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Scientific figures interpreted by ChatGPT:
strengths in plot recognition and limits in
color perception

Check for updates

Jinge Wang1, Qing Ye2, Li Liu3,4, Nancy Lan Guo 2,5 & Gangqing Hu 1,2

Emerging studies underscore the promising capabilities of large language model-based chatbots in
conducting basic bioinformatics data analyses. The recent feature of accepting image inputs by
ChatGPT, also known as GPT-4V(ision), motivated us to explore its efficacy in deciphering
bioinformatics scientific figures. Our evaluation with examples in cancer research, including
sequencing data analysis, multimodal network-based drug repositioning, and tumor clonal evolution,
revealed that ChatGPT can proficiently explain different plot types and apply biological knowledge to
enrich interpretations.However, it struggled to provide accurate interpretationswhencolor perception
and quantitative analysis of visual elements were involved. Furthermore, while the chatbot can draft
figure legends and summarize findings from the figures, stringent proofreading is imperative to ensure
the accuracy and reliability of the content.

Known for its remarkable conversational capabilities and extensive
knowledge spanning numerous disciplines, large language model (LLM)
chatbots like ChatGPT have gathered significant interests in education1,
research2, and clinical practice3. In the field of bioinformatics, ChatGPT
serves as an instrumental aid for learning basic bioinformatics4,5. Several
literatures offer recommendations on harnessing the chatbot for more
efficient data analysis4–12. Further evaluations, centering on biomedical text
mining13,14, code generation15,16, and expertise in genomics/genetics17–19,
underscore ChatGPT’s potential to facilitate biomedical research. However,
present evaluations predominantly focus on text-based inputs. The cap-
ability ofChatGPT to interpret alternative inputs, such as scientificfigures, a
task demanding both skills in imaging pattern recognition and domain-
specific knowledge, remains to be evaluated.

In this study, we assessedChatGPT’s ability to interpret bioinformatics
scientific figures using case studies of data analysis frequently used in cancer
research. The initial case addressed differential gene expression analysis,
highlighting transcriptional alterations in multiple myeloma (MM) when
exposed to bone marrow stromal cells (BMSCs)20. The subsequent study
centered on an integrative approach for drug repositioning in non-small cell
lung cancer (NSCLC), leveraging network analysis of the transcription
factor ZNF7121–23. The third case embarked on clonal evolution underlying
the disease progression of MM. The final investigation characterized the

epigenetic regulatory landscapes surrounding the YY1 locus in a human
B-lymphoid cancer cell line. Through qualitative and quantitative analyses,
we found that the chatbot effectively identified plot types, applied domain
knowledge to result in interpretations, and effectively summarized the
findings, albeit requiring careful proofreading. Our in-depth assessment
revealed that the chatbot is limited in tasks requiring color perception or
quantitative analyses, which include counting numbers and inferring
positional relationships between visual elements to draw conclusions.

Results
We designed four case studies in cancer research to assess ChatGPT’s
proficiency in deciphering bioinformatics figures (Supplementary Figs.
S1–S4). The case background and our interpretation of the figures are
listed in Supplementary Methods S1. Prompts used to guide ChatGPT
(referred to as GPT-4V hereafter) to interpret the figures are listed in
Supplementary Methods S2. GPT-4V’s responses to each case with
replicates were recorded, indexed, annotated, and color-coded as true/
false at the statement level in Supplementary Notes S1–S4. A summa-
tive indexing table was then generated for each case study to document
the categorization of statements, their true/false status, and their ori-
gins from replicates and figure panels (Supplementary Tables S1–S4;
see the “Methods” section for details). Based on the color-coded true/
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false statements from Supplementary Notes S1–S4, we first conducted a
qualitative case-by-case analysis, aiming to identify recurring themes in
GPT-4V’s capabilities in reading scientific figures. We then validate the
findings via quantitative analyses.

Qualitative evaluation
Case1—RNA. This case study characterized genes differentially induced
by BMSCs in MM cells (see input figure in Supplementary Fig. S1; case
background in the “RNA” case study section of Supplementary Methods
S1; GPT-4V’s responses with annotations in Supplementary Notes S1).
We initially prompted GPT-4V to offer an overview of each panel, sug-
gest enhancements for data presentation, draft a figure legend, and
summarize the findings (top three chat histories in Supplementary Notes
S1). Across all three evaluations, GPT-4V accurately identified the plot
types or offered correct explanations when the plot typewas not explicitly
stated. Interestingly, all tests failed to interpret color-coding between
groups in the volcano plot shown in Supplementary Fig. S1B. It men-
tioned the two indicated genes, SOCS3 and JUNB, in the same plot but did
not delve deeper into their significance. Drafts on summary paragraph
presented with no specific error spotted, albeit they could be improved by
adding details. Refinements suggested by GPT-4V for data presentation
aligned with standard practices.

