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Predicting bladder cancer survival 
with high accuracy: insights 
from MAPK pathway‑related genes
Guangyang Cheng 1,2, Zhaokai Zhou 1,2, Shiqi Li 1,2, Shuai Yang 1, Yan Wang 1, Zhuo Ye 1 & 
Chuanchuan Ren 1*

The mitogen‑activated protein kinase (MAPK) pathway plays a critical role in tumor development 
and immunotherapy. Nevertheless, additional research is necessary to comprehend the relationship 
between the MAPK pathway and the prognosis of bladder cancer (BLCA), as well as its influence on 
the tumor immune microenvironment. To create prognostic models, we screened ten genes associated 
with the MAPK pathway using COX and least absolute shrinkage and selection operator (LASSO) 
regression analysis. These models were validated in the Genomic Data Commons (GEO) cohort and 
further examined for immune infiltration, somatic mutation, and drug sensitivity characteristics. 
Finally, the findings were validated using The Human Protein Atlas (HPA) database and through 
Quantitative Real‑time PCR (qRT‑PCR). Patients were classified into high‑risk and low‑risk groups 
based on the prognosis‑related genes of the MAPK pathway. The high‑risk group had poorer overall 
survival than the low‑risk group and showed increased immune infiltration compared to the low‑risk 
group. Additionally, the nomograms built using the risk scores and clinical factors exhibited high 
accuracy in predicting the survival of BLCA patients. The prognostic profiling of MAPK pathway‑
associated genes represents a potent clinical prediction tool, serving as the foundation for precise 
clinical treatment of BLCA.

BLCA is one of the most frequently occurring cancers and is the most dominant malignant tumor in the urinary 
system, ranking in the top  ten1. Every year, there are about 550,000 fresh instances of BLCA documented world-
wide, making up roughly 3.0% of new cancer detections and 2.1% of fatalities caused by  cancer2. The majority 
of newly diagnosed cases (75%) are non-muscle-invasive (NMIBC), while 25% are muscle-invasive (MIBC)3. 
NMIBC has a relatively better prognosis but tends to recur  frequently4. Growing studies indicate that individuals 
diagnosed with MIBC encounter a worse outlook and a heightened likelihood of metastasis, resulting in a survival 
rate below 50% within five  years5–7. Despite established treatment options, radical cystectomy, and pelvic lymph 
node dissection, approximately 50% of patients who undergo surgery for MIBC often face recurrence afterward, 
primarily caused by distant  metastases8. Hence, early disease diagnosis and the identification of prognostic 
markers are crucial for managing BLCA effectively. In recent years, various signaling pathway-related models 
like the Notch pathway, EMT pathway, TGF-β pathway, and PI3K pathway have been established to predict the 
survival of BLCA  patients9–12. However, a risk profile related to the MAPK pathway for predicting survival in 
BLCA patients has not yet been established.

In mammalian cells, MAPK signaling is a fundamental mechanism, transmitting signals related to prolifera-
tion, apoptosis, and  differentiation13–15. ERK, p38, JNK, and ERK5, which are a set of serine-threonine kinases 
conserved throughout evolution, serve as the classical MAPK  pathways16. These pathways involve different 
MAPKs associated with specific MAPK kinases (MAPKK) and MAPK-kinase-kinase (MAPKKK), forming 
a conserved tertiary enzymatic cascade (MAPKKK → MAPKK → MAPK)17–19. Aberrant mutations in certain 
components of the MAPK pathway have been identified as significant contributors to various  cancers20,21. Con-
sequently, intervention in this pathway has been explored as a strategy for tumor therapy.

Previous research indicates that 45% of potential therapeutic targets in BLCA are related to the MAPK 
 pathway22, and this association correlates with the prognosis in  BLCA23. In this study, a prediction model was 
developed based on genes associated with the MAPK signaling pathway. Importantly, we aimed to investigate the 
potential mechanisms by which the MAPK signaling pathway affects prognosis and immunotherapy response. 
Our findings provide a foundation for future advancements in precision medicine for BLCA.
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Methods
Data acquisition
From the Genomic Data Commons (GDC) database, we acquired RNA-seq data and clinical information for 
403 tumor tissue samples and 19 normal tissue samples. A log2 (TPM + 1) transformation was applied to the 
downloaded transcripts per million (TPM) data, and genes with total expression values less than 1 in all sam-
ples were excluded. The GEO database was used to retrieve expression profiles and clinical data for GSE32894, 
GSE32548, and GSE48075. We combined these three GEO cohorts into one meta-cohort for subsequent analysis. 
Probe IDs were converted to corresponding gene symbols, and batch effects were mitigated using the “sva” R 
package. For clinical data, patients with a survival time of fewer than 30 days and those with missing essential 
information were excluded, as detailed in Supplementary Table S1. Data for the IMvigor210 cohort is obtained 
through the IMvigor210CoreBiologies R package. MAPK pathway-related genes were obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database (Supplementary Table S2). The study workflow is illus-
trated in Supplementary Fig. S1A.

