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Smartphone keyboard dynamics predict
affect in suicidal ideation
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Loran Knol 1,2 , Anisha Nagpal3, Imogen E. Leaning1,2, Elena Idda4,5, Faraz Hussain3, Emma Ning6,
Tory A. Eisenlohr-Moul3, Christian F. Beckmann1,2,7, Andre F. Marquand 1,2 & Alex Leow3,5,8

While digital phenotyping provides opportunities for unobtrusive, real-time mental health
assessments, the integration of its modalities is not trivial due to high dimensionalities and
discrepancies in sampling frequencies. We provide an integrated pipeline that solves these issues by
transforming all modalities to the same time unit, applying temporal independent component analysis
(ICA) to high-dimensional modalities, and fusing the modalities with linear mixed-effects models. We
applied our approach to integrate high-quality, daily self-report data with BiAffect keyboard dynamics
derived from a clinical suicidality sample of mental health outpatients. Applying the ICA to the self-
report data (104 participants, 5712 days of data) revealed components related to well-being,
anhedonia, and irritability and social dysfunction. Mixed-effects models (55 participants, 1794 days)
showed that less phone movement while typing was associated with more anhedonia (β =−0.12,
p = 0.00030). We consider this method to be widely applicable to dense, longitudinal digital
phenotyping data.

Traditionally, mental health assessments are administered by professionals
in the clinic and therefore occur infrequently, outside the context of an
individual’s daily life. The ubiquity of smartphones presents many oppor-
tunities formore frequentmental health assessments outside of the clinic1.A
popular and direct measure of mental state administered through smart-
phones are self-report questionnaire-style prompts, like ecological
momentary assessment (EMA), which repeatedly sample behaviour and
experiences in their natural environment, in real-time2. As with any mea-
surements that rely on active user engagement, however, EMA imposes
burden on the participant and is therefore prone to attrition3. This attrition
can lead to decreased response quality, manifesting as an increase in mea-
surement error4. Moreover, despite its improved sampling frequency, EMA
might still yield a time series that is too sparse to accurately capture the
underlying dynamics in moment-to-moment fluctuations in emotion and
affect4. Therefore, the development of dense, passive, and unobtrusive
smartphone measures that predict mental state is receiving increasing
attention5.

Quantifying behavioural phenotypes using data collected unobtru-
sively from wearable digital devices is referred to as digital phenotyping6.

One example of this approach is the open-science iOS app BiAffect7.
Developed by our team, BiAffect replaces the user’s iPhone keyboard. It
collects keyboard typing metadata (e.g., typing speed) as well as accel-
erometery data (movement and orientation while typing). Previous work
has shown that typing speed predicts cognitive processing speed and shows
an age-modulated, diurnal pattern8,9. In addition, several measures such as
accelerometer displacement and autocorrect rate have been shown to pre-
dict depression or mania ratings7,9,10. These findings highlight the potential
of passively collected typing data in clinical contexts.

While providing unique opportunities, the inception of this new
technology requires analytical workflows that can extract meaningful
behavioural phenotypes from the underlying timeseries. This poses several
analytical challenges. Most importantly, it is often necessary to integrate
data modalities that are acquired at different sampling frequencies11. This is
important, for example, to validate the predictive power of digital pheno-
typing measures for mental health and cognition, most commonly against
self-report measures5. However, self-report prompts tend to occur, at most,
several times a day, which forms a data stream that is very sparse compared
to the hundreds of daily samples collected by smartphones. Therefore, any
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study that aims to validate digital phenotyping measures of mental health
must first address temporal misalignment. An additional problem arises
when data are high-dimensional, making dimensionality reduction tech-
niques desirable.

Some of these challenges have been recognised and addressed in the
literature. For instance, deep, recurrent neural networks have been used to
predict depression and mania scores from typing data, fusing different
typingmodalities (e.g., accelerometery and alphanumeric characters) either
early or late in the network architecture11,12. Fusion to the much sparser
depression and mania scores was achieved by stripping the temporal
dimension from the typing modalities with gated recurrent units (GRUs).
This contrastswith other approaches, where either the typing information is
aggregated to the lower resolution of the emotional or cognitive scores13, or
the scores are propagated (usually via interpolations) across all typing
samples14–16.

The examples listed above all feature low-dimensional response vari-
ables. When considering high-dimensional responses instead, several
dimensionality reduction techniques are available from the multivariate
regression literature17,18. In the context of self-report data, previous research
has utilised principal component analysis (PCA) to reduce high-
dimensional self-report data to one component and study its dynamics
over time19. Clustering approaches are an additional option for tackling high
dimensionality in multivariate time series20,21.

