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Schizophrenia is a serious and complex mental disease, known to be associated with various subtle 
structural and functional deviations in the brain. Recently, increased attention is given to the analysis 
of brain‑wide, global mechanisms, strongly altering the communication of long‑distance brain areas in 
schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were 
analyzed. Two minutes long 64‑channel EEG recordings were registered during resting, eyes closed 
condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in 
lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC‑
c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network 
topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have 
weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, 
the result of lower diameter, higher leaf number, and also higher maximum degree and maximum 
betweenness centrality in patients suggest a star‑like, and more random network topology in patients 
with schizophrenia. Our findings are in accordance with some previous findings based on resting‑state 
EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less 
optimal, more centralized organization.

Cortical dysconnectivity is often regarded as a core dysfunction in  schizophrenia1. Altered connectivity between 
different brain areas is related to aberrant synaptic plasticity caused by anomalies in multiple neurotransmitter 
 systems2–4. Functional connectivity refers to statistical associations between neurophysiological time series data 
of remote neural  populations5–7. By analyzing resting-state EEG it is possible to investigate intrinsic, spontaneous 
functional connectivity in a task-free  condition8.

Regarding the strength of functional connectivity between remote brain areas, quite heterogeneous results 
have been found in schizophrenia: both increased and decreased as well as unchanged connectivity have been 
observed during rest in patients, depending on the areas  analyzed2,9. Various methods (phase-based8,10–13 and 
amplitude-based14) have been used to compute  coherence15,16 or  correlation14,17 between data registered from 
different brain areas either on the source  level8,14,16 or on an electrode  level10,11,13,17.

Concerning the delta frequency band, previous studies generally found no difference in the strength of con-
nectivity in patients compared to controls at the electrode  level11,18, or alternatively, weaker delta connectivity was 
found in the patient  group19. On the other hand, either no  difference18 was found in the theta band or  increased11, 
or even decreased  connectivity17 was reported in patients with schizophrenia. Besides these, lower connectivity 
strength was reported in patients in the alpha band in a number of articles and it appears to be the most stable 
and robust result across  studies2,9,11,17,18. While typically no difference was found in the beta  band2,11, results are 
somewhat ambiguous, as besides no difference, both increase and decrease in beta band connectivity have been 
 found2,13,18. In gamma, the results are not clear, they seem to depend on the method used to quantify the strength 
of connectivity and on the examined  areas2,8,9,13,14,17.

In general, some findings suggest the presence of decreased functional connectivity in delta and alpha bands, 
and increased connectivity in the beta and gamma bands in patients with  schizophrenia19, however the work of 
Olejarczyk &  Jernajczyk19 also shows that the results obtained can be dependent on the choice of connectivity 
measure and reference electrode, and the heterogeneity of results can as well be partly caused by heterogeneity 
(in terms of demographic and clinical factors) of the patient groups enrolled. Evidence of weaker functional 
connectivity strength was also found in a number of studies using functional  MRI20–22.
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In order to explore the overall patterns of whole-brain functional connectivity—i.e. communication patterns 
between remote brain areas—graph-theoretical analyses are applied. Recently, the Minimum Spanning Tree 
(MST)  approach23,24 is becoming increasingly widely used as it allows a simplified, and an unbiased network 
representation, making it more appropriate for the comparison of networks obtained from distinct populations 
of subjects, networks differing in  density20,25. However, since MST graphs do not contain any loops, certain 
aspects of network organization, described in this paper (such as clustering and modularity), cannot be directly 
 examined24.

Regarding global network organization, two extremes can be distinguished: path-like (or line-like) and star-
like  topology26. In a path-like (segregated, i.e. minimally integrated) network, all nodes are linked to two other 
nodes, except for the two end nodes that only have one connection. These nodes are referred to as the leaves. 
In a star-like (maximally integrated) configuration, on the other hand, all nodes except for one are linked to a 
central  node26. In this example, we have many leaf nodes and one central hub node. Between these two extremi-
ties, different configurations can occur such as healthy brain topology.

The network organization in a healthy brain is characterized by small-worldness and modularity. Small-
worldness refers to the balance between local segregation (selective, region-specific information processing) 
and global integration (convergent information processing) that ensures the most efficient information flow 
between brain areas with minimum  cost26,27. Modules are functionally specialized groups of nodes that are 
densely intraconnected and sparsely interconnected with nodes of other modules in the network. These modules 
are hierarchically organized, and the efficient communication between specialized and relatively segregated 
modules is ensured by some prominent hubs that are likely to form connections with each other (“rich clubs”)27. 
In the optimal network, segregation and integration processes are balanced out, a hierarchical structure emerges, 
where the presence of relatively low number of leaf nodes prevents from hub overloading, and at the same time, 
multiple central or prominent hub nodes create rich clubs for efficient information  flow26.