Differential expression analysis
The analysis of differential expression in TCGA-Counts data was conducted using the “DESeq2” R package. 
Differential genes meeting the criteria (|log2FC|> 1 and adj.p < 0.05) were identified and visualized in a volcano 
plot. To obtain the intersection between these differentially expressed genes (DEGs) and MAPK-related genes, 
the “VennDiagram” R package was employed to generate a Venn plot.

Construction and validation of prognostic gene signatures
The TCGA dataset was divided into training and testing sets randomly, with a ratio of 7:3. The intersected genes 
underwent uni-variate Cox regression analyses using the “Survival” R package. A LASSO regression analysis was 
performed using the “glmnet” R package to determine the final model genes and calculate correlation coefficients 
for each gene after screening for genes with prognostic significance. Risk scores were computed for the training 
group, validation group, TCGA cohort, and GEO-meta cohort by utilizing the formula: riskscore =

∑
n

i=1
ki ∗ Xi , 

in which k denotes the relative expression level of the model genes, and X signifies the regression coefficients. 
Afterward, the patients were categorized into groups of high-risk and low-risk, using the median of the risk score 
from the training group as the threshold value. The distribution of risk scores and a heatmap for all cohorts were 
plotted to visually present the results.

Tumor immune infiltration analysis
Application of the CIBERSORT function of the "IOBR "R package to perform immune infiltration analysis, and 
the ESTIMATE function to calculate the immune score and stromal  score24–26.

Construction of nomograms
A nomogram was created by utilizing the ’rms’ R package, which included age, pathological stage, and risk score. 
The total score was calculated based on the contributions of these independent factors in the nomogram, aiming 
to predict the corresponding survival rate for patients with BLCA. The accuracy of the nomogram predictions 
was assessed using calibration curves.

Tumor mutation analysis and immunotherapy analysis
Tumor mutational burden (TMB) quantifies the number of non-synonymous mutations in somatic cells within 
a specific genomic region, indirectly reflecting a tumor’s capacity and extent for neoantigen production. TMB 
serves as a predictive indicator for the effectiveness of immunotherapy across a broad spectrum of  tumors27,28. 
Simple nucleotide variant datasets from BLCA patients were obtained from the GDC website, and TMBs for 
individual samples were calculated using the “maftools” R package. Drug sensitivity analysis data were sourced 
from the Genomics of Drug Sensitivity in Cancer (GDSC) website. The relationship between high and low-risk 
groups and  IC50 values of anticancer drugs was analyzed using the "oncoPredict" R package.

GEPIA website and GSCA website
We employed the Gene Expression Profiling Interactive Analysis (GEPIA) website for mapping the Hazard 
Ratios (HR) of model genes across various  cancers29. Additionally, the Gene Set Cancer Analysis (GSCA) website 
was utilized for conducting analyses on Single Nucleotide Variations (SNV), Copy Number Variations (CNV), 
immune infiltration, and drug sensitivity related to the model  genes30.

Gene set enrichment analysis (GSEA)
The “c2.cp.kegg.v2023.1.Hs.entrez” gene set used for GSEA was downloaded from The Molecular Signatures 
Database (MSigDB) database and analyzed for differences in different subgroups and then sorted according to 
log2FoldChange for GSEA analysis, for single gene GSEA groupings were categorized according to the expres-
sion median of the gene.

Human protein atlas database
HPA database stores massive amounts of protein data from human tissues. In this study, we utilized the HPA 
database to retrieve histopathological data associated with the model genes.
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Clinical sample acquisition
The study received approval from the Ethics Committee of the First Affiliated Hospital of Zhengzhou University, 
and all volunteers signed informed consent forms before participation. This study adhered strictly to the ethical 
principles for medical research involving human subjects, as outlined in the Declaration of  Helsinki31. Clinical 
samples were sourced from the First Affiliated Hospital of Zhengzhou University, involving patients previously 
diagnosed with BLCA through pathological examination. Paracancerous tissues were collected from normal tis-
sues within a 3 cm region near the tumor. Following sampling, tissue samples were promptly preserved in liquid 
nitrogen and transferred to a – 80 °C refrigerator to maintain their integrity for subsequent analyses.

Quantitative real‑time PCR experiments
Total RNA was extracted from the collected BLCA tumor tissues and adjacent normal tissues using the RNAeasy™ 
Animal RNA Extraction Kit (Beyotime). Subsequently, the reverse transcription process was performed using 
the PrimeScript™ RT reagent Kit (Takara), and qRT-PCR was conducted with the TB Green® Premix Ex Taq™ II 
Kit (Takara), following the manufacturer’s instructions. The primer sequences are shown in Table 1.