In the in-depth inquiries, GPT-4V was challenged to estimate specific
numbers for indicated genes from thefigure and alignfindingswith external
knowledge to interpret the figure (bottom three chat histories in Supple-
mentary Notes S1). It correctly estimated the log2FC for SOCS3 but over-
estimated it for JUNB in the volcano plot from Supplementary Fig. S1B. In
the same plot, it consistently failed to identify color for the down-regulated
genes. As for domain knowledge, GPT-4V correctly explained SOCS3 as a
suppressor of JAK-STAT signaling pathway and JUNBas a proto-oncogene
in the context ofMMbiology. Itmentioned the activation of the JAK-STAT
signaling pathway byBMSCs and utilized this knowledge to deduce that up-
regulated genes were used for the KEGG enrichment analysis shown in
Supplementary Figure S1C. The summary paragraphs uniformly detailed
the expression up-regulation of SOCS3 and JUNB. However, imperfections
from responses to previous inquiries, such as misinterpretations of color-
coding, were repeated in the legends and/or summaries.

Case 2—ZNF71. This case study focused on a drug-reposition analysis
through ZNF71 in NSCLC (see input figure in Supplementary Fig. S2;
case background in the “ZNF71” case study section of Supplementary
Methods S1; GPT-4V’s responses with annotations in Supplementary
Notes S2). In our evaluation, we engagedGPT-4V to provide an overview
of the figure and then address specific queries on details related to each
panel. The overview accurately captured the plot type from each panel. As
for errors, it consistently failed to discern the color representing different
patient groups from the K–M plot shown in Supplementary Fig. S2A,
though it reliably pinpointed ZNF71 KRAB as an unfavorable prognosis
marker. The chatbot estimated an average expression of 4–4.5 for the
resistance group marked in Supplementary Fig. S2B, while the reference
was 3.3. GPT-4V was further assessed to infer positional relationships
among genes in an association network shown in Supplementary Fig.
S2C. It successfully identified genes interactingwith ZNF71 in all tests but
incorrectly spelled the gene name IKBKB, with similar incidences
observed forCD27. The scatter plot in Supplementary Fig. S2Ddepicted a
negative correlation between CD27 expression and EC50, which repre-
sents the concentration of a drug to kill 50% of the cancer cells. GPT-4V
falsely interpreted a lower EC50 value to indicate higher drug resistance in
replicate three; consequently, it incorrectly associated higher CD27
expression with more resistance to PQ-401 for that replicate.

Case 3—Clonal. This case study focused on the analysis of clonal evo-
lution in an MM patient (see input figure in Supplementary Figure S3;
case background in the “Clonal” case study section of Supplementary
Methods S1; GPT-4V’s responses with annotations in Supplementary

Notes S3). When inspecting the overview on figure panels and the
summary paragraph, we found that GPT-4V demonstrated a com-
mendable ability to interpret the figure: It accurately identified the correct
types of plots, except for the bell plots shown in Supplementary Fig. S3C
and D. We further made in-depth inquiries to assess GPT-4V’s quanti-
tative analysis capability, involving tasks like color decoding, sorting
clusters by sizes, identifying variant allele frequency (VAF)-changes in
clusters, and recognizing leaf nodes from a clonal evolutionary tree. For
these tasks, the chatbot encountered difficulties in connecting colors to
designated clusters and, at times, referred to non-existing colors. Simi-
larly, it failed to accurately sort clusters by size from Supplementary Fig
S3A and often referenced non-existent clusters in Supplementary Fig.
S3E and F. Intriguingly, we observed instances where GPT-4V over-
interpreted figures. Specifically, it erroneously suggested that node sizes
in Supplementary Fig. S3G were proportional to cellular prevalence,
despite all nodes being of equal size. The chatbot only sporadically
referred to cluster names in the summary paragraphs and could benefit
from adding details to improve the content. In conclusion, although
GPT-4V showcased a decent interpretation of cancer clonal evolution
from the figure, a careful review of the legend and summary is advised,
especiallywhen interpreting color-coded elements andwhen quantitative
analysis is required, even at a basic level.