The solution we employ involves: (1) applying temporal independent
component analysis (ICA) to the high-dimensional modalities, (2) trans-
forming all modalities to the same time unit through resampling or
aggregation, and (3) then fusing themodalities through linearmixed-effects
models as in prior work15,22–25. Temporal ICA decomposes a multivariate
time series into a limited set of components by maximising their statistical
independence in the time domain23,24. Crucially, ICA does not collapse the
time domain, allowing classical resampling and aggregation techniques to
align the generated independent components with the other digital phe-
notyping modalities. Additionally, ICA can compress data into a smaller
number of independent components, making it ideally suited for dimen-
sionality reduction. This means that fewer mixed-effects models need to be
constructed, leading to a more parsimonious system of models that suffers
less from multiple comparison corrections.

To demonstrate the value of our approach, we apply it to integrate
high-quality self-report data with digital phenotyping data from the
CLEAR-3 trial, a randomised controlled crossover trial that investigated
how a hormonal intervention impacts menstrual cycle exacerbation of
suicidal ideation and affective symptoms. The trial featured a unique clinical
sample of mental health outpatients who were assigned female at birth
(AFAB) and reported suicidal ideation in the past month. Participants self-
reported on a large array of questionnaire items pertaining to affective,
cognitive, and behavioural functioning on a daily basis and received sub-
stantial monetary compensation for the completion of daily ratings to
ensure a high response rate that is not feasible in real-world applications.
Meanwhile, they were encouraged to use the BiAffect iOS keyboard for the
duration of the study.

We applied temporal ICA to the self-report data to distil the large
number of items into fewer dimensions and predict their time course from
BiAffect-deriveddata streams. Before running the ICA,we concatenated the
self-report data of all participants along the temporal domain, both to
increase the number of time steps fed into the analysis and to get a common
set of independent components that applies to all participants24,26. Temporal
ICA then takes this matrix of time series and decomposes it into a time-free
mixingmatrix anda set of components that are independent in the temporal
domain. The mixing matrix specifies how the independent components
combine to generate our original self-report measures.

Afterwards, we constructed a separate mixed-effects model for each
component. These types ofmodels allow us to separate our effects into fixed
effects, which represent effects that theoretically apply to the entire popu-
lation, and random effects, which represent individual departures from the
fixed effects specific to the samples in our data25.More concretely, we added

random intercepts per participant and per week within participant. All
models were subjected to strict multiple comparison corrections. An
overview of our approach is given in Fig. 1.

We demonstrate that our method yields a set of interpretable com-
ponents of self-report data as well as stable associations between these
components and keyboard-derived measures in a clinical sample with sui-
cidal ideation.

Results
Demographics
Our release of the CLEAR-3 data set contained 109 participants. Missing
data patterns are given in Fig. 2. Some participants did not have self-report
data in their baseline period, which meant that the ICA was run on 104
participants. Their demographics are given in Table 1. For the models, we
included all BiAffect data that fell within the range of included self-report
data (see Fig. 2).

Linear mixed-effects models require their cases to be complete, i.e., for
one day, bothBiAffect and self-report featuresneeded to be present.Wehad
a substantial number of incomplete days due to missing keyboard data,
which led to the exclusion of 44 participants. These participants would
sometimes choose or be forced to replace the BiAffect keyboard with their
own keyboard due to, e.g., autocorrect and general usability issues (n = 4),
multilingual requirements (n = 6), not having a suitable iOS device to install
the app (n = 8), or technical issues (n = 4). Feedback from the remaining
excluded participants was not available. We further required at least two
observations for everyweekwithin aparticipant to allow identifiability of the
random interaction between week and participant. We therefore excluded
an additional 5 participants, leaving us with 55 participants. The demo-
graphics of this subgroup are given in Table 1. A grand total of 5712 days’
worth of data were fed into the ICA (average of 54.92 days per participant,
SD = 28.54), while the mixed-effects models were built with 1794 days
(average of 32.62 days per participant, SD = 19.95).

Independent component analysis
Temporal ICA decomposes a matrix of time series into a time-free mixing
matrix and a set of independent components. If the dimensionality of the
independent components is smaller than the dimensionality of the original
measures, the decomposition will also involve an error term (see Eq. (1)). In
our case, the values of themixingmatrix indicate howmuchevery estimated
independent component contributes to themeasured values of a self-report
item (loading).We estimate the independent components by optimising for
negentropy with the FastICA algorithm, as a higher negentropy implies less
Gaussianity and thus more statistical independence22. In this work, we will
interpret the ICA solutions by considering the mixing matrices, as they
specify the link between the original self-report measures and the generated
components.