Statistical analysis
Bioinformatics analysis was performed using R version 4.3.1. The comparison of continuous data utilized either 
the student’s t-test or the Wilcoxon test, depending on the nature of the data, with statistical significance estab-
lished at a two-sided p-value < 0.05.

Ethical approval
All ethical aspects of this study were approved by the Ethics Committee of the First Affiliated Hospital of Zheng-
zhou University.

Consent to participate
Informed consent was obtained from all individual participants included in the study.

Results
Differential expression analysis of MAPK pathway‑related genes
To analyze the DEGs in TCGA-BLCA tumor tissues and normal tissues, RNA-seq data from log-transformed 
TCGA were subjected to analysis using the "Deseq2" R package. A total of 4731 DEGs were identified, applying 
criteria of |log2FC|> 1 and adj.p < 0.05. By intersecting these DEGs with MAPK-related genes, 103 intersected 
genes were obtained. The analysis resulted in the identification of these 103 genes, and Venn plots (Fig. 1B), 
volcano plots (Fig. 1C), and a heatmap (Fig. 1A) illustrating the expression of these 103 differential genes were 
generated.

Table 1.  The list of the primers used for qRT-PCR.

Gene symbol Forward or reverse primer Primer sequence (5’–3’)

GAPDH
Forward GGA AGC TTG TCA TCA ATG GAA ATC 

Reverse TGA TGA CCC TTT TGG CTC CC

NRTN
Forward ACC CTG GAC GCC CGG ATT 

Reverse CGC AGT AGC GGA ACA GCA CC

MAP3K8
Forward TCG CTC AGC CTA TCC CTC CTA 

Reverse GTT CCA GCT CCT TCC TAC TCAG 

RAC3
Forward CTC CTA CCC CCA AAC TGA CG

Reverse TTC ACA GAG CCC ACC AAT CTC 

PDGFD
Forward GGT GAA AGG AAA CGG CTA CG

Reverse CTC TAA TAA TGG TAC TGG TTT CGG A

JUN
Forward TGG GTG CCA ACT CAT GCT AA

Reverse TTC TTC GTT GCC CCT CAG C

MAP3K20
Forward GTT AGA TAC TCT GAG GAT GCGGC 

Reverse GTT GAT ACT TAA TGG GCA CCTGG 

IGF1
Forward GGT GGA TGC TCT TCA GTT CGT 

Reverse GCA ATA CAT CTC CAG CCT CCTTA 

PTPRR
Forward GCA GGA ATA GGT AGA ACA GGGTG 

Reverse GCA CCA TTC CAC CTC TAT CCA 

DUSP2
Forward TGC TGT CCC GAT CTG TGC T

Reverse CAG GAA CAG GTA GGG CAA GA

PDGFRA
Forward CTT TGG ATT GAA CCC TGC TGA 

Reverse GAC ATC TCG TGC CAA CTC CA
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Figure 1.  Screening of survival-related genes. (A) Heatmap displaying the differential expression of genes 
associated with the MAPK pathway. (B) Volcano plot illustrating the differential expression of MAPK pathway-
related genes. (C) Venn diagram depicting the intersection of MAPK pathway-related genes with differentially 
expressed genes. (D) Forest plot representing the results of COX regression analysis. (E) Box plots showing the 
expression levels of survival-related MAPK pathway genes in tumor versus normal tissues.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10482  | https://doi.org/10.1038/s41598-024-61302-0

www.nature.com/scientificreports/

Development and validation of prognostic gene signatures
During the analysis of the 103 intersecting genes, COX regression analysis was performed, resulting in the 
identification of 26 genes significantly associated with survival (P < 0.05), as depicted in Fig. 1D. The differential 
expression of these genes between the tumor and normal groups is illustrated in Fig. 1E. Subsequent LASSO 
regression analysis on the 26 prognosis-related genes revealed 10 candidate genes at the minimum lambda 
value (Fig. 2A). Risk scores were then calculated for each patient based on the mRNA expression levels of these 
10 genes (MAP3K20, RAC3, JUN, MAP3K8, DUSP2, PDGFD, PDGFRA, PTPRR, NRTN, and IGF1) and the 
corresponding coefficients from the LASSO regression analysis. Using the median value of the risk score from 
the training cohort as the cutoff, patients across different cohorts were categorized into two groups. Principal 
Component Analysis (PCA) demonstrated the efficacy of the model genes in clustering patients within the 
TCGA-BLCA dataset (Fig. 2B,C). The Kaplan–Meier analysis demonstrated a notable decrease in the likelihood 
of survival in the high-risk group when compared to the low-risk group across these cohorts (Fig. 2D). Receiver 
operating characteristic (ROC) curves yielded an Area Under the Curve (AUC) value of 0.751 for survival at 
5 years (Fig. 2E). The C-index values of RiskScore for the different cohorts are 0.6565, 0.6655, 0.6553, and 0.7109, 
respectively, and we also plotted the calibration curves, all of which indicate the robustness of the MAPK model 
(Fig. 2F). The prognostic gene expression profiles are presented in a heatmap (Fig. 2G).