This modular, hierarchical, balanced, cost-efficient organization of the functional network (e.i. small-world 
topology with rich clubs) ensures optimal information processing in the healthy brain. However, different neu-
rological and psychiatric conditions are characterized by distinct patterns of altered connectivity and biased 
network  topology27. The balance between segregation and integration have been found to be compromised in 
diseases as  ADHD28, Multiple  sclerosis29, Major Depressive  Disorder30, Bipolar  disorder20, Alzheimer’s  disease31, 
and  schizophrenia11. Network analysis has been deemed particularly useful for diagnostic purposes in dementia 
and  epilepsy27.

Previous results, however, regarding functional network topology in patients with schizophrenia are mixed. 
Both disrupted integration (decentralization)32,33, and increased integration (centralization)10–12,19,22,34 have been 
found in patients with schizophrenia. This heterogeneity may be partly accounted for by methodological issues 
and various differences between the studies and patient  groups19. However, the most recent results using the 
unbiased MST method tend to point to higher global integration, centralization in schizophrenia (i.e. a more 
star-like topology with many leaf nodes and a few overloaded hubs)11. Increased randomness is also often found 
in the patient population, which means that the formation of rich clubs is less likely as central nodes tend to be 
linked to leaf nodes directly. It is associated with dysmodularity, disturbance of the modular organization in the 
network topology of  patients17,22,34,35.

In line with these findings, we hypothesized that the global functional network configuration of patients 
with schizophrenia would be biased towards integration. Based on the literature, we further hypothesized that 
the overall average connectivity strength would be weaker in the patient group, especially in the alpha fre-
quency band. Schizophrenia is a characterized by serious executive  deficit36 that has been found to be related 
to  defrontalization36, inspired by the work  of11, we have also decided to compare average values of betweenness 
centrality (i.e. an indication of global importance) of anterior and posterior nodes—along with global average 
values of node importance—between the two groups. In order to get further insights regarding the nature of 
functional network abnormalities in schizophrenia, we have also analysed the randomness of the network in 
terms of increased disassortativity.

Materials and methods
Participants
The study took place in the Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, 
Hungary. EEG was recorded from 37 patients with schizophrenia and 37 healthy control participants during 
resting but due to artifacted recordings, data of 32 patients (male = 31.3%, average age = 33.2, SD = 10.8) and 28 
controls (male = 40.7%, average age = 34, SD = 10.2) were included in the analysis. Demographic and clinical 
data are shown in Table 1. 

The study was approved by the Regional and Institutional Committee of Science and Research Ethics, Sem-
melweis University, Budapest, Hungary (registration number: 197/2015, date: October/05/2015). Participants 
gave their written informed consent before the procedures. The experiments were carried out in full compliance 
with the Helsinki Declaration.

EEG recording and processing
During EEG examinations participants were seated in a dimly lit, sound-attenuated room. EEG was recorded 
from DC using a 64-channel Neuroscan amplifier. Due to huge artifacts, 9 channels were eliminated. The analyzed 
channels were: FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, Fz, F4, F6, F8, FT7, FC5, FC3, FC1, FC2, FC4, FC6, FT8, T7, 
C5, C3, C1, CZ, C2, C4, C6, T8, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, 
PO5, PO3, POZ, PO4, PO6, PO8, O1, Oz, O2. Electrode caps had an equidistant layout and covered the whole 
head according to the Neuroscan montage. Eye movements were monitored with EOG electrodes placed below 
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the left and above the right external canthi. Data were digitized at a sampling rate of 1000 Hz. Built-in and self-
developed functions as well as the freeware EEGLAB  toolbox37 in the Matlab (MathWorks, Natick, MA) devel-
opment environment was used for subsequent off-line data analyses. The 2-min EEG segments were evaluated 
for huge artifacts. As all subject’s data segments had to be of the same length, and the channels chosen for the 
analysis also had to be the same (since interpolation was not used), we set some limits prior to data inspection: 
participants, who did not have at least seven usable 8 s long segments (segments with no large artifacts) were to 
be rejected. Recordings were inspected by two investigators independently. Rejection was done based on visual 
inspection. Segments without huge artifacts were marked. Data was then filtered between 0.3 and 200 Hz, using 
zero-phase shift forward, and reverse IIR Butterworth filter. Narrow band stop filters were also applied for the 
following frequency ranges: 49.5–50.5 Hz, 99.5–100.5 Hz, 149.5–150.5 Hz, 199.5–200.5 Hz. After that, EEG was 
epoched to 8 s segments, and ICA (Independent Component Analysis) was applied to the epoched recordings. 
This way, the same components were removed across segments. Data was resampled to 512 Hz. Automatic artifact 
removal was done with MARA (Multiple Artifact Rejection Algorithm)38 to remove muscle, blinking, and eye 
movement artifacts. After artifact rejection, EEG was re-referenced to the common average, and uniformly 7–7 
clean 8 s long epochs were selected for each participant. After applying MARA, on average, approximately 20 
independent components remained in the EEG data, and no significant between-group difference was found in 
the number of independent components after artifact rejection (t = − 0.99; p = 0.324). As a final step, clean data 
were exported in asci format for analyses.