Themixingmatrix for a 5-component temporal ICA solution is shown
in Fig. 3. (10- and 20-component solutions are shown in Supplementary
Figs. 1 and 3 and compared to the 5-component solution in Supplementary
Figs. 2 and 4).We selected 34 self-report items from the CLEAR-3 trial that
pertained to various aspects of affective, cognitive, and behavioural func-
tioning and were potentially relevant to acute suicidal ideation. These items
are subsets of the Daily Record of Severity of Problems (DRSP)27, Brief
Agitation Measure (BAM)28, Brief Irritability Test (BITe)29, Adult Suicidal
Ideation Questionnaire (ASIQ)30, Positive and Negative Affect Schedule
(PANAS)31, Interpersonal Needs Questionnaire (INQ)32, and some EMA
items derived from aprior study (denotedhere as ‘Miscellaneous’ or ‘Misc’).
The exact questions corresponding to the self-report items are given in
Supplementary Table 1. Since every column in Fig. 3 is linked to an inde-
pendent component, we will refer to them by their component number.

IC 1 has large positive loadings for the FeltHappy, FeltCapable, and
FeltConnected items, which are the only items in our set that pertain to
positive affect. The loadings for the rest of the items are in the opposite,
negative direction. We will therefore refer to this as the “well-being” com-
ponent. This polarity pattern reappears for all investigatedmodel orders, up
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to a reversal of the polarity (Supplementary Figs. 1, 3). IC 2 shows the same
(reversed) pattern, but also displays large loadings for LackingInterest,
Unmotivated, and Anhedonia, while the loadings for all other items are
comparatively small.Wewill refer to this IC as the “anhedonia” component.
IC 3 shows negative associationswith all items in our set, possibly indicating
a mean offset of which the intensity varies over time. E.g., if a participant
gives consistently lower ratings than other participants, this might be
represented with a higher IC 3 intensity. IC 4 gives positive loadings for
items measuring agitation (BAM) and the related construct of irritability
(BITe), aswell as severalDRSP items focusedon interpersonal reactivity and
conflict. We will refer to this IC as the “irritability and social dysfunction”
component. Finally, IC 5 displays negative associations with the BITe and
small, mixed loadings on the DRSP items. This mix makes it challenging to
interpret this component, so we will refrain from naming it.

Fusion with keyboard dynamics
The BiAffect preprocessing pipeline was based on previous studies9,15. In
brief, all keyboard and accelerometery data were aggregated to the daily
level.We extracted the following features: (1)median inter-keydelay (IKD),
an inverse measure of typing speed, (2) 95th percentile IKD, a measure of
pausing within typing sessions, (3) mean absolute deviation (MAD) IKD,
whichquantifies typing speed variability9, (4) autocorrect rate, (5) backspace
rate, (6) the total number of key presses per day, (7) the percentage of typing
sessions spent upright, and (8) the percentage of typing sessions where the
phone recorded movement.

Our mixed-effects models contained fixed effects for all BiAffect fea-
tures, random intercepts for participants, and random interactions between
week and participant. We found no gross violations of model assumptions.

For the remainder of this section, we have declared any effects with (cor-
rected) p values beneath α = 0.05 significant. Forwards-fitting of the random
effects indicated that the interaction of week and participant was a significant
addition to allmodels (for allmodels,p < 0.0001).Model parameter estimates
are given inTable 2 (for the estimates of the 10- and 20-component solutions,
see Supplementary Tables 2, 3). To account for the problem of multiple
comparisons, we applied stringent Bonferroni corrections to the associated p
values. This stringencymeanswe increase our risk of type II errors, sowe also
provide uncorrected p values for transparency. After Bonferroni correction,
we found that less phonemovement corresponded tomore anhedonia (IC 2)
on the same day (β=−0.12, 95% CI [−0.17, −0.07], p = 0.00030). As for
terms with p < 0.05 only in the uncorrected case, we found that increased
movement rate was associated with greater well-being (β = 0.071, 95% CI
[0.02, 0.12], uncorrected p = 0.0051) in the IC 1 model, higher median IKD
(slower typing) predicted more anhedonia (β = 0.098, 95% CI [0.02, 0.18],
uncorrected p = 0.013) in the IC 2 model, lower median IKD (faster typing;
β=−0.094, 95%CI [−0.18,−0.01], uncorrected p = 0.030) and ahigher total
number of key presses (β = 0.062, 95%CI [0.01, 0.12], uncorrected p = 0.027)
predicted more irritability and social dysfunction in the IC 4 model, and a
lower total numberof keypresses predictedhigher IC5 intensity (β =−0.060,
95% CI [−0.11,−0.01], uncorrected p = 0.025).