Association of risk profiles with the tumor microenvironment
To further investigate the differences in immune infiltration between the two subgroups, the CIBERSORT algo-
rithm was employed to calculate the proportion of immune cell infiltration for all samples, as shown in Sup-
plementary Fig. S1B. Additionally, StromalScore and ImmuneScore were determined for all samples using the 
ESTIMATE algorithm, and correlation analyses showed higher StromalScore, ImmuneScore, and ESTIMATES-
core in the high-risk group (Fig. 3A). Further correlation analysis demonstrated a positive correlation between 
risk scores and both stromal scores and immune scores, as well as a positive correlation with the ESTIMATEScore 
(Fig. 3B). This result suggests the presence of a more complex microenvironment in the high-risk group, which 
may be associated with tumor aggressiveness, treatment resistance, and poorer prognosis. Analysis of the dif-
ferences in immune infiltration between the two risk groups revealed that patients in the high-risk score group 
exhibited a higher percentage of resting memory naive B cells, CD4 T cells, M0 macrophages, M1 macrophages, 
and M2 macrophages. These cell types are associated with an immunosuppressive milieu and may contribute 
to immune escape from tumors by  promoting32,33. In contrast, plasma cells, CD8 T cells, regulatory T cells, and 
activated dendritic cells were more prevalent in patients in the low-risk score group (Fig. 3C), suggesting a more 
active anti-tumor immune response in the low-risk group. Finally, an analysis of the differences in the expression 
of 34 immune checkpoints between the high-risk and low-risk groups was conducted (Supplementary Table S3, 
adj.p < 0.05). Among these, 21 immune checkpoints with P < 0.01 were selected and plotted in a box line plot. 
All of them were found to be highly expressed in the high-risk scoring group, except for TNFRSF14 (Fig. 3D), 
suggesting that the high-risk group may further inhibit effective anti-tumor immune responses.

Nomogram construction
To construct nomograms for predicting patient survival, we conducted uni-variate and multi-variate Cox 
regression analyses involving risk scores and clinical factors. Uni-variate Cox regression analyses revealed 
significant associations between RiskScore (p < 0.001, risk ratio [HR] = 3.157, 95% confidence interval 
[CI] = 2.286–4.359), Clinical stage (p < 0.001, HR = 1.561, 95% CI = 1.282–1.902), and Age (p < 0.001, HR = 1.027, 
95% CI = 1.012–1.043) with Overall Survival (OS) in the TCGA-BLCA cohort (Fig. 4A). In multi-variate Cox 
regression analyses, RiskScore, Clinical stage, and Age were similarly statistically significant (Fig. 4B).

Nomograms, integrating multiple risk factors, were developed for predicting survival in the TCGA-BLCA 
cohort. The model incorporated three independent risk factors: age, stage, and RiskScore, and could predict 
survival probabilities by calculating the cumulative total score for each independent factor for each patient 
(Fig. 4C). The nomogram’s predictive performance was validated through calibration curves and ROC curves, 
indicating that the actual OS aligned well with the OS predicted by the nomogram at 1, 3, and 5 years. The area 
under the ROC curve value reached 0.799, demonstrating good predictive performance (Fig. 4D,E, Supplemen-
tary Fig. S1C).

MAPK‑related gene prognostic models concerning tumor mutation load and immunotherapy 
response
Afterward, we performed a study to compare the variances in immunotherapy reactions among the two sub-
groups. The findings from Tumor Immune Dysfunction and Exclusion (TIDE) indicated that samples catego-
rized as the low-risk category showed a greater rate of response to immunosuppressive medications (Fig. 5A). 
Furthermore, we examined the tumor somatic mutation landscapes in two groups. In both subgroups, the results 
indicated that the mutation rates of TP53, TTN, KMT2D, MUC16, and ARID1A genes were higher than 20%, 
as shown in Supplementary Fig. S1D. Analysis of TMB status between the two groups showed that TMB was 
significantly increased in the low-risk group (Fig. 5B). Kaplan–Meier survival analysis showed that the high 
TMB group had a better prognosis. Notably, patients with low TMB and concomitant high risk had the worst 
prognosis (Fig. 5C, p < 0.001). Ultimately, utilizing the ’oncoPredict’ R package, we conducted a comparison of 
the variances in medication responsiveness among the two cohorts. The findings indicated that the half inhibitory 
concentrations  (IC50) values of oxaliplatin, gemcitabine, and vincristine were considerably lower in the low-risk 
group. This implies that patients with lower risk scores could potentially gain greater advantages from utilizing 
these medications (Fig. 5D). Among several recognized cancer-related pathway drugs, low-risk scoring cases 
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Figure 2.  Construction of MAPK prognostic gene signature and survival analysis. (A) LASSO regression 
correlation coefficient and LASSO regression screening model genes for 26 survival-related genes, with the 
best parameter (lambda min) as the first dashed line on the left. (B) PCA analysis of the clustering effect of 
all genes. (C) PCA analysis of the clustering effect of model genes. (D) Kaplan–Meier survival analysis of the 
TCGA-BLCA training cohort, the validation cohort, the overall cohort, and the GEO-meta cohort for high-risk 
and low-risk groups. (E) ROC curves for the TCGA-BLCA training cohort, validation cohort, overall cohort, 
and GEO-meta cohort. (F) Risk score calibration plots for the TCGA-BLCA training cohort, validation cohort, 
overall cohort, and GEO-meta cohort. (G) Risk score distribution plots for the TCGA-BLCA training cohort, 
validation cohort, overall cohort, and GEO-meta cohort.
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had significantly lower IC50s for KRAS (G12 C) inhibitor-12, JAK1_8709, Wnt-C59, and LY2109761, and higher 
sensitivity to AZ960 (Fig. 5D).