EEG data analysis
After artifact rejection, EEG connectivity analyses were performed with open-access software BrainWave (ver-
sion 0.9.152.12.26; available at http:// home. kpn. nl/ stam7 883/ brain wave. html [accessed on 18 May 2021]) on 
epochs of 8-s duration (sampling rate 512 Hz, 4096 time points). In low-frequency bands (delta and theta), the 
strength of functional connectivity between each EEG channel was analyzed by weighted phase-lag  index39. For 
higher frequency bands (alpha, beta, low and high gamma) connectivity strength was evaluated by measuring the 
amplitude envelope correlation with leakage correction (AEC-c)6 calculated for all EEG epochs of each subject, 
after having band-pass filtered the EEG time-series in the delta (0.5–4 Hz), theta (4–7 Hz), alpha (7–13 Hz), beta 
(13–30), lower gamma (30–48 Hz) and higher gamma (52–70 Hz) frequency bands.

The Phase Lag Index measures phase synchronization based on the asymmetry of the distribution of instan-
taneous phase differences between two  signals40. This distribution is weighted by the magnitude of the imaginary 
component of the cross-spectrum in the weighted version of the PLI. Previous research found that the weighted 
version of the PLI is superior to the original metric in finding connections between EEG time series data, as it 
is less sensitive to noise and better controls for the effect of volume conduction (for further details, please see 
the study on the weighted Phase Lag Index by Vinck and  colleagues39). The leakage-corrected version of the 
Amplitude Envelope Correlation (AEC-c) measures the linear correlation of the envelopes of band-pass filtered 
signals by first applying pair-wise symmetric orthogonalization (linear regression analysis) to the time-series 
data, in order to remove zero-lag correlations caused by volume  conduction6.

Connectivity metrics were averaged over epochs for each participant. Global functional connectivity values 
were calculated by averaging connectivity strength of all electrodes. The choice of using a phase-based connec-
tivity measure in lower frequencies, and a correlation-based metric in medium and higher frequency bands was 
motivated by a recent work of Briels and  colleagues5,41. It was found by them that AEC-c outperformed PLI in 
terms of validity and reproducibility in higher frequency bands (alpha and beta) but PLI showed reproducible 
effects in the theta band in Alzheimer’s disease.

To determine epoch length, we relied on the literature. Previous data shows that MST parameters stabilize at 
1–6 s if the MST is based on PLI, and at 4–8 s if it is based on  AEC42. Furthermore, 8-s segments were used in a 
similar study by Krukow and  colleagues11 as well.

Table 1.  Demographic data of the study groups, and clinical information of the patient group. *Education 
level: 1 = elementary school/ 2 = high school/ 3 = college/university. CPZ = chlorpromazine equivalent dose. 
PANSS = Positive and Negative Symptoms Scale.

Patients Controls

Statistics p-value

Group (n = 32) Group (n = 28)

Mean (SD) Mean (SD)

Gender (male %) 31.3% 40.7% Chi2 = 0.58 0.448

Age (years) 33.22 (10.78) 34.04 (10.24) t = 0.299 0.766

Education level (%)* 9.4%/59.4%/31.2% 0%/66.7%/33.3% Fisher’s exact test 0.396

Illness duration (years) 7.59 (8.33) –

CPZ equivalent dose (mg) 447.8 (353.3) –

PANSS total 64.13 (19.51) –

PANSS positive 15.07 (4.96) –

PANSS negative 16.7 (6.06) –

PANSS general 32.37 (10) –

http://home.kpn.nl/stam7883/brainwave.html
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Graph‑theoretical analysis
In order to analyze global functional network characteristics in the two study groups, the graph-theoretical rep-
resentation of the functional connectivity matrix was created by the Minimum Spanning Tree (MST) algorithm. 
MST is a simplified representation of the core network containing the strongest and most relevant connections, 
where all nodes (in our case, electrodes) are connected without forming  loops23,26. The advantage of the MST 
approach lies in the fact that it overcomes the bias of network density and degree making it more suitable for 
between-group (e.g. patient vs. control)  comparisons11,20. MST graphs were generated for each participant, each 
analyzed frequency band, and epoch separately, based on the connectivity matrices (wPLI, AEC-c) previously 
obtained for each pair of electrodes.