Supplementary analyses
We investigated the stability of the ICA solutions across multiple FastICA
restarts and found that in most cases the well-being and anhedonia com-
ponents would combine into one component that indicated general affect
(Supplementary Fig. 5). Phone movement remained a significant predictor
of anhedonia. When the ICA solutions featured the general affect
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component instead, we found that phone movement also significantly
predicted the general component.

A forwards-fitting procedure was run for the random effects to
examine the influence of random slopes on the fixed-effect estimates
(SupplementaryTable 5).The additionof randomslopesdidnot change any
of the conclusions drawn from the base models described above.

Some of our data included periods with high proportions of missing
data.We repeated our random restart analysis with only contiguous subsets
of the data to assess the influence of missingness on our results (Supple-
mentary Fig. 6). In some cases, phonemovement did no longer significantly
predict anhedonia after multiple comparison corrections. Potential reasons
for this behaviour are given in the supplement.

To verify that IC 3 represented a mean offset of self-report responses
for certain participants, we correlated the average responses with the IC 3
values and found a negative correlation (Supplementary Fig. 7). In addition,
we reran our analysis after within-participant mean-centring of the self-
report data and found that in this case IC3disappeared (Supplementary Fig.
8). The implications of this finding are discussed in the supplement (see also
Supplementary Table 4).

Discussion
In this work, we introduce a genericmethod for the analysis and integration
of digital phenotyping with self-report data. It utilises temporal ICA to
extract interpretable components from the data while keeping the temporal
dimension of the data intact, providing a principled method to align dif-
ferent data modalities. We validated the method in a dataset acquired from
participants with a history of suicidal ideation and found well-being,
anhedonia, and irritability and social dysfunction components in the high-
dimensional self-report data. This low-dimensional representation could be
predicted by smartphone typing dynamics and accelerometery in thatmore
phone movement while typing was associated with less anhedonia. We
demonstrate that passively collected smartphone keyboard dynamics are
predictive of a low-arousal state in people with suicidal ideation, as mea-
sured using extensive validated instruments that are hard to deploy at scale.

Ourmethod aligned self-report and keyboard dynamics data, allowing
their joint analysis and providing further evidence for the use of keyboard
dynamics as an ecologically derivedmarker ofmentalwell-being.Moreover,
we distilled high-dimensional data into interpretable components that can
be related to the existing literature more easily.
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For instance, the emergence of the wellbeing, anhedonia, and irrit-
ability and social dysfunction components, as identified by our temporal
ICA, canbe interpreted in the light of the core affect framework33.According
to the core affect theory, core affect is “a neurophysiological state that is
consciously accessible as a simple, non-reflective feeling” and is a blend of
two dimensions: Pleasure-displeasure and activation-deactivation33. Our
components are easily mapped onto this domain. The well-being compo-
nent aligns mainly with the pleasure dimension and is quite neutral w.r.t.
activation. Anhedonia, on the other hand, indicates low activation and a
small amount of displeasure. The irritability and social dysfunction com-
ponent most likely is a blend of high activation and displeasure. Since core
affect is postulated to be involved in emotional episodes33, it is encouraging
that our temporal ICA is able to identify components that can readily be
compared to the core affect dimensions and predicted with data collected
passively using smartphones.

Specifically, we showed that phone movement was predictive of
the anhedonia component, which is intuitively understandable in that
less movement while typing is associated with more anhedonia, a
higher lack of interest and a higher lack of motivation. Additionally,

we found that phone movement was a trend significant, positive
predictor of well-being, which complements the relationship between
movement and anhedonia. We only found a small set of prior lit-
erature to compare these findings to. Zulueta et al., for example,
reported that more phone movement (calculated differently than in
our study) predicted higher depression and mania ratings in a sample
of participants with bipolar disorder7. However, they also pointed out
that bipolar depression can manifest as either psychomotor retar-
dation or agitation34, and therefore their results may not be directly
comparable to our findings.

Considering the relationship betweenmovement and anhedoniamore
generally, it appears that this relationship has not been fully explored as
evidenced by the scarce literature we could identify. However, Sierra et al.
pointed towards the denervation of dopaminergicD2/D3 receptors as being
a root cause of apathy (lack of motivation) in Parkinson’s disease35; in the
work of Treadway and Zald, this apathy is referred to as motivational
anhedonia36. Lemke et al. have investigated the relationship between
anhedonia and psychomotor retardation in depression and found them to
be correlated37, which is consistent with our findings, but their work was
published in1999,whenpassive sensingwasnot feasible.Given thatwehave
not found other studies that utilise passive sensing in this context, our
findings thus support the role of digital phenotyping as a valuable tool for
investigating this relationship more closely.