Case 4—YY1. This case study examined the epigenetic landscape sur-
rounding the YY1 locus in a human B-lymphoid cancer line (see input
figure in Supplementary Fig. S4; case background in the “YY1” case study
section of Supplementary Methods S1; GPT-4V’s responses with anno-
tations in Supplementary Notes S4). In our basal inquiries, we directed
GPT-4V to decipher the transcriptional regulation of the YY1 gene (top
three chat histories in Supplementary Notes S4). Without specific gui-
dance, GPT-4V mainly focused on the YY1 locus. It consistently iden-
tified YY1 as transcriptionally active, basing this on the RNA-Seq signals
and associated histonemodification patterns. GPT-4V’s interpretation of
the promoter-enhancer interactions for YY1 was generic and lacked
details. Notably, GPT-4V offered valuable suggestions to enhance data
presentation, such as adopting a colorblind-friendly palette, highlighting
the gene of focus (YY1 in this case), and introducing legends for distinct
symbols. The figure legends crafted by the chatbot were concise and
captured key elements but ignored the highlighted regulatory domains.
While replicates one and two explained the circles shownon the heatmap
in Supplementary Figure S4, replicate three mistakenly interpreted them
as indicating interaction strength rather than hotspots. The summary
paragraphs of the findings from the figure, although scientifically not
inaccurate, remained at the surface level.

We continued an in-depth evaluation of GPT-4V’s ability to analyze
intricate details (bottom three chat histories in Supplementary Notes S4),
beginning with a task to identify expressed genes via RNA-Seq signals and
associated histone modifications. While the chatbot accurately identified
YY1, EVL, and WARS as being expressed, it frequently misinterpreted the
expression and histone modification patterns of other genes (Supplemen-
tary Table S5). Subsequent tasks involved the interpretation of chromatin
domains A1-A3 (active promoters), I1 and I2 (inactive promoters), and
E1–E4 (active enhancers). GPT-4V correctly counted the domains in each
category and utilized histone modification patterns to recognize the “A”
regions as participating in active transcriptional regulation. However, it
stumbled in identifying their positional relationships to genes in all repli-
cates. While the “I” regions were generally classified correctly as tran-
scriptionally repressive due to the presence of H3K27me3, replicate two
failed to identify this marker, leading to a misleading interpretation. Lastly,
for the “E” regions, GPT-4V rightly identified them as enhancers, noting
their robustH3K27ac and relativelyweakH3K4me3, anddeduced their role
in transcriptional regulation of target genes via chromatin looping. These
outcomes suggest that GPT-4V can leverage external molecular biology
knowledge to interpret the transcriptional regulatory role of chromatin
domains.

https://doi.org/10.1038/s41698-024-00576-z Article

npj Precision Oncology |            (2024) 8:84 2



In our next assessment, we aimed to have GPT-4V interpret the
chromatin interactions between the YY1 promoter and three enhancers
(denoted by green circles in Supplementary Fig. S4) as well as three pro-
moter regions (denoted by blue circles). Each circle signifies the interaction
between two genomic regions, pointed by dashed lines originating from the
circle. For instance, chromatin domains “A1” and “A2” are connected to the
leftmost blue circle in Supplementary Fig. S4, denoting their physical
proximity. GPT-4V could not accurately discern the colors of the two types
of circles and reportednon-existent purple circles.Whilemanually counting
the circles is a straightforward task for human analysts, GPT-4V con-
sistently failed to count the circles in all three replicates.When challenged to
identify interacted chromatin regions indicated by the circles, none of the
reports from GPT-4V was correct. This underscored GPT-4V’s limitations
in not only counting simple visual elements like circles but also deducing
relationships between connected visual elements.

Figure legends from the basal assessment consistently overlooked
explanations for custom markings on plots, such as rectangles or dashed
lines (top three chat histories in Supplementary Notes S4). Summaries
lacked sufficient details for concrete conclusions. During the in-depth
assessment,GPT-4V incorporated its detailed responses to previous specific
questions into the figure legends and result summaries to enrich depth. This
approach, however, also led to the inclusion of errors or misleading infor-
mation from the previous responses, emphasizing the need for rigorous
human review to ensure accuracy.

Our qualitative analyses from the four case studies revealed two pri-
mary strengths of GPT-4V in figure interpretation. First, it demonstrated
competency in identifying and explaining various plot types. Second, it
demonstrated competency in leveraging domain knowledge to elucidate or
substantiate observations. Regarding limitations, GPT-4V struggled with
color perception. Additionally, it faced challenges in discerning the posi-
tional relationships between visual elements. Notably, in the “Clonal” and
“YY1” case studies, GPT-4V also showed limitations in tasks involving the
counting of visual elements. To further measure the significance of these
findings, we conducted a comprehensive quantitative analysis in the next
section.

Quantitative evaluation
Six categories emerged from our qualitative assessment to characterize
GPT-4V’s responses in scientific figure interpretation: Plot Recognition,
Domain Knowledge, Color Perception, Positional Inference, Counts, and
Others (see the “Methods” section for definition). The six categories covered
80.3 ± 7.9% of the statements. We devised a summative indexing table for
each case study to encapsulate the true/false evaluation of the statements,
their categorizations, and the origins of replicates and panels (Supplemen-
tary Tables S1–S4).