Although, a number of parameters can be computed from the MST graph, these parameters are somewhat 
redundant as most of them are highly correlated to each other. For this reason, we have chosen to concentrate on 
the analysis of four measures: diameter, leaf fraction, maximum degree centrality and maximum betweenness cen-
trality (measures of functional integration), and assortativity (as measure of randomness and network resilience). 
The diameter is the longest distance (i.e. maximum number of edges) between any two nodes of the network nor-
malized by the total number of connections in the tree. Low diameter means that information spreads efficiently 
across remote nodes. Leaf fraction is the number of nodes with only one connection divided by the total number 
of nodes of the tree. Diameter is inversely related to leaf number, so it decreases when leaf number increases. 
Degree is computed for each node, and it refers to the number of edges connected to the node. The nodes with 
high degree are referred to as hubs. Degree of the node with the highest degree (maximum degree centrality) 
gives the strength of the most important node in the network. Betweenness centrality (BC) was also computed 
for each node. It is the fraction of all shortest paths that pass through a particular node. Maximum BC indicates 
the importance of the most central node (the node most important for global communication). It is a measure 
of centrality of the network  organization23,26. Low diameter, high leaf fraction, and high maximum betweenness 
centrality suggest elevated integration processes, and a more centralized, star-like network  organization26 (Fig. 1).

We also decided to analyze network assortativity, to compare the amount of randomness of the network 
structure between the two study groups. Assortativity refers to the correlation between node degrees. The more 
negative the correlation, the more dissassortative (randomly organized) the network structure  is43.

Besides maximum BC, global average BC (mean BC of all channels) was also computed, and average regional 
BC was assessed separately for anteriorly (FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, FZ, F4, F6, F8, FT7, FC5, FC3, 
FC1, FC2, FC4, FC6, FT8) and posteriorly (P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3, POZ, PO4, PO6, 
PO8, O1, OZ, O2) located channels as well 11.

MST parameters were computed with the Brainwave software (version 0.9.152.12.26; available at http:// home. 
kpn. nl/ stam7 883/ brain wave. html). Network parameters were averaged across epochs.

Statistical analysis
EEG variables were compared between the study groups with Welch independent samples t-tests. Statistical 
significance was determined at p < 0.05. FDR correction for multiple comparisons was  applied45 simultaneously 
to all frequency bands (delta, theta, alpha, beta, low and high gamma) and connectivity/MST measures (e.i. 
global measures: average connectivity, leaf fraction, degree centrality, betweenness centrality, diameter, and 
assortativity), except for the exploratory analyses (regional analyses). To carry out the correction, we used the 
R implementation of the algorithm (package: „stats”, function: „p.adjust”). To characterize the magnitude of the 
effects we reported the values of effect size in terms of Cohen’s d.

Results
Functional connectivity
Significantly diminished average functional connectivity was observed in patients compared to controls in the 
delta (pcorrected = 0.0474) and alpha (pcorrected = 0.0153) frequency ranges (Fig. 2) with medium to large effect sizes 
(for detailed results, see Table 2). On the other hand, there were no statistically significant differences in the 
strength of average functional connectivity in the theta, beta, lower gamma and higher gamma frequency bands.

MST parameters
Diameter
MST diameter was lower in the group of patients in delta (pcorrected = 0.0153), and theta (pcorrected = 0.0474) fre-
quency bands, it was also lower in case of lower gamma but the difference was only significant on a trend level 
after FDR correction (pcorrected = 0.0526). No statistically significant differences were found in the alpha, beta, and 
high gamma frequency bands (Table 2, Fig. 3). For a topological representation of the average MST-s please see 
Figures S1, S2, and S3 in the Supplementary Information.

Leaf fraction
MST leaf fraction was higher in the group of patients in the delta (pcorrected = 0.0115) and theta (pcorrected = 0.027) 
frequency bands. In low gamma band a similar difference was observed, but it did not remain statistically sig-
nificant after FDR correction (pcorrected = 0.0908). Differences in leaf fraction between the two group were not 
significant in the alpha, beta, and high gamma frequency bands (Table 2, Fig. 3).

Maximum degree centrality
MST maximum degree centrality was significantly higher in patients in delta (pcorrected = 0.0474) band. After FDR 
correction, the difference in the theta (pcorrected = 0.0634) and lower gamma (pcorrected = 0.0628) remained significant 

http://home.kpn.nl/stam7883/brainwave.html
http://home.kpn.nl/stam7883/brainwave.html
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Figure 1.  Schematic representation of MST measures (I.) and MST structures (II.). (I. a) Leaf fraction: the 
number of nodes with only one connection divided by the total number of nodes of the tree. (I. b) Betweenness 
centrality: maximum betweenness centrality is the fraction of all shortest paths that pass through the most 
important node for global communication in the tree. (I. c) Degree centrality: maximum degree is the highest 
number of edges connected to a node in the tree. (I. d) Diameter: the longest distance (i.e. maximum number 
of edges) between any two nodes of the network normalized by the total number of connections in the  tree44. 
(II. a) The extreme line-like (minimally integrated) network configuration is characterized by low leaf fraction, 
low betweenness centrality, and high diameter. Segregation processes are dominant in such networks. This type 
of network is inefficient as it takes many steps to transfer information from one node to another. (II. c) The 
extreme star-like configuration (maximally integrated), on the other hand, is characterized by high leaf fraction, 
high betweenness centrality, and low diameter. Although this network is efficient, the central hub can become 
overloaded, and can fail as a result. (II. b) At the center, the intermediate, balanced hierarchical, modular 
configuration is regarded as the optimum, as it ensures effectivity (relatively low diameter) while, simultaneously 
protects against hub overload (relatively low betweenness centrality and leaf fraction). Also, in case of a more 
resilient, less diassortative network, highly connected nodes are likely to be connected to each other, creating 
“rich clubs”11,26,34. 
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on a trend level. Maximum degree centrality did not differ significantly between the study groups in alpha, beta, 
and higher gamma frequency bands (Table 2, Fig. 3).