In addition, we found the trend significant effect that larger IKDs
(slower typing) predict more anhedonia and that smaller IKDs (faster
typing) are related to increased levels of irritability and social dys-
function. While we refrain from drawing conclusions due to non-
significance after (stringent) multiple comparison correction and a
lack of prior literature, it is notable that our findings conform to
intuition. Our data also suggest that more key presses predict higher
levels of irritability (IC 4 and 5). We note that previous digital phe-
notyping studies have used measures related to data quantity (e.g., the
duration of periods of successful data collection) to detect schizo-
phrenia severity and relapses38,39, which suggests the utility of
employing typing dynamics quantity metrics for similar purposes.
This would be an interesting direction for future work.

Ourwork is embedded in a broader effort to fuse typing dynamicswith
measures of affect and mental well-being. As noted in the introduction,
previous work has used classification models to predict depression and
mania scores from typing data with high accuracy11,13,14. Our approach, on
theotherhand, focuses on regression rather thanclassification,whichavoids
the necessity to discretise a continuous outcome measure. There are addi-
tional studies that also used regression to link typing dynamics to other
modalities7–10,12,15,16, but they do not consider the case of high-dimensional
response variables. In addition, many of these studies have been conducted
with relatively small sample sizes (n ≤ 26)8,10–12,14,16, whereas our sample is
moderately sized and deeply phenotyped.

While we have demonstrated our approach within the context of
typing dynamics, other studies have collected a wide variety of other digital
phenotyping modalities, such as social behaviour (e.g., outgoing phone
calls)40,41, GPS patterns40–42, and actigraphy41,43,44. (For a more complete
overview of possible modalities, see the work of Melcher, Hays, and
Torous45) Many of these studies also involve the collection of EMA data45,
presenting themwith similar problems of temporal misalignment as well as
high dimensionality. Because these problems are not fundamentally dif-
ferent from what we encountered with typing data, we believe that our
method will be equally beneficial for the integration of these alternative
data types.

There are several caveats and limitations that we would like to high-
light. First, the more components we request from the ICA, the more
challenging their interpretation becomes. Many components of the 10- and
20-component solutions, for instance, contain amix of positive andnegative
loadings for items from a single scale, which would suggest that such
components represent either very specific aspects of a domain or just cap-
ture noise (Supplementary Figs. 1 and 3). On the other hand, we stress that

Table 1 | Participant demographics

ICA LMER

N 104 55

Age (mean (SD)) 25.66 (4.63) 26.73 (4.87)

Race (%)

Caucasian 49 (47.1) 26 (47.3)

African American 14 (13.5) 7 (12.7)

Asian 10 (9.6) 5 (9.1)

Don’t Know or More than one race 28 (26.9) 14 (25.5)

Unknown 3 (2.9) 3 (5.5)

Ethnicity (%)

Hispanic 29 (27.9) 15 (27.3)

Non-Hispanic 73 (70.2) 38 (69.1)

Unknown 2 (1.9) 2 (3.6)

Education (%)

High school degree, GED, or trade school 10 (9.6) 4 (7.3)

Post-graduate work 23 (22.1) 15 (27.3)

Some college or 2-year degree 28 (26.9) 13 (23.6)

4-year college degree 39 (37.5) 20 (36.4)

Unknown 4 (3.8) 3 (5.5)

Income (%)

<$15,000 12 (11.5) 6 (10.9)

$15,000–$34,999 17 (16.3) 10 (18.2)

$35,000–$79,999 39 (37.5) 19 (34.5)

$80,000–$100,000 12 (11.5) 5 (9.1)

>$100,000 17 (16.3) 11 (20.0)

Unknown 7 (6.7) 4 (7.3)

Baseline clinical categories (%)

Any current depressive disorder 64 (61.5) 32 (58.2)

Any current anxiety disorder 63 (60.6) 30 (54.5)

Any current obsessive-compulsive disorder 11 (10.6) 4 (7.3)

Any current substance use disorder 17 (16.3) 7 (12.7)

Any current eating disorder 12 (11.5) 6 (10.9)

Any current trauma-related disorder 25 (24.0) 9 (16.4)

ICA independent component analysis, LMER linear mixed-effects regression, SD standard
deviation.
The LMER group is a subgroup of the ICA group.
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low-dimensional ICA solutions need not be the optimal ones. Other
decompositionsmight be equally valid, dependingon the level of granularity
one wishes to examine46.