SNV, CNV, and drug sensitivity analysis
We utilized the GEPIA2 website to generate a heat map illustrating the survival analysis for the 10 model genes 
across 33 different tumors (Fig. 6A). We further investigated the association of 10 model genes with immune 
cell infiltration in pan-cancer (Fig. 6B). The analysis revealed high expression of Th2 cells, natural killer T cells, 
macrophage cells, iTreg cells, cytotoxic cells, NK cells, Tr1 cells, central memory cells, CD4 T cells, and Tfh cells 
in most tumors, indicating a potential association with tumor progression. In contrast, neutrophil and effector 
memory cells showed low expression. Additionally, SNV and CNV percentage heatmaps for the 10 model genes in 
32 tumors were plotted using the GSCA website (Fig. 6C,D). The analysis of heatmaps revealed that PDGFRA and 
PTPRR demonstrated high SNV across various cancers, whereas PTPRR and RAC3 exhibited elevated CNV in 
the majority of cancer types. We also examined the association between the 10 model genes and drug sensitivity 
(Fig. 6E). The analysis revealed that elevated expression of JUN and PTPRR genes was associated with increased 
drug sensitivity, while IGF1 and DUSP2 genes displayed a negative correlation.

Expression and clinical relevance of model genes
To further clarify the role of the model genes in the MAPK model, we grouped the samples using these 10 model 
genes, and subsequently performed Kaplan–Meier survival analysis on the different expression subgroups of the 
genes (Fig. 7A), which showed that the survival rate was lower in the high expression group of the genes, such 
as RAC3, JUN, PDGFD, PDGFRA, and IGF1 (p < 0.05), while the survival rate was worse in the group with low 

Figure 3.  Relationship between risk models and tumor immune microenvironment. (A) ESTIMATES analysis 
of differences in StromalScore, ImmuneScore, and ESTIMATEScore between high and low-risk groups. (B) 
Correlation of risk scores with StromalScore and ImmuneScore. Histograms on the horizontal axis show the 
distribution of samples with different risk scores, and histograms on the vertical axis show the distribution of 
samples with different StromalScore and ImmuneScore. (C) Box plots of immune cell infiltration in the high-
risk group versus the low-risk group (adj.p < 0.05). (D) Box plots of immune checkpoint expression levels in two 
groups (adj.p < 0.05).
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expression of PTPRR and DUSP2 (p < 0.05). Differential expression analysis of 10 genes in tumor and normal 
tissues showed that RAC3 and PTPRR were highly expressed in tumor tissues, while the rest of the genes were 
lowly expressed in tumors (Fig. 7B, p < 0.05). Interestingly, we found that RAC3 gene was highly expressed in 
tumors and patients with high RAC3 expression had worse prognosis, which attracted us to analyze it further, 
and the results showed that RAC3 was highly expressed in patients with lymph node metastasis N3 stage, distant 
metastasis M1 stage, and high grade of pathology (Fig. 7C, p < 0.05), which may suggest that RAC3 plays a role in 
the metastatic process of BLCA, or its expression may be associated with higher tumor aggressiveness in BLCA.
IMvigor210 cohort analysis found higher RAC3 expression in Atezolizumab-responsive patients and platinum 
non-responsive patients (Fig. 7C, p < 0.05), which suggests that RAC3 expression may be a potential predictor 
of response to immunotherapy and chemotherapy, which deserves to be further explored, and can be further 

Figure 4.  Construction and accuracy testing of nomograms. (A) One-way COX regression analysis of risk 
scores versus clinical factors. (B) Multifactor COX regression analysis of risk score versus clinical factors. (C) 
Nomogram constructed with Age, Stage, and RiskScore as risk factors. (D) Calibration curves for nomograms. 
(E) ROC curves for nomogram, RiskScore, and other clinical factors.
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explored by future studies the specific role of RAC3 in BLCA and its potential application in disease prognosis 
and treatment personalization.