Maximum betweenness centrality
MST maximum betweenness centrality was higher in the group of patients compared to controls in the lower 
gamma frequency band (pcorrected = 0.027). The differences, however were not statistically significant in delta, 
theta, alpha, beta, and high gamma frequency bands (Table 2, Fig. 3).

Assortativity
Assortativity was lower (i.e. dissasortativity was higher, meaning that high-degree nodes were more likely to 
attach to low-degree nodes) in the group of patients in the delta (pcorrected = 0.0115) and beta (pcorrected = 0.0474) 
frequency bands. The differences in theta, alpha, and lower and higher gamma band were not statistical signifi-
cance (Table 2, Fig. 3).

Further analyses
Mean betweenness centrality
Patients showed higher maximum betweenness centrality in lower gamma while the mean betweenness centrality 
tended to be lower in the patient group (See Table 2 and Table 3).

In delta (p = 0.0034), theta (p = 0.0187) and as well as in lower gamma (p = 0.0119) frequency bands, global 
average betweenness centrality was lower in patients with schizophrenia compared to controls. In case of alpha, 
beta and higher gamma, between-group differences were not statistically significant (Table 3).

As far as the anterior region is concerned, differences between the two groups within the delta (p = 0.0372) 
and theta (p = 0.0316) frequency bands were statistically significant, but in case of alpha, beta, lower and higher 
gamma, the differences failed to reach statistical significance.

Concerning the posterior region, between-group difference in mean betweenness centrality was statistically 
significant in the delta frequency band (p = 0.0176) but differences in theta, alpha, beta, lower gamma and higher 
gamma frequency ranges were not statistically significant.

Discussion
In this study we aimed to examine the strength of global average functional connectivity and functional network 
topology in patients with schizophrenia and healthy controls in resting state. Based on previous results from 
Alzheimer’s  research41, functional connectivity strength between each channel was computed with wPLI in 
lower frequencies (delta and theta), and AEC-c in higher frequencies (alpha, beta, low and high gamma). For 
the analysis of network topology, MST algorithms were applied.

Functional Connectivity Strength
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Figure 2.  Resting-state functional connectivity. Topological representation of functional connectivity 
data (wPLI in delta and theta, and AEC-c in alpha, beta, low- and high gamma). HC = healthy controls, 
SCH = patients with schizophrenia.
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We found weaker global average functional connectivity in delta and alpha frequency bands in patients, 
compared to controls. Whereas no significant between-group differences were found in case of the theta, beta, 
lower and higher gamma frequency bands.

Although some previous findings indicate decreased functional connectivity strength in lower frequency 
bands in general, and increased connectivity in higher  frequencies19, contradicting results also exist, e.g. Kru-
kow and  colleagues11 reported increased average connectivity in theta and decreased connectivity in lower 
alpha, while no differences in other frequency bands were found in the study. It can be seen however that results 
concerning lower frequencies (delta and theta) are less conclusive, and could be a affected by methodological 
 factors2,8,9,11,17, on the other hand, decreased functional connectivity within the alpha range has been found to 
be weaker in patients in the majority of studies irrespective of methodological differences and demographic or 
clinical  variation8,11,16,17,19.

Our findings are in accordance with most results previously reported in the literature. As we hypothesized, 
a particularly robust between-group difference was found in the alpha band (patients < controls). Functional 
connectivity within the alpha band can be particularly important in large-scale communication between distant 
cortical  regions46,47. Alpha activity is related to the coordination of information flow both within and between 
different functional brain  networks46,48. Previous results on resting-state brain activity indicate that during rest, 

Table 2.  Differences between the group of patients and controls in functional connectivity strength, 
maximum betweenness centrality, degree centrality, diameter, leaf fraction, and assortativity. *wPLI in case of 
delta and theta frequency ranges, AEC-c in case of alpha, beta, low and high gamma. Significant values are in 
bold.