In a similar vein, the run-to-run variability of the solutions from the
FastICA algorithm poses an additional challenge to their interpretability
and subsequent clinical utility. Our data lend themselves to multiple low-
dimensional representations and itmight be unclearwhich representation is
the most adequate. Nevertheless, we also view the multiplicity of the ICA
solutions as one of the strengths of our method, as they can be compared to
explore the possible groupings of the self-report items rather than forcing
the ICA solutions to conform to just one of the possible low-dimensional
representations. We have therefore performed multiple random restarts to
assess the stability of these representations, an approach that is common
withmachine learningalgorithms that exhibit stochasticity in their solutions
(see, for an example specific to ICA, the well-validated ICASSO tool47). A
similar approach could be used for making robust predictions. As Supple-
mentary Fig. 5 shows, the solutions fall in a small number of distinct and

consistent categories for our data. If the number of distinct clusters is rea-
sonable, interpretation need not be difficult.

Second, Fig. 2 showed that in some participants substantial portions of
the BiAffect data are missing. Indeed, some participants strongly preferred
the autocorrect behaviour of the native iOS keyboard, whilst others had
multilingual requirements that were not supported by the current version of
the English-only BiAffect keyboard or were experiencing technical issues.
We did not receive feedback from all participants that stopped using the
keyboard, so there could be other factors contributing to the observed
attrition, but we believe that these aspects could be the focus of future
improvement. The aforementioned limitations mainly exist because we
developed BiAffect and its autocorrect functionalities in-house; they should
not be inherent to keyboard typing dynamics itself. We also point out that
high proportions of missing data are prevalent in most digital phenotyping
studies.With ICA as the core part of our processing pipeline, we can handle
this missingness under stationarity conditions. Moreover, the fact that, due
to our study incentivisation, the proportions of missingness for data that
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Fig. 3 | Mixing matrix of the 5-component decomposition of the self-report data. Bar opacity is an additional representation of the loading values. For questionnaire
abbreviations, please refer to the main text. IC independent component.

Table 2 | Mixed-effects model estimates with their uncorrected and corrected p values

IC 1 IC 2 IC 3 IC 4 IC 5

β p' p β p' p β p' p β p' p β p' p

Median IKD 0.034 0.36 1 0.098 0.013 0.52 0.023 0.52 1 −0.094 0.030 1 0.018 0.66 1

95th percentile IKD −0.013 0.68 1 −0.030 0.36 1 −0.015 0.63 1 0.057 0.12 1 −0.023 0.51 1

MAD IKD −0.0022 0.94 1 −0.027 0.42 1 0.043 0.16 1 0.053 0.14 1 0.0016 0.96 1

Autocorrect rate 0.015 0.58 1 −0.00029 0.99 1 −0.034 0.20 1 0.022 0.47 1 −0.015 0.62 1

Backspace rate −0.016 0.51 1 0.032 0.20 1 0.018 0.45 1 −0.0045 0.87 1 0.0047 0.86 1

Total number of key presses −0.00083 0.97 1 0.022 0.39 1 −0.030 0.21 1 0.062 0.027 1 −0.060 0.025 1

Movement rate 0.071 0.0051 0.20 −0.12 <0.0001 0.00030 1.4e-05 1 1 0.055 0.058 1 −0.020 0.48 1

Upright rate 0.037 0.14 1 0.016 0.55 1 0.026 0.29 1 0.017 0.56 1 −0.027 0.32 1

IC independent component, IKD inter-key delay, MADmean absolute deviation.
Every IC corresponds to a separate model. p’ indicates uncorrected p values, p indicates Bonferroni-corrected p values.
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require active participation (self-report) are much lower than those of
passively collected data (BiAffect) is an exception rather than the norm
compared to other studies39.

Third, while we have found that phone movement while typing is
predictive of anhedonia, it is not entirely clear if and how our anhedonia
component contributes to suicidal ideation. Links have been found between
arousal and suicidal behaviour48, but more research is needed to determine
how our anhedonia component maps onto the arousal operationalisations
used in the literature. Once thismapping has been clearly delineated, we can
potentially leverage the fluctuations in phone movement as part of an early
warning system for heightened levels of suicidal ideation.

Finally, the digital phenotyping analysis toolbox is still far from com-
plete. For instance, notmuch is known about the autocorrelation properties
of keyboard and accelerometery dynamics.While our previous research has
identified diurnal patterns in keyboard dynamics9, it is not unlikely that
there areweekly,monthly, or even seasonal patterns in the BiAffect features,
warranting further research.