GSEA analysis of model genes in BLCA
Significant enrichments in different pathways were revealed through the analysis of GSEA conducted on the two 
groups. In Supplementary Fig. S2A, the group at high risk showed notable enhancement in pathways associated 
with Cytokine-cytokine receptor interaction, ECM receptor interaction, focal adhesion, Neuroactive ligand-
receptor interaction and receptors, and Regulation of actin cytoskeleton. The group with low risk exhibited 
notable enhancement in pathways linked to Linoleic acid metabolism, Oxidative phosphorylation, Pentose and 
glucuronate interconversions, and Ribosome (Supplementary Fig. S2B). Further analysis of the model gene 
GSEA-KEGG pathway revealed enrichment of each gene in numerous pathways. The top 5 elevated and reduced 
pathways for each gene were selected for presentation (Supplementary Fig. S2C–H and Fig. 8A–D). Single-gene 
GSEA revealed that the model genes play roles in different tumor-associated pathways. And interestingly these 

Figure 5.  TIDE analysis and mutation assessment. (A) TIDE analysis of immune checkpoint inhibitor 
responses in two subgroups. (B) TMB differences between two groups. (C) Kaplan–Meier curves between 
different TMB subgroups. (D) Sensitivity analysis of anticancer medications in two groups.
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10 model genes were all enriched in pathways such as metabolism and immune system, which may indicate 
that these genes play important roles in regulating tumor-associated metabolic processes, and immune system 
activities. The discovery of these pathway enrichments provides new clues for understanding tumor biology and 
may reveal the potential of these genes as therapeutic targets.

Immunohistochemical images of model genes from the HPA database
For the validation of the protein expression of the 10 prognostic genes, we retrieved the expression data of the 
model genes from the HPA database. Compared to normal tissues, tumor tissues displayed a significant increase 
in staining intensity for PTPRR and RAC3 (Fig. 8E,F). Conversely, genes such as MAP3K8, MAP3K20, IGF1, JUN, 
PDGFD, and PDGFRA displayed low staining intensity relative to normal tissues (Fig. 8G–L).

qRT‑PCR‑based validation of differential mRNA expression in BLCA clinical samples
To further validate the expression of the model genes in clinical samples, we gathered 10 pairs of BLCA and 
paracancerous tissues. Subsequently, we extracted RNA from these samples, performed reverse transcription, and 
conducted qRT-PCR. The results demonstrated that the genes RAC3 and PTPRR were significantly overexpressed 
compared to normal tissues (Fig. 9A,B). In contrast, genes such as MAP3K20, PDGFD, DUSP2, IGF1, MAP3K8, 
and JUN exhibited significant downregulation relative to normal tissues. However, PDGFRA and NRTN did not 
show statistically significant differences (Fig. 9C–G).

Figure 6.  Pan-cancer analysis of model genes was performed using the GEPIA and GSCA websites. (A) 
Heatmap of overall survival analysis of model genes in pan-cancer. (B) GSVA analysis of the level of immune 
cell infiltration in different tumors, with a positive correlation in red and a negative correlation in blue. (C) 
The pie chart illustrates the distribution of SNV of model genes across various tumor types. (D) The heatmap 
provides an overview of the CNV proportions in the model genes across different cancers. It uses a color 
scheme to indicate various types of CNVs: light red for heterozygous amplification (Hete. amp), dark red for 
homozygous amplification (Homo. amp), light green for heterozygous deletion (Hete. del), dark green for 
homozygous deletion (Homo. del), and grey to denote the absence of CNVs. (E) Model gene correlation analysis 
with anticancer drug sensitivity.
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Discussion
Metastasis-prone MIBC continues to present a significant clinical challenge due to its high mortality rate, with 
the current first-line treatment typically involving platinum-based chemotherapy. However, the overall prognosis 
remains  poor34. Despite the increasing use of inhibitors targeting immune checkpoints such as PD-1 and PD-L1 
in the treatment of BLCA, the efficacy of immunotherapy is still suboptimal, with a remission rate of about 25%35. 
Advances in next-generation sequencing technologies over the past few years have underscored the importance 
of identifying novel molecular biomarkers in BLCA for accurately predicting patient prognosis, a critical aspect 
of clinical decision-making36. Newly discovered evidence indicates that the MAPK pathway is a viable option 
for treating cancer, while the ERK pathway stands out as a significant and widely employed area of interest in 
clinical  practice37. Additionally, the JNK and p38 pathways, while playing crucial regulatory roles, present chal-
lenges in predicting cancer cell responses to targeted therapies and chemotherapy due to their dependence on 
upstream and downstream  environments38.

