diverse patient population with varying disease
severities exacerbate data imbalances, making
models easily overfit to the training dataset,
affecting generalizability on unseen populations
(i.e., participants were out of the distribution/
heterogeneity of the training dataset). That phe-
nomenon is evidenced in the evaluation out-
comes presented by Patterson et al.,
demonstrating that when the training and test
datasets originate from the same distribution, the
performance of the DL model surpasses that of
conventionalmethods. Assessments based on the
proxy signals, such as those from cardior-
espiratory signals, reveal distinct patterns in
individuals with conditions like sleep apnea18,
underscoring the need for more diverse data to
improve model generalizability.

Signal to noise ratio: Adequate
hardware
The quest for high SNR wearables persists, cap-
able of precisely gauging brain activity with
minimal intrusion and optimal comfort19.
Approaches based on wrist movement and
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cardiac sensing data may reach a ceiling effect, as
peripheral signalsmight not precisely reflect sleep
stages20. Traditional scalp and forehead skin-
based sensing methods are less perturbed by
physiological activities other than the brain18,21–25.
The advancements made using DL models with
PSG data for automated sleep staging analysis
highlighted the significant potential of soft
textile-basedEEG sleep detection devices, such as
MUSE™9,21. The trade-off between usability and
performance remains crucial in developing
wearables aimed at sleep stage classification19.
Moreover, the persistent data scarcity issue
remains challenging, necessitating exploration
into ML paradigms like self-supervised learning
(SSL) and transfer learning as potential avenues
to bolster model generalization and adaptability
to new tasks.

Opportunities: Self-supervised
machine learning and domain
adaptation
In automated sleep analysis, SSL is combined
with domain adaptation to become a key strategy
for enhancing model generalization26,27. Domain
adaptation refines models developed in one
domain of sleep research (e.g., laboratory sleep
patterns) to be applicable in another (e.g., free-
living conditions sleep patterns). It overcomes
disparities in data volume or quality by discard-
ing irrelevant features and capturing universally
recognized patterns, making it a valuable tool for
advancing sleep assessment methodologies with
limited data. SSL represents a paradigm shift in
automated sleep analysis, enabling models to
learn from large volumes of unlabelled data
through the identification of inherent patterns.
This approach is analogous to inferential learning
in humans, where understanding is developed

through observation rather than explicit
instruction (e.g., learning the differences between
sleep epochs and similar sleep epochs at different
times). By employing pretext tasks, such as pre-
dicting the next sequence in a series of data
points, SSLmodels can learn general features and
patterns relevant to sleep, contributing to the
robustness and accuracy of downstream super-
vised learning tasks classification28,29.
The great promise of SSL has been observed

across a range of domains in computer vision30,
natural language processing31–33, and speech
processing34. In automated sleep analysis, with
the widespread proliferation of miniature sleep
sensing technologies, accumulating substantial
quantities of unlabeled data has become
increasingly feasible. This development holds the
potential to furnish extensive datasets for the
training of SSL models, which are frequently
structured around an encoder-decoder archi-
tecture. The encoders transform raw data into a
compact representation, and decoders recon-
struct the original data from this representation
to learn meaningful patterns without explicit
labels. What does that mean? Consider a pre-
train-then-fine-tune paradigm, the encoder is
initially trained to acquire useful representations
(features) for downstream sleep-related tasks,
such as sleep stage classification and sleep spindle
recognition. Subsequently, those learned enco-
ders are frozen, and trained/fine-tuned task-
specific classification layers are updated to cate-
gorize specific events of interest within a smaller
expert-annotated dataset. That approach aims to
capture fundamental signal characteristics by
learning to discern high-level semantics (e.g.,
different patterns in sleep data indicate sleep
stages, quality, or disturbances) to facilitate
effective representation learning. Of further

interest is the use of SSL with domain adaptation
in integrating those techniques with existing
frameworks, potentially enhancing the adapt-
ability and effectiveness of sleep stage classifica-
tion algorithms across varied data sources and
environments.

Harnessing existing SSL approaches
Various existing framework methodologies like
SimCLR35, MoCo36, SimSiam37, and Barlow
Twins38, offer universally adaptable frameworks
that could seamlessly extend into sleep mon-
itoring, warranting investigations into their effi-
cacy. For instance, a recent study using
accelerometer data alone from over 96,000 UK
Biobank participants has shown the effectiveness
of SSL for three-stage sleep classification and
achieved an F1 score of 0.573 ± 0.12, representing
a 7.1% improvement over the baselinemodel that
did not incorporate SSL pre-training, as validated
through internal evaluations39. This outcome
challenges previous assumptions regarding the
feasibility of sleep stage classification using
accelerometer data only. That method, crucial in
a domain with limited labelled data, emphasizes
the effectiveness of general representations
learned through SSL for sleep stage classification.
In conclusion, the study by Patterson et al.

highlighted the vulnerability of basic DL models
to overfitting, particularly when applied to spe-
cific datasets, data preprocessing methodologies,
and PSG annotation styles as demonstrated
through a single cross-dataset evaluation. The
effort to accumulate large-scale datasets of sleep
stages, annotated by experts from raw data
gathered through wearable devices continues to
present a significant challenge. Nonetheless, DL
has shown considerable promise in a single
dataset setting. Hence, using vast amounts of

Table 1 | Terminology and descriptors used in this editorial

Terminology Description

Actigraphy Actigraphy uses a non-invasive wearable device to track rest and activity through movement.

Deep learning (DL) Deep learning is a subset of machine learning (ML) that uses neural networks with many layers to analyze complex patterns in large
amounts of data.

Domain adaptation Domain adaptation is a technique in ML that aims to improve model performance on a target domain by leveraging knowledge from a
related but different source domain.

Model overfitting Model overfitting in ML occurs when a model fits too closely to the training dataset and cannot generalize to new/unseen data

Nearables A type of smart object that can enhance the interactionwith e.g., people and other smart objects. One notable example is a smartphone
that can improve the usability and experience of wearing a smart watch.

Photoplethysmography (PPG) PPG measures capillary blood volume changes by detecting light variations, used for heart rate monitoring.

Polysomnography (PSG) PSG is themost accurate objective sleepmeasurementmethodbecause it simultaneously assessesmultiple physiological parameters,
including overnight brain activity, and can classify sleep into distinct stages

Self-supervised learning (SSL) Self-supervised learning trainsmodels on tasks using the data itself to generate supervisory signals for training on a taskwithout relying
on human-provided labels

Signal-to-noise-ratio (SNR) Signal-to-noise-ratio quantifies the clarity of a signal in a system by comparing its power to that of the background noise, with a higher
SNR indicating a clearer signal.
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unlabeled raw data fromwearables and exploring
sophisticated model architectures to improve
generalizability, like integrating SSL and domain
adaptation, offers a promising path for advancing
long-term sleep assessment.
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