To conclude, temporal ICA is an effective tool to decompose high-
dimensional, daily self-report data without collapsing the time domain. In
our dataset containing affective self-report data of people assigned female
sex at birth with a history of suicidal ideation, we found ICA-based repre-
sentations of affect that mapped onto digital phenotyping measures in an
interpretable fashion, namely as wellbeing, anhedonia, and irritability and
social dysfunction components consistent with the pleasure and activation
axes found in core affect theory. We consider this method to be widely
applicable and a valuable contribution to themethods toolbox for analysing
densely sampled longitudinal and digital phenotyping data.

Methods
Study design
Our study utilised data from the CLEAR-3 trial, a randomised controlled
crossover trial that investigated how perimenstrual administration of
estradiol (E) and progesterone (P), relative to natural steroid withdrawal
under placebo, impacts menstrual cycle exacerbation of suicidal ideation
and affective symptoms (NCT04112368). The study was approved by the
UIC Institutional Review Board and all relevant ethical regulations were
adhered to. Data acquisition for this trial was ongoing, so only baseline (pre-
experimental) data were used for the present study, which consisted of at
least a full menstrual cycle.

Recruitment and exclusion criteria
All participants were assigned female sex at birth (AFAB), reported past-
month suicidal ideation (SI), andwere in outpatient treatment. Participants,
who were recruited from the community via social media ads and received
up toUS$1250 after completing the entire trial, were 18–45 years of age, had
normal menstrual cycles (25–35 days), did not take any hormonal medi-
cations, and had normal weight (BMI 18–29). Exclusion criteria included
any long-term nonpsychiatric health condition, a history of hospitalisation
for mania or psychosis, or any affective or substance use disorder deemed
likely to interfere with safe participation in the clinical trial. All participants
provided informed consent for study participation.

Keypress data preprocessing
The keypress data were aggregated in two steps. First, individual keypresses
were aggregated into typing sessions, which begin as soon as the user presses
the first key and end when the keyboard is no longer displayed or after six
seconds of inactivity15. For each session, the number of autocorrect and
backspace presses were counted and divided by the total number of key-
presses in the session to get the autocorrect and backspace rates. In addition,
the total number of keypresses was counted. Finally, the inter-key delays
(IKDs) were calculated between all successive alphanumeric keypresses in
the session. From these IKDs, we calculated (1) themedian IKD, an inverse
measure of typing speed, (2) the 95th percentile IKD, a measure of pausing
within sessions, and (3) the mean absolute deviation (MAD) IKD, which
quantifies typing speed variability9.

After session-level aggregation, the sessions were aggregated to the
daily level by taking the mean of all session-level variables. The one
exception to this rule were the total numbers of session key presses, which
were simply summedacross the day.Anydayswith less than750keypresses
were excluded from further analysis to ensure proper feature estimation.

Finally, the number of keypresseswas log-transformed and all BiAffect
features were standardised w.r.t. the entire sample (i.e., grand mean set to 0
and overall variance to 1) to aid model fitting.

Accelerometer data preprocessing
Our accelerometer data only included samples collected while the partici-
pant was typing on the BiAffect keyboard. While collecting data all
throughout the day would yield more data, it would also be more taxing for
the smartphone battery, and offloading the accelerometer recording to an
external device would require participants to wear an extra device.

Accelerometer data were grouped into typing sessions and low-pass
filtered using a second-order bidirectional Butterworth filter with a cutoff
frequency of 4Hz to remove noise15. Afterwards, every sample within a
session was classified as either moving (also ‘active’) or stationary based on
themagnitude of the filtered x, y, and z accelerometer readings.Magnitudes
close to 1 reflect the natural gravitational pull of the earth and therefore
indicate the user’s phone is at rest. We classified samples with a magnitude
below 0.95 and above 1.05 as active, and everything that fell within these
(inclusive) bounds as stationary. An entire session was classified as active if
over 8% of its constituent samples was classified as active.

In addition, each session was classified as upright or not using the
median values of thefiltered x and z values. If themedian z value of a session
was (strictly) below 0.1 and themedian x valuewas in-between−0.2 and 0.2
(inclusive), the session was classified as upright15. Sessions that were not
classified as upright could potentially indicate that participants were using
their phone while lying down.

Finally, by counting the number of active and upright sessionswithin a
day and dividing those counts by the total number of sessions within a day,
we get a rate of active and a rate of upright sessions per day.