As an illustration of this process, Fig. 1a shows an overview, starting
from the inputs (figure and prompts) and progressing through parsing
GPT-4V’s responses into discrete statements, true/false annotations, cate-
gorization, and finally, the compilation of a summative indexing table for
downstream comparative analysis. Figure 1b, using extracts fromGPT-4V’s
explanation of the plot type of a sub-panel from the “ZNF71” case study,
demonstrates the workflow from the initial GPT-4V responses through to
the indexed and annotated statements and to their allocations in the cor-
responding summative table. In this example, statements “<2-3-3>” and
“<2-3-4>” explained the plot type and were annotated as correct (see the
“Methods” section for details on statement indexing). Therefore, the two
statement numbers “<3>” and “<4>” were placed in the Plot Recognition
category in the summative table and shown in blue. The statement “<2-3-
5>” contained correct information on the number of groups such that the
statement number (“<5>”) was marked as blue in the Counts category. The
statement also contained incorrect information for color coding and thus
was marked as red in the Color Perception category.

These summative tables formed the basis for subsequent comparative
analyses, which evaluated GPT-4V’s performance within specific categories
and across replicates. Note that the basal inquiries were excluded from the

analyses, as their corresponding in-depth inquiries elicited more compre-
hensive responses from GPT-4V.

Overall performance. We calculated the percentages of true statements
for each case based on the annotations provided in Supplementary Notes
S1–S4. As indicated in Fig. 2, the “RNA” case achieved the highest
accuracy levels (95.1 ± 1.3%). This may be attributed to the prevalent use
of the RNA-Seq technique and the routine nature of the analyses covered
in the figure, potentially leading to more effective training of GPT-4V to
interpret such figures. Conversely, the overall accuracies from the other
three case studies were less impressive, ranging from 64.4 ± 0.1% in the
“ZNF71” case to 77.3 ± 5.9% in the “YY1” case (Fig. 2). A noteworthy
observation in the “ZNF71” case was the consistent misspelling of
“CD27” as “CD271” and “IKBKB” as “IKKBK” (Supplementary Notes
S2), which accounted for 40–55% of the false statements. This type of
error, only presented in the “ZNF71” case, was a key contributor to its
lower accuracy rates: by excluding those statements, the adjusted accu-
racy increased to 79.2 ± 2.8%.

Performance by category. The six categories derived from the quali-
tative analyses were found in all cases. The summative indexing tables
(Supplementary Tables S1–S4) effectively organized statements by
category and replicate for each case study. Notably, 23.3% of the state-
ments spanned two categories, and 1.5% intersected three categories. For
simplicity, the true/false status of these overlapping statements was
independently assessed in each category during their allocations in the
summative indexing tables (see Fig. 1b for an example).

Supplementary Table S6 details the counts of true and total statements
for each category and case study combination. This calculation consolidated
replicates from eachcase to ensure a sufficient statement count per category.
Statement accuracy for each case study, sorted by category, is visualized in
Fig. 3a. These results highlighted GPT-4V’s proficiency in plot type
recognition and domain knowledge recall, with accuracies surpassing 85%
in all cases (Fig. 3a left two columns). Significantly, these accuracies were
markedly higher (p-value < 0.05; t-test) than those for Color Perception,
which consistently showed accuracies below 60% across all cases (Fig. 3a,
third column).

Statements in the Positional Inference category describe spatial
relationships of visual elements or extract numerical values inferred
from coordinate axes. The “RNA” case exhibited a high accuracy of
89.3%. However, its accuracies in the “Clonal” (61.7%) and “YY1”
(53.1%) cases were notably lower (Fig. 3a; fourth column). Regarding
the Counts category, we observed a bimodal distribution in accura-
cies: high in the “RNA” (88.9%) and “ZNF71” (100%) cases, while
low in the “YY1” (57.9%) and “Clonal” (37.2%) cases (Fig. 3a fifth
column). A closer inspection revealed that the counting tasks in the
“RNA” and “ZNF71” cases were relatively simple, while the “Clonal”
and “YY1” cases represented complex scenarios with multiple groups
and/or overlapping with issues in color perception.

Statements under the “Others” category predominantly were sugges-
tions for improving figure presentation or summative sentences of previous
statements. In this category, the “RNA”, “Clonal”, and “YY1” cases all
demonstrated accuracies as high as 95% or above, while the “ZNF71” case
displayed a low accuracy of 72.7% (Fig. 3a; sixth column). This “ZNF71”
casehadonly eleven statements in this category.Moreover, all the inaccurate
statements were attributed to the consistent misspelling of “CD27”
as “CD271”.