In this investigation, we identified 26 prognostic genes associated with BLCA survival through COX analysis 
within the MAPK pathway-related genes. Subsequently, a novel prognostic signature for bladder cancer patients 
was developed utilizing LASSO-COX analysis, focusing on 10 MAPK pathway-related prognostic genes (NRTN, 
RAC3, JUN, IGF1, DUSP2, MAP3K8, PDGFD, MAP3K20, PTPRR, and PDGFRA). The validation of this signature 
was confirmed both internally and externally, indicating that patients with high-risk scores had notably worse 
overall survival. The prognostic model demonstrated strong performance with a higher AUC. Both uni-variate 
and multi-variate Cox regression analyses confirmed that the correlation model of MAPK served as a separate 
predictor for the overall survival in BLCA. To improve clinical applicability, nomograms were constructed, and 
calibration curves showed well-validated and stable predictive performance. To explore potential molecular 
mechanisms, we further performed tumor immune landscape and mutation landscape analysis, clinicopathologi-
cal information analysis, and GSEA. Finally, we substantiated the expression of model genes in BLCA, further 
confirming the differential expression of MAPK pathway-related genes.

In this study, we reveal an important link between tumor immune profiles and patient prognosis through 
an in-depth analysis of the differences in immune microenvironment characteristics and response to immu-
notherapy between the two-risk scoring groups. The high-risk scoring group exhibited higher StromalScore, 
ImmuneScore, and ESTIMATEScore, as well as an increase in specific immune cell subtypes, suggesting a more 

Figure 7.  Expression and clinical correlation of model genes. (A) Kaplan–Meier curves of 10 model genes. (B) 
Box line plots of the expression of 10 model genes in tumor tissues and normal tissues. (C) Correlation of RAC3 
with clinical traits.
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complex and immunosuppressive tumor microenvironment. Furthermore, we found that patients in the high-
risk group had a lower response rate to immunosuppressive drugs, but increased TMB was associated with a 
better prognosis in patients in the low-risk group. These findings highlight the central role of the tumor micro-
environment in tumor progression and immunotherapy outcomes and point to the potential of using tumor 
microenvironment characteristics for patient risk stratification and treatment selection. Higher risk scores were 
associated with a more complex tumor microenvironment and immunosuppressive status, whereas an increase 
in TMB was observed in the low-risk scoring group, suggesting that TMB could serve as a useful biomarker to 
assist in risk scoring to optimize treatment decision-making. The combination of risk scores, immune profiles 
and TMB assessment results based on gene expression data from patient tumor samples in daily practice can help 

Figure 8.  Immunohistochemical images of model genes from the HPA database. The GSEA result of (A) 
JUN, (B) MAP3K20, (C) RAC3, and (D) PTPRR. Immunohistochemical images of (E) PTPRR. (F) RAC3. (G) 
MAP3K8. (H) MAP3K20. (I) IGF1. (J) JUN. (K) PDGFD. (L) PDGFRA.
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determine a patient’s suitability for immunotherapy. In clinical management, the model can be used to select the 
most appropriate immunotherapy strategy, prognostic assessment and optimize drug selection.

Prognostic differences between different risk subgroups are often driven by underlying molecular mecha-
nisms and  pathways39,40. Our GSEA results showed that the group at high risk showed notable enhancement in 
pathways associated with Cytokine-cytokine receptor interaction, ECM receptor interaction, focal adhesion, 
Neuroactive ligand-receptor interaction and receptors, and Regulation of actin cytoskeleton. The previous study 
showed that Cytokine-cytokine receptor interaction regulates immune response and inflammation by activat-
ing various signaling pathways, including the MAPK pathway, cytokines such as IL-6 and TNF-α activate the 
MAPK pathway, leading to increased inflammatory response, which plays an important role in the development 
of autoimmune diseases and cancers, and that enrichment of this pathway in high-risk groups may imply a 
stronger inflammatory state or aberrant immune  activation41,42. ECM receptor interaction and Focal adhesion 
both are associated with extracellular matrix (ECM) and cell adhesion, and previous reports have shown that 
MAPK signaling is associated with ECM production and degradation, thereby promoting cell migration and 
 proliferation43–46, which may be a reflection of the worse prognosis of high-risk groups. Cytoskeletal regulation is 
critical for cell shape, motility, and division. The MAPK pathway affects cell migration by regulating the activity 
of proteins associated with cytoskeletal reorganization and  invasiveness47,48, which is particularly important in 
tumor spread and metastasis.