Measure Frequency Statistic (t) df SCH versus HC p-value pcorrected Cohen’s d Conf. int (95%)

Connectivity strength*

delta 2.56 57.82 SCH < HC 0.0132 0.0474 0.653473 0.1219 1.1851

theta − 0.79 54.79 0.4320 0.5760 − 0.19979 − 0.7191 0.3195

alpha 3.32 48.52 SCH < HC 0.0017 0.0153 0.878226 0.3359 1.4205

beta 1.33 47.12 0.1892 0.2961 0.353137 − 0.1689 0.8751

gamma_1 − 1.02 49.62 0.3135 0.4341 − 0.25422 − 0.7743 0.2658

gamma_2 − 1.62 48.34 0.1116 0.2009 − 0.40371 − 0.9269 0.1195

MST measures

 Maximum betweenness 
centrality

delta − 1.92 57.97 0.0599 0.1198 − 0.49282 − 1.0186 0.0329

theta − 1.49 57.30 0.1418 0.2320 − 0.37922 − 0.9018 0.1434

alpha 0.48 53.93 0.6315 0.7498 0.12603 − 0.3925 0.6445

beta 0.46 56.34 0.6456 0.7498 0.119924 − 0.3985 0.6384

gamma_1 − 2.96 57.23 SCH > HC 0.0045 0.0270 − 0.76427 − 1.3008 − 0.2278

gamma_2 − 1.30 57.77 0.1974 0.2962 − 0.33294 − 0.8545 0.1886

 Maximum degree centrality

delta − 2.60 53.32 SCH > HC 0.0120 0.0474 − 0.65448 − 1.1861 − 0.1229

theta − 2.31 53.87 SCH > HC 0.0248 0.0634 − 0.58131 − 1.1101 − 0.0525

alpha − 0.26 57.66 0.7977 0.8297 − 0.06569 − 0.5838 0.4524

beta − 0.39 55.38 0.7001 0.7876 − 0.10076 − 0.6191 0.4176

gamma_1 − 2.37 57.37 SCH > HC 0.0209 0.0628 − 0.6047 − 1.1343 − 0.0751

gamma_2 − 1.10 57.02 0.2739 0.3945 − 0.28577 − 0.8064 0.2348

 Diameter

delta 3.33 55.41 SCH < HC 0.0016 0.0153 0.865735 0.3241 1.4073

theta 2.69 57.32 SCH < HC 0.0093 0.0474 0.695235 0.1619 1.2286

alpha − 0.21 57.81 0.8352 0.8352 − 0.05381 − 0.5719 0.4643

beta − 0.69 55.38 0.4954 0.6342 − 0.17857 − 0.6976 0.3405

gamma_1 2.49 52.95 SCH < HC 0.0161 0.0526 0.651196 0.1197 1.1827

gamma_2 0.66 52.93 0.5109 0.6342 0.173347 − 0.3456 0.6923

 Leaf fraction

delta − 3.61 57.95 SCH > HC 0.0006 0.0115 − 0.92744 − 1.4725 − 0.3824

theta − 2.96 57.96 SCH > HC 0.0045 0.0270 − 0.7576 − 1.2938 − 0.2214

alpha − 0.29 57.33 0.7760 0.8297 − 0.07383 − 0.5920 0.4443

beta − 0.25 57.66 0.8067 0.8297 − 0.06337 − 0.5815 0.4548

gamma_1 − 2.10 51.63 SCH > HC 0.0403 0.0908 − 0.55238 − 1.0801 − 0.0246

gamma_2 − 1.80 45.22 0.0780 0.1478 − 0.47975 − 1.0051 0.0456

 Assortativity

delta 3.79 54.54 SCH < HC 0.0004 0.0115 0.957137 0.4104 1.5039

theta 2.28 56.68 SCH < HC 0.0264 0.0634 0.578711 0.0500 1.1074

alpha 2.33 52.24 SCH < HC 0.0236 0.0634 0.611517 0.0816 1.1414

beta 2.57 56.02 SCH < HC 0.0130 0.0474 0.650158 0.1187 1.1816

gamma_1 1.58 56.66 0.1190 0.2040 0.410128 − 0.1133 0.9335

gamma_2 1.99 57.64 0.0514 0.1089 0.512795 − 0.0136 1.0392
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Figure 3.  Between-group differences in average resting-state functional connectivity strength and measures of 
functional network structure. HC = healthy controls, SCH = patients with schizophrenia. * pcorrected < 0.05.

Table 3.  Differences between patients with schizophrenia and controls in mean betweenness centrality. 
Significant values are in bold.