Performance by category across replicates. To assess the robustness
of performance across replicates, we defined a replicate’s performance in
a specific category as unsatisfactory if its accuracy falls below 80%, mir-
roring a concerning “C” grade in graduate-level evaluation. For each
category in every case study, we tabulated the numbers of correct and
total statements for each replicate in SupplementaryTable S7. To ensure a
robust analysis, our focus was on replicates with at least six statements in
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the relevant category and case studies with at least two such replicates.
Figure 3b–f illustrates the accuracies for all case studies sorted by cate-
gories, with key observations summarized as follows:
1. Plot Recognition: All replicates showed satisfactory performance for all

cases (Fig. 3b).
2. Domain Knowledge: All replicates showed satisfactory performance

for all cases (Fig. 3c).
3. ColorPerception:All replicates showedunsatisfactoryperformance for

all included cases (Fig. 3d).
4. Positional Inference: Unsatisfactory performance was prevalent across

replicates except for those from the “RNA” case (Fig. 3e).
5. Counts: All replicates showed unsatisfactory performance for all

included cases (Fig. 3f).

We next explored to what extent GPT-4V may repetitively fail to
address a question. To this end, we summarized 52 specific sub-

questions by reviewing all incorrect statements (Supplementary Table
S8). A response to a sub-question in a replicate was deemed incorrect if
it contained one or more inaccurate statements. Our observations
revealed the following (Supplementary Table S8): 77.8% of responses
to sub-questions in the Color Perception category were consistently
incorrect across replicates, followed by Counts (75.0%) and Positional
Inference (55%). In contrast, the percentages of consistent, inaccurate
responses in the Plot Recognition, Domain Knowledge, and Other
categories were lower, at 37.5%, 25.0%, and 20.0%, respectively. This
indicates that GPT-4V’s responses in the Color Perception, Counts,
and Positional Inference categories, when incorrect, tend to be more
persistently incorrect compared to those in the Plot Recognition,
Domain Knowledge, and Others categories (p-value = 0.01; two-sided
t-test).

This replicate-based analysis underscored the competency of GPT-
4V’s responses in plot recognition and citing domain knowledge. However,

a b

“two groups”

“Survival Analysis” 
“Kaplan-Meier”

“red line”
“green line”

Chitchat

An input figure & 
Prompts

<case id-replicate number-statement number>

Part of input figure

Extracts of GPT4-V’s response

Fig. 1 | Analytical framework for summarizing GPT-4V’s responses into a
summative indexing table for quantitative analysis. aWorkflow to illustrate the
process from the figure and prompt input toGPT-4V, followed by parsing responses
into statements and indices, annotating with true/false color codes, culminating in a
summative indexing table with categories. b Example using GPT-4V’s explanation

of plot type in a sub-panel from the “ZNF71” case study to demonstrate statement
generation, index creation, true/false annotation, categorization, and allocation in a
summative table. Color Coding: Black for non-informative chitchats; blue for correct
statements; and red for incorrect statements, with curly-bracketed comments on
inaccuracies. Oval text: GPT-4V quotes used for category determination.
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it confirmeda significant limitationofGPT-4V inperforming tasks for color
perception, positional inference, and counts, with consistently poor per-
formance across replicates and cases.

Confirmationbias. During the quantitative evaluation of the “YY1” case,
we noted a substantial number of instances where GPT-4V applied valid

domain knowledge to rationalize flawed observations, a phenomenon
known as “confirmation bias”24. This occurred in about 5–15% of the
statements that cited valid domain knowledge from the in-depth inqui-
ries. Specific instances included statements 22, 25, 29, 49, 53, 56, 86, 218,
220 from replicate one; statements 27, 29, 57, 61, 64, 93, 95, 96, 98, 100,
102, 207, 220, 222 from replicate two; and statements 29, 64, 91, 95 from
replicate three (Supplementary Table S4). A notable example was in the
interpretation of the “I” regions from replicate two: GPT-4V inaccurately
identified them as intronic regions rather than inactive promoters and
interpreted them as intronic enhancers (as in the statement “<4-2-95>”),
with further explanations about their functions in transcription regula-
tion (“<4-2-96>”), alternative splicing (“<4-2-98>”), and 3D chromatin
organization (“<4-2-100>”). This finding underscored the essential role
of a human-in-the-loop approach to mitigate potential misinformation
from “confirmation bias” and ensure accuracy fromGPT-4V’s assistance
in figure interpretation.

Discussion
Data visualization is crucial in conveying results from bioinformatics ana-
lyses. LLM chatbots such as ChatGPT have demonstrated an ability to
transform natural language prompts into relevant visual representations
through coding25,26. The newly introduced feature of ChatGPT to take image
inputs, namely GPT-4V, offers a promising avenue for identifying patterns
within the image, offering interpretations, summarizing findings, and
beyond27. However, interpreting bioinformatics figures demands specific
domain knowledge, an area where the chatbot might not be thoroughly

Fig. 3 | Statement accuracy stratified by category. a Accurate statement percen-
tages by category, aggregated by replicates from each of the four case studies: “RNA”
(circle), “ZNF71” (square), “Clonal” (triangle), “YY1” (diamond). P-values from
two-sided t-tests indicated as *p < 0.05, **p < 0.01, ***p < 0.001. b–f Accurate

statement percentages for each replicate across case studies, categorized into plot
recognition (b), domain knowledge (c), color perception (d), positional inference
(e), and counts (f). Color coding for replicates: Blue for replicate 1, Red for replicate
2, and Green for replicate 3.