Among the 10 model genes, RAC3 stands out as one of the three isoforms within the Rho GTPase 
 subfamily49,50. Studies have demonstrated that RAC3 enhances tumor cell proliferation, migration, and inva-
sion by activating the JAK/STAT signaling  pathway51,52. Furthermore, high expression of RAC3 predicts a poor 
prognosis of  BLCA53. Our study also confirmed high RAC3 expression, which provides a basis for using RAC3 
as a therapeutic target for BLCA. Conversely, PTPRR exhibits a dual function. Suppression of PTPRR expres-
sion in rectal cancer triggers the Ras/ERK/c-Fos signaling pathway, thereby facilitating the development of 
rectal  carcinogenesis54. In ovarian cancer, PTPRR functions as a suppressor of tumors by dephosphorylating 
and rendering β-conjugated proteins  inactive55, suggesting a potentially protective role. NRTN is a ligand of 
the neurotrophic factor family, and recent studies have shown that NRTN is associated with rectal, pancreatic, 
and hepatocellular cancer  progression56–58. IGF-1 is a growth hormone target gene that binds to and activates 
the receptor tyrosine kinase IGF1 receptor (IGF1R)59. Multiple studies have demonstrated its association with 
resistance to anticancer drugs and highlighted the potential benefits of targeting IGF1 in anticancer  therapy60,61. 
Additionally, a large case–control study has indicated a significant association between IGF1 and a reduced risk of 
 BLCA62. MAP3K8 is an oncogene encoding a member of the serine/threonine protein kinase family, and studies 
have shown that high levels of MAP3K8 phosphorylation are associated with progression and poor prognosis 
in patients with  BLCA63. Studies have indicated that PDGFD, a part of the platelet-derived growth factor fam-
ily, is linked to gemcitabine resistance in BLCA patients and unfavorable prognosis in advanced uroepithelial 
carcinoma and pancreatic ductal adenocarcinoma (PDAC)64,65. PDGFRA, a receptor for tyrosine kinase, is fre-
quently mutated in gastrointestinal mesenchymal stromal tumors (GIST) and serves as a target for anticancer 
medications like  avastinib66,67. JUN has been implicated in APF-mediated growth inhibition of bladder tumor 
cells and is a potential target of APF in patients with invasive  BLCA68, and overexpression of JUN protein is also 
closely associated with the invasive growth of  BLCA69. DUSP2 belongs to the nuclear DUSP family, specifically 

Figure 9.  qRT-PCR results of clinically collected tissues. (A) RAC3. (B) PTPRR. (C) MAP3K20. (D) PDGFRA. 
(E) PDGFD. (F) DUSP2. (G) NRTN. (H) IGF1. (I) MAP3K8. (J) JUN.
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type I, and it inhibits the activation of MAPK while having a crucial function in immune processes, inflamma-
tory responses, and the advancement of cancer. Deletion of DUSP2 connotes a poor prognosis for patients with 
 BLCA70. MAP3K20, a member of the MAP3K  subfamily71,72, has been associated with the regulation of HCC cell 
proliferation and  apoptosis73. Finally, high MAP3K20 expression has been found to promote cancer progression 
in gastric, breast, bladder, and colorectal  cancers74–77.

Taken together, we have developed and validated a novel prognostic model centered on MAPK pathway-
associated genes. Despite its strengths, the study has several limitations. Initially, it was a retrospective analysis 
using TCGA and GEO databases, necessitating additional prospective real-world data to confirm the accuracy 
of the MAPK-related gene model. Furthermore, our validation was limited to basic preliminary qPCR analysis, 
requiring further experiments related to biological functions to elucidate the roles and mechanisms of these 
genes in BLCA development. Lastly, although the model was validated using the GEO database, further extensive 
integration tests with centralized cohorts are essential to comprehensively evaluate the model’s performance.

Conclusion
In conclusion, we identified MAPK pathway-associated DEGs by comprehensive analysis of the TCGA-BLCA 
dataset and revealed 10 genes significantly associated with the prognosis of BLCA patients by survival analysis. 
By building predictive models based on these genes, we successfully distinguished subgroups of BLCA patients 
with different survival expectations. In addition, our analysis highlighted the close association of these prognos-
tic genes with the tumor microenvironment and immune response, providing potential biomarkers for future 
targeted therapy and immunotherapy. We believe that these findings provide new insights into the molecular 
mechanisms of BLCA research and clinical management.

Data availability
Public data used in this work can be acquired from the TCGA Research Network portal (https:// portal. gdc. 
cancer. gov/), Gene Expression Omnibus (http:// www. ncbi. nlm. nih. gov/ geo/), Kyoto Encyclopedia of Genes 
and Genomes (https:// www. genome. jp/ kegg/ pathw ay. html/), Genomics of Drug Sensitivity in Cancer (https:// 
www. cance rrxge ne. org/), Gene Expression Profiling Interactive Analysis (http:// gepia. cancer- pku. cn/), Gene 
Set Cancer Analysis (https:// guolab. wchscu. cn/ GSCA/), and The Human Protein Atlas database (http:// www. 
prote inatl as. org/).
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