Frequency Region Statistic (t) SCH vs. HC df p-value Cohen’s d

Mean Betweenness Centrality

 delta

Global 3.06 SCH < HC 56.64 0.0034 0.7927

Anterior 2.14 SCH < HC 54.60 0.0372 0.5571

Posterior 2.44 SCH < HC 57.84 0.0176 0.6288

 theta

Global 2.42 SCH < HC 57.98 0.0187 0.6213

Anterior 2.20 SCH < HC 57.43 0.0316 0.5686

Posterior 1.88 58.00 0.0652 0.4820

 alpha

Global − 1.31 57.54 0.1962 − 0.3373

Anterior − 1.85 55.20 0.0701 − 0.4809

Posterior 0.93 56.67 0.3579 0.2353

 beta

Global − 0.67 52.52 0.5070 − 0.1751

Anterior − 1.76 57.29 0.0843 − 0.4538

Posterior 1.53 57.54 0.1320 0.3895

 gamma_1

Global 2.61 SCH < HC 51.93 0.0119 0.6842

Anterior 1.79 50.39 0.0790 0.4722

Posterior 1.77 53.61 0.0817 0.4638

 gamma_2

Global 0.71 54.31 0.4780 0.1865

Anterior 2.00 48.50 0.0514 0.5281

Posterior − 0.69 57.42 0.4924 − 0.1784
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active information processing takes place, the default mode network is highly activated, associated with inward 
attention, self-reflection, autobiographical  memory49. Furthermore, research indicates that alpha activity is related 
to the somatosensory network, and the decoupling of the default mode network and networks related to external 
attention and external information  processing46.

Weaker functional connectivity in the alpha band was also observed in other conditions, such as autism 
spectrum  disorder46; and, interestingly, sleep deprivation—that is often used as a model of schizophrenia and 
 psychosis50–52—was found to be related to decreased alpha band connectivity in a widespread  network47.

Recent data suggest that delta activity can be related to resting state functional MRI  connectivity53, which is 
also found to be decreased in  schizophrenia20,21. In our study, functional connectivity in the delta band also dif-
fered between the two groups (patients < controls). Past research indicate that connectivity in the delta band is 
closely related to long-range cortico-cortical  connectivity53. In particular, functional connectivity in the 2–5 Hz 
range was found to be a marker of conscious  states54.

Overall, our finding of decreased connectivity in alpha and delta band could be related to disrupted intra- and 
inter-network communication during rest, reflecting mild alteration of consciousness, self-perception, altered 
sensory processing, inward and outward attention, and attention instability (that is closely related to cognitive 
deficits in schizophrenia)46,47,53,54.

We did not find between-group differences in connectivity strength within higher frequency bands (beta, 
and low and high gamma), but it can be seen that past findings regarding differences in functional connectivity 
strength between patients of schizophrenia and healthy controls in higher frequency bands are less conclusive 
and more ambiguous in  general2,8,9,13,14,17.

Conventional graph theoretical measures are highly influenced by the number of connections and the 
strength of  connectivity23. Consequently, lower connectivity strength in the patient group could have led to 
biased  results20. In order to overcome the potential bias, we decided to use the MST method that has been shown 
to be more robust and much less likely to be influenced by different factors, such as the strength of average 
functional  connectivity25.

In a resting state fMRI study van Dellen and  colleagues20 have demonstrated lower global average functional 
connectivity strength in patients with schizophrenia spectrum disorder but no differences in MST network 
properties were found in schizophrenia as opposed to subjects with bipolar disorder, where the network was less 
integrated. The authors concluded that the neural correlates of psychosis might be different in the two psychiatric 
conditions; and past findings of network topology alterations in schizophrenia were most likely attributable to 
methodological issues arising from the sensitivity of conventional graph theoretical measures to the average 
connectivity strength. Contrary to their findings however, results of more recent studies using the MST method 
report a tendency toward over-centralization and increased randomness in terms of increased network disas-
sortativity in patients with  schizophrenia10,11,34.

In accordance with more recent data on the subject, we have also found significant between-group differ-
ences in the most frequently analyzed MST measures. Our results indicate increased centralization in the group 
of patients, as we found lower diameter (in delta and theta), higher leaf fraction (in delta and theta), higher 
maximum betweenness centrality (in low gamma), and higher maximum degree centrality (in delta and theta).

The closest study to this paper has been done by Krukow and  colleagues11, who investigated network structure 
with MST besides resting-state EEG functional connectivity strength in multiple frequency bands in first-episode 
schizophrenia patients. As a connectivity measure, they used phase-lag index. Concerning global MST metrics, 
the study found similar results to us. Their results include lower diameter in delta, beta, and gamma; higher leaf 
fraction in delta and gamma, higher maximum betweenness centrality in beta. Although, differences were not 
always statistically significant in the same frequency bands as in our study (perhaps partly due to some meth-
odological differences), the overall findings of the two studies still point in the same direction: increased global 
integration in patients compared to controls.

Along with Krukow and  colleagues11 (who reported higher disassortativity in patients in the delta band), we 
found that the network of patients was more dissassortative, more random in a sense, meaning that high-degree 
nodes were far more likely to attach to low-degree nodes, so the likelihood of prominent hubs connecting to each 
other was significantly lower in the patient group. As a consequence, rich clubs can hardly be  formed11. Assor-
tativity is also used as a measure of resilience, as disassortative networks are more vulnerable to hub  failures43.

Our results on global MST metrics are also in accordance with fMRI research. For example, Liu and 
 colleagues34 found a more star-line global network structure, increased integration (lower path length, higher 
leaf fraction, higher maximum degree centrality [significant only on a trend level], but no difference in assor-
tativity) in subjects with schizophrenia. Alexander-Bloch and  colleagues22—examining network topology of 
patients with childhood onset schizophrenia—found increased global efficiency, lower clustering, and decreased 
modularity in patients compared to controls.