RNA

ZNF71

Clonal

YY1

Accuracy

90%

80%

70%

Rep1         Rep2      Rep3

95.5%

64.4%

68.8%

73.1%

93.7%

64.6%

65.4%

74.9%

96.2%

64.3%

74.5%

84.1%

(84/88)

(29/45)

(75/109)

(122/167)

(89/95)

(31/48)

(66/101)

(122/163)

(102/106)

(27/42)

(76/102)

(137/163)

Fig. 2 | Statement accuracy by replicate and case study. Columns represent each
replicate, while rows depict the four case studies: “RNA”, “ZNF71”, “Clonal”, and
“YY1”. Accuracy levels indicated by color gradient: higher accuracy in yellow, lower
accuracy in deeper shades of purple.
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trained. Additionally, chatbots exhibit tendencies toward “hallucinations”
when navigating tasks outside their training scope. Considering these factors,
a systematic assessment becomes urgent to discern the strengths, weaknesses,
and potential pitfalls of utilizing chatbots for interpreting scientific figures.

We carefully designed four use cases to assess various aspects of GPT-
4V’s capability in interpreting bioinformatics scientific figures. Our quali-
tative analysis identified six categories to characterize GPT-4V’s responses
in figure interpretation. This categorization laid down a common basis for
subsequent quantitative analyses, identifying GPT-4V’s strengths and
weaknesses in interpreting scientific figures.

The four case studies encompassed a diverse type of plots, including
scatter plots, bar plots, box plots, dot plots, PCA plots, volcano plots, KM
survival plots, interaction networks, bell plots, circle-packing plots, tree
plots, and multi-track genome browser image. Notably, GPT-4V adeptly
recognized these different plot types and elucidated key elements within the
plotwith an accuracy variation from85% to100%across cases.On the other
hand, another chatbot, Bard, often struggled to discern the plot type (data
not shown). Hence, we focused our assessments on GPT-4V.

Correctly explaining bioinformatics figures requires domain-specific
knowledge. Our testing indicated that GPT-4V taps into existing biological
knowledge to interpret results,with anaccuracy variation from85% to100%
for citing valid domain knowledge across cases. Even in initial inquiries
without detailed instructions in the “YY1” case study, the chatbot referenced
the active H3K4me3 and repressive H3K27me3 histone modifications to
elucidate the transcriptional status of YY1; it further referred to H3K27ac-
decorated regions as enhancers and combined with chromatin interaction
data to support their transcriptionally regulatory role onYY1. In the “RNA”
case, when prompted to combine literature for interpretation, the chatbot
cited the canonical negative feedback loop between SOCS3 and cytokine
signaling to explain SOCS3’s transcriptional activation. It then deduced that
up-regulated geneswereused for pathway enrichment analysis by citing that
cytokines activate one of the top hits—the JAK-STAT signaling pathway.
However, GPT-4V may need to be explicitly prompted to cross-refer with
existing knowledge; otherwise, its feedback remains predominantly cen-
tered on the direct content of the illustrations.

The presence of “confirmation bias” in GPT-4V’s responses—where
valid domain knowledge is used to justify invalid observations—is of par-
ticular concern. Unlike errors in color perception, positional inference, or
counting, which can be readily identified from a figure by human eyes,
statements from “confirmation bias” are problematic for those without the
requisite expertise to detect such biases, making them susceptible to being
misled by these plausible responses. This aspect of GPT-4V’s limitation
highlights the crucial need for a human-in-the-loop approach to ensure that
GPT-4V’s responses are critically evaluatedby expert knowledge rather than
accepted at face value.

Color differentiation is a fundamental aspect of figure representation.
Our analysis revealed that GPT-4V’s weakest performance was in color
perception compared to other categories. This trend of poor performance
was consistent across replicates, irrespective of the number of colors used—
be it two colors in theK–Mplot from the “ZNF71” case, three in the volcano
plot from the “RNA” case, or four in the scatter plot from the “Clonal” case.
Furthermore, the performance did not vary based on the type of colors used.
Fortunately, color perception is generally straightforward for humans,
making it possible to provide feedback to the chatbot for corrections.
However, we found that the effectiveness of the chatbot in correcting these
errors heavily relies on the specificity of the feedback, which could be sub-
jective.Consequently,wedidnot includehuman feedback inour assessment
to avoid artificially inflating the performance metrics.