Independent component analysis
In general, an ICA will decompose a data matrix X into a mixing matrix A
and a source matrix S such that22:

X ¼ ASþ ϵ; ð1Þ

where ϵ represents an error term.X is a p by nmatrix, where p indicates the
number of self-report items and n corresponds to the number of days of
data. In our case, we concatenate the data of all participants along the time
axis to (1) ensuren is sufficiently large to run the ICAand (2) receive a single
set of independent components that applies to all participants.A is a p by q
and S is a q by n matrix, where q indicates the number of components we
would like the data to be reduced to. Note that if q ¼ p, ϵ ¼ 0. In other
words, if we request as many components as there are self-report items,
there is no error and X is exactly equivalent to AS.

We used the FastICA algorithm to estimate A and S from the original
self-report data22.More specifically,weused theparallel versionwithG set to
the log cosh function and a1 ¼ 1, implemented in R (version 4.2.2) by the
fastICA package (version 1.2.3).

ICAs are typically runon continuousdata that can takenegative values,
while our self-report data consisted of strictly positive Likert scales. We
therefore log-transformed all self-reportmeasures prior to running the ICA.

Solving for independent components typically necessitates a stochastic
optimisation and therefore has associated run-to-run variability. We ran a
sensitivity analysis to check the extent of this variability (Supplementary
Fig. 5).

Data fusion models
We used mixed-effects models to fuse BiAffect data to the self-report
components. Mixed-effects models divide their effects into fixed effects,
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which are considered the effects that (in theory) apply to the entire popu-
lation, and random effects, which represent deviations from the fixed effects
that are due to the specifics of our sample25. A typical example of random
effects is the participant-specific deviation from the global mean in a
repeated-measures experiment. In our study, the self-report data did indeed
show such participant-specific deviations. Moreover, we found evidence
that, depending on the participant, there were week-to-week deviations as
well. Such deviations are not unsurprising, as a specific week might have
been good for some participants, while othersmight have experienced it as a
particularly bad one. Themenstrual cycle of our participants is also likely to
bring about periodic fluctuations in the self-report data that can be captured
on the weekly level. We therefore opted for modelling a random effect of
week nested within participants. In other words, we estimate a random
intercept per participant, as well as a random interaction between week and
participant.

Formulating such a model for Npart participants with a participant-
dependent Nweek number of weeks gives:

yijk ¼ β0 þ bi þ bij þ β>1 xijkþϵijk; ð2Þ

where i ¼ 1; . . . ;Npart is the participant index, j ¼ 1; . . . ;Nweek is theweek
index, and k ¼ 1; . . . ; 7 is the day-of-week index. yijk represents an
independent component (IC) value for participant i inweek j onday k and is
our dependent variable. β0 is the grand mean of the IC values across all
participants andweeks. bi denotes the random effect of participant, i.e., how
muchparticipant i shifts the grandmean, on average. Similarly, bij indicates
how much week j shifts the participant-specific mean β0 þ bi, but only for
participant i. xijk is theBiAffect feature (column) vector, which holds a value
for the inter-key delay, autocorrect rate, phone movement rate, et cetera.
Like yijk, it is specific to participant i in week j on day k. In contrast, the
parameter vector β1 does not depend on a specific participant, week, or day:
This vector represents our fixed effects. (The superscripted > denotes the
transpose, converting the column vector into a row vector.) Finally, the
model has an error term ϵijk, which incorporates all IC variation that is not
captured by the rest of our model.

We assume that all random effects and the error term are normally
distributed around 0. In other words:

bi ∼N 0; σ21
� �

; bij ∼N 0; σ22
� �

; ϵijk ∼N 0; σ2
� �

; ð3Þ

where σ21, σ
2
2, and σ

2 represent the variance of, respectively, the participant
random intercept, the random interaction between participant and week,
and the error.

We used the nlme package (version 3.1.160) for R to create these
models. We determined conformity to the linear mixed-effects model
assumptions by visual assessment. To assess normality of the residuals and
random effects, we examined their QQplots. Heteroskedasticity was judged
by plotting the standardised residuals versus the fitted values. We con-
structed a separate model for each IC of an ICA solution and employed
Bonferroni corrections across all models for that solution to avoid multiple
comparison problems. In particular, the Bonferroni correction factor CF
was defined as:

CF ¼ nIC � nfixed; ð4Þ

wherenIC indicates the number of ICs andnfixed ¼ 8 represents the number
of fixed-effect terms (excluding the intercept).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Deidentified participant datawill bemade available on reasonable request to
the principal investigator of the CLEAR-3 trial, T.A. Eisenlohr-Moul
(temo@uic.edu).

Code availability
All analysis source code is freely available on GitHub: https://github.com/
Valkje/clear3-ica.
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