When the optimal balance between local segregation and global integration processes (referred to as small-
worldness) gets disturbed, and the network becomes biased towards integration, it leads to less efficient network 
organization. Information transfer becomes heavily reliant on a few number of highly connected nodes and hubs 
with high betweenness centrality. As prominent nodes are directly connected to many leafs, they can become 
over-connected and over-activated, and eventually  fail27. Global over-integration hinders selective informa-
tion processing, resulting in the breakdown of the hierarchical network structure and the boundaries between 
functionally specialized  systems22.

Although, the exact neurological mechanisms leading to altered functional connectivity and disturbed net-
work topology in schizophrenia are not fully understood, some authors link these alterations to abnormal brain 
developmental processes related to the disease: abnormal axonal growth, synaptic pruning, and white matter 
 development22.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10495  | https://doi.org/10.1038/s41598-024-61316-8

www.nature.com/scientificreports/

At the same time, literature shows that network structure in (healthy) humans is not stable throughout the 
lifetime. The process of aging is characterized by somewhat similar changes in brain network topology as those 
found in schizophrenia: network structure of the aging brain becomes more star-like, more globally integrated 
with less functional  specification34. Some data suggest that symptom severity in schizophrenia can be related to 
age-related changes in network  structure34. Jonak and  colleagues10 compared MST metrics between first episode 
and multiepisode patients with schizophrenia, and found that the increase in integration was associated with 
the longer illness duration. The mechanism behind functional network imbalances in schizophrenia is often 
explained in the literature by the cascading network failure  hypothesis55, borrowed from dementia research, 
according to which the redistribution of the workload of dysfunctional nodes may lead to over-centralization23,26.

The literature is not consistent in the question whether hub nodes—nodes important in global communica-
tion—are shifted to more anterior or posterior regions in schizophrenia. Liu and  colleagues34 found more hubs 
in frontal regions but Jonak et al.10 and Krukow et al.11 presented evidence of defrontalization in terms of rela-
tively weakened importance of frontal regions in global communication in patients with schizophrenia. Krukow 
and  colleagues11 reported higher average betweenness connectivity in the posterior area in delta and gamma 
frequency bands in patients. We could not replicate this result. Concerning regional differences, we found no 
evidence of either defrontalization or increased frontalization in patients, as mean betweenness centrality (indi-
cating average global hub importance) appeared to be lower in general in patients irrespective of the examined 
area (anterior or posterior). Interestingly, global average betweenness centrality was lower in patients (in delta, 
theta, and low gamma), while at the same time, maximum betweenness centrality was higher (in low gamma). In 
this respect, however, our results closely resemble those obtained by Krukow and  colleagues11, who found higher 
maximum betweenness centrality along with lower mean betweenness centrality in the beta band in patients. 
The authors interpreted the result as an indication of imbalance in hub strength.

Besides its strengths, our study has a number of potential limitations as well. We made our conclusions on the 
basis of a very limited amount of data, i.e. seven 8 s long segments of resting state EEG per subject were analyzed. 
However, we more or less were still able to replicate the results of some previous studies using a higher number 
of epochs (e.g. Krukow et.  al11 analyzed thirty 8 s long segments per subject).

Although, we have taken the necessary steps to eliminate artifacts from the recordings, there was no Faraday 
cage in the EEG recording setup. This fact may weaken the validity of our results of the gamma frequency band. 
Future research is needed to replicate our results with more advanced equipments.

It also has to be admitted that, although the MST approach has a number of advantages over conventional 
graph analytical measures, it is not devoid of  limitations24. Since between-group differences in average functional 
connectivity strength were found, conventional graph analysis methods would more likely yield misleading 
results. MST, on the other hand, is an unbiased network  representation24, however, as it is a simplified subnet-
work of the original network. Nevertheless, bias towards over-centralization in the group of patients indirectly 
suggests a violation from small-wordness, and deficient intra-network  communication11.

Another limitation of our research could be the low sample size that did not allow us to perform subgroup 
analyses, although e.g. evidence exist of disease duration being a possible influential factor in functional network 
topology deviations in  schizophrenia34. Furthermore, as far as schizophrenia is a complex and diverse mental 
disease, comparing network topology of patients with different types of the disease could also be beneficial.

In summary, weaker average functional connectivity was found in two frequency bands (delta and alpha) in 
patients, compared to controls. Our results on functional network topology indicate increased centralization, 
increased global integration in the group of patients. The network of patients was more disassortative, more 
vulnerable: high-degree nodes were more likely to connect to low-degree nodes preventing the formation of rich 
clubs. Excessive integration processes can lead to overload and failure of central hubs. These results together can 
indicate a breakdown of the modular network structure in patients with schizophrenia, somewhat comparable 
to the data found in aging and dementia research.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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