In bioinformatics figures, manual adjustments are frequently made to
enhance the content presentation. This is the case in several plots of our
design: the highlighted genes in the volcano plot, the patient group anno-
tations in theK–Mplot, and the emphasized chromatin interactionhotspots
in the WashU genome browser image. Interpreting these manually edited
elements demands quantitative analysis, particularly by assessing their
positional relationships to other visual elements. GPT-4V struggled in this

challenge as well: It could not accurately determine the coordinates for the
indicatedgenes (JUNB and SOCS3) in the volcanoplot, nor could it correctly
associate patient group annotations with their respective color-coded sur-
vival curves in the K–Mplot. Its attempt to identify genomic regions linked
to interaction hotspots was unsuccessful. Our further quantitative analysis
reaffirmed GPT-4V’s limited performance in Positional Inference, ranking
it as the second most common limitation after color perception. These
findings underscored the need for further refinement of GPT-4V in inter-
preting complex, manually edited elements in bioinformatics figures.

We further evaluated GPT-4V’s proficiency at summarizing illustra-
tions by prompting it to craft figure legends and summative paragraphs.
Major issues included inaccuracies in listing replicate numbers, mis-
identification of colors in the legend, and omissions of plot markers. GPT-
4V’s summary paragraphs were lack of details. During the in-depth
assessments, while the chatbot did include details, it occasionally reflected
errors made in early responses. This was particularly evident in the “YY1”
case study: the summary cited marked regulatory regions from the plot but
mischaracterized their interacting relationship with the YY1 promoter or
provided misleading interpretations for individual regions. Thus, while
GPT-4V is equipped to draft figure legends and summaries, rigorous
manual proofreading and detailed revision are indispensable to ensure
accuracy and prevent the dissemination of misleading information.

The present study has its limitations. Our evaluations were based on
four use cases, with further extrapolation to other topics necessitating col-
laboration with experts in relevant domains. Our qualitative and quanti-
tative evaluations, however, do illuminate consistent themes regarding
GPT-4V’s performance in interpreting bioinformatics figures: While the
chatbot demonstrated proficiency in explaining various plots and citing
domain knowledge, it struggled with color perception and quantitative
analysis of visual elements.Additionally,while it candraftfigure legends and
offer summaries, human proofreading is paramount to mitigate “con-
firmation bias” and ensure accuracy and depth in interpretations. It’s also
crucial to acknowledge that our primary aimwas to establish a performance
baseline for GPT-4V, focusing on its inherent strengths and limitations
without resorting to external enhancements such as providing feedback.
Prompt engineering27–29 also holds significant promise in enhancing per-
formance. However, most existing prompt engineering techniques are tai-
lored for text inputs.Their effectiveness for image inputs, especially scientific
figures, is not yet well-established. We believe that this gap in knowledge
presents an exciting opportunity for future research.

In conclusion, our assessments revealed that ChatGPT exhibited
significant promise in deciphering bioinformatics scientific figures.
Nevertheless, it faces challenges, especially in interpreting colors and
conducting quantitative analyses. To harness ChatGPT’s full potential in
this direction, human oversight is indispensable for the validation and
refinement of its outputs. Our analysis also underscored the need for
similar evaluations when extending the image-reading capability of the
chatbot to other critical domains such as medical diagnosis. As we
progress, infusing chatbots with domain-specific expertise, human
feedback, and image-input-specific prompts will be pivotal in enhancing
the quality of their responses.

Methods
Source of data and procedure of figure generation
Gene expression data used for the “RNA” case study was sourced from our
previous work20. This case specifically contrasted the RPMI8226, a multiple
myeloma (MM) cell line, in trans-well coculture with BMSCs (T) against its
monoculture (M). Gene expression values, expressed as Reads Per Kilobase
of exon perMillion readsmapped (log2)

30, were used to generate a principal
component analysis (PCA)plot. Fold change (FC) in expression (T/M; log2)
and false discovery rate (FDR; ‒log10), which measures the significance of
differential expression, were utilized to craft a volcano plot. Additionally, a
dot or bubble plot illustrating hits in pathway enrichment analysis for up-
regulated genes (log2FC > 1 and FDR < 0.05) was produced using
ShinyGO31.

https://doi.org/10.1038/s41698-024-00576-z Article

npj Precision Oncology |            (2024) 8:84 6



For the “ZNF71” case study, gene expression data with survival
information from 194 patients of NSCLC32 were used to generate
Kaplan–Meier (K–M) curves. We combined gene expression data and
PRISM drug screening data of NSCLC cell lines from the DepMap data
portal33 to relate docetaxel-sensitivity with ZNF71 KRAB expression and to
examine the correlation between drug response andCD27 expression. Gene
expression of tumors and cell lineswere expressed as transcripts permillion
(TPM). We applied the Boolean implication network algorithm34 to con-
struct gene association networks within the context of tumors and normal
tissues adjacent to the tumors (NATs) using Xu’s lung adenocarcinoma
(LUAD) cohort35.

For the “Clonal” case study, somaticmutations in a pair of primary and
recurrent tumors fromanMMpatient (ID: 1201) in theMMRF-CoMMpass
study were sourced from the GDC data portal36. Clonal and subclonal
mutations were identified using the MAGOS method37. The relative pre-
valence of (sub)clones and their evolutionary relationships were inferred
using the ClonEvol method38.

For the “YY1” case study, a screenshot for gene expression, genomic
distributions of histone modifications, and chromatin–chromatin interac-
tions in the genomic region encompassing YY1 in GM12878 was sourced
from the WashU Epigenome Browser39. Specifically, the Chromatin
immunoprecipitation followed by sequencing (ChIP-seq) data for histone
modifications H3K27me3, H3K4me3, and H3K27ac, along with strand-
specific RNA sequencing (RNA-Seq) for gene expression, were loaded from
the Encyclopedia of DNA Elements (ENCODE) data hub. The Proximity
Ligation-Assisted ChIP-Seq (PLAC-seq) data for chromatin–chromatin
interactions was loaded from the 4D Nucleome (4DN) Network. Regions
denoting active and inactive chromatin domains, as well as key areas of
chromatin–chromatin interactions, were annotated manually.

Inputfigures toGPT-4V from the above four case studieswere listed in
Supplementary Figs. S1–S4. Legends of the figures were drafted by the
authors. Additional case background and our interpretations of the figures
were provided in Supplementary Methods S1 as references.

Prompts for ChatGPT
We instructed GPT-4V to function as a bioinformatics expert for each case
study, introducing the researchquestionassociatedwith eachfigure at ahigh
level to offer context. GPT-4V’s interpretive capabilities may be demon-
strated under two assessmentmodels. In the basalmodel, GPT-4V operated
with minimal guidance to provide an overview of a figure, while in the in-
depth model, it was guided through a sequence of questions addressing
details. The questions were prompted to the chatbot one by one, which
yielded more detailed responses compared to prompting all questions at
once.At the conclusionof each evaluation,GPT-4Vwasoptionally tasked to
draft a figure legend and a summary paragraph for the figure. Prompts used
for each case study were detailed in Supplementary Methods S2. We
repeated each assessment three times using theweb interface of ChatGPT-4
Plus (version dated Sep 25, 2023). All experiments were conducted under
the default settings of ChatGPT-4 Plus.

Summative indexing tables for quantitative assessment
We compiled chat histories from each case study into a unified docu-
ment (Supplementary Notes S1–S4). This process began with the seg-
mentation of GPT-4V’s responses into discrete statements using Spacy
v3.6.140. Subsequently, these statements were indexed in a sequential
manner to facilitate easy referencing. The indexing format adopted is
<Case-Replicate-Statement>. In this format, “Case” represents the case
study number, with 1 for “RNA”, 2 for “ZNF71”, 3 for “Clonal”, and 4 for
“YY1”. The term “Replicate” indicates the replicate number, which can
be either 1, 2, or 3. “Statement” corresponds to the statement’s sequential
position within a specific replicate of a case study. For example, the third
statement (3) in the second replicate (2) of the “RNA” case study (1) is
indexed as <1-2-3>. Furthermore, a letter “B” is appended to the “Case”
slot if the chat history originates from prompts associated with the basal
assessment model.

Each statement froma chat historywas then assigned a color code based
on evaluation outcome: blue signifies true statements, red indicates false
statements (with specific errors highlighted in yellow), and black denotes
statements that were excluded from the assessment, such as chitchat (small
talk or gossip). Additional explanations were provided following the state-
ments classified as false to offer clarity on the nature of their inaccuracies.

To facilitate quantitative assessment, we summarized six categories to
characterize statements from GPT-4V:
1. Plot recognition: Statements that identify and/or explain plot types.
2. Domain knowledge: Statements that utilize external knowledge to

interpret results.
3. Color perception: Statements that perceive colors of visual elements.
4. Positional inference: Statements that analyze the positional relation-

ships between visual elements.
5. Counts: Statements that count the number of visual elements.
6. Others: Statements that do not fall into the above five categories.

A summative indexing table was then generated for each case study
(Supplementary Tables S1–S4). This table documents the categorization of
statements, their true/false status, and their origins from replicates and
panels. In instances where a statement falls into multiple categories, it is
assigned a true/false status for each category independently.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Code availability
Prompts and GPT-4V transcripts are in Supplementary Methods S2 and
Supplementary Notes S1–S4 of the manuscript.
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