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Precise and automated lung cancer 
cell classification using deep neural 
network with multiscale features 
and model distillation
Lan Tian 1,6, Jiabao Wu 1,6, Wanting Song 1, Qinghuai Hong 1, Di Liu 1, Fei Ye 1, Feng Gao 2, 
Yue Hu 3, Meijuan Wu 4, Yi Lan 5* & Limin Chen 1*

Lung diseases globally impose a significant pathological burden and mortality rate, particularly 
the differential diagnosis between adenocarcinoma, squamous cell carcinoma, and small cell lung 
carcinoma, which is paramount in determining optimal treatment strategies and improving clinical 
prognoses. Faced with the challenge of improving diagnostic precision and stability, this study has 
developed an innovative deep learning-based model. This model employs a Feature Pyramid Network 
(FPN) and Squeeze-and-Excitation (SE) modules combined with a Residual Network (ResNet18), to 
enhance the processing capabilities for complex images and conduct multi-scale analysis of each 
channel’s importance in classifying lung cancer. Moreover, the performance of the model is further 
enhanced by employing knowledge distillation from larger teacher models to more compact student 
models. Subjected to rigorous five-fold cross-validation, our model outperforms existing models on all 
performance metrics, exhibiting exceptional diagnostic accuracy. Ablation studies on various model 
components have verified that each addition effectively improves model performance, achieving an 
average accuracy of 98.84% and a Matthews Correlation Coefficient (MCC) of 98.83%. Collectively, 
the results indicate that our model significantly improves the accuracy of disease diagnosis, providing 
physicians with more precise clinical decision-making support.

Lung cancer is a very aggressive and highly prevalent disease worldwide, with an estimated 2.2 million new cases 
and 1.8 million deaths in  20201. Primary lung cancers are divided into two major types: small cell lung cancer 
and non-small cell lung cancer. Recent improvements in chemotherapy and radiation  therapy2 have resulted 
in the latter being further classified into adenocarcinoma, squamous cell carcinoma, and large cell  carcinoma3. 
Non-small cell lung cancer (NSCLC) is the predominant subtype, accounting for 85% of the  cases4. Small cell 
lung cancer, an aggressive form with high mortality, meanwhile accounts for 15% of the  cases5. The stage of the 
patient diagnosed with lung cancer is normally intermediate to advanced stage, the current medical level of 
clinical surgery has not very effective. Masaya Yotsukura et al.6 reviewed the pathologic findings of 524 patients 
with curative resection for adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) who 
underwent resection for lung cancer. The study found that Estimated 10-year postoperative disease-specific 
survival rates were 100% and 100%, and overall survival rates were 95.3% and 97.8% for AIS and MIA cases. 
Therefore, if early-stage NSCLC patients can be accurately identified, this will help to slow down the progression 
of the disease and improve the quality of life of the individual.

Histopathologic confirmation remains the gold standard in clinical workflow for  diagnosis7. Mukhopadhyay 
et al.8 compared the diagnostic performance of digital pathology (DP) and traditional microscopy-based methods 
in a study with specimens from 1992 patients, evaluated by 16 surgical pathologists from four institutions. The 
study found that DP was non-inferior to conventional microscopy for primary diagnosis in surgical pathology. 
Coudray et al.9 trained inception-v3 with a large number of image data from TCGA histopathological images. 
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The appearance of this model can preliminarily predict gene mutation by only inputting H&E stained images, 
overcome the shortcomings of human naked eye recognition and summary of features, and has the advantages 
of low cost and high efficiency. The introduction of AI-based tools, with their power to unlock pathological 
diagnostic, prognostic, and predictive features, could assist pathologists, pulmonologists, and thoracic oncolo-
gists to guide patient management acting as a decision support system for  pathologists10.

Deep Learning (DL) is one of the most critical factors for AI’s success. It has a strong degree of automation. 
Ojansivu et al.11 investigated automated classification of breast cancer from histopathological images. Xu et al. 
developed a deep convolutional neural network that segments and classifies epithelial and stromal regions in 
histopathological images. Litjens et al. investigated the effect of DL for histopathological examination and veri-
fied that its performance was excellent in prostate cancer identification and breast cancer metastasis  detection12. 
Compared with traditional algorithms, when the amount of data processed is too large, deep learning algorithms 
are slower than traditional algorithms, and a series of problems are prone to occur in practical applications. 
Therefore, we urgently need a more stable and processing power algorithm model. Knowledge distillation (KD) 
has proven to be a highly effective approach for enhancing model performance through a teacher-student train-
ing  scheme13,14. KD trains a tiny student model to learn knowledge from a large pre-trained teacher model. This 
improves the performance of the network without significantly increasing the computational cost. In this paper, 
we also introduce a new architectural unit, which we term the Squeeze-and Excitation (SE) block, with the goal 
of improving the quality of representations without significantly increasing the computational cost. Many past 
 studies15–18 have shown that feature maps in a feature pyramid can capture an object’s visual features at different 
scales. In this study, we developed an automated classification scheme for lung cancers in microscopic images 
and it was markedly improved with screening of the above procedures.

In the field of histopathology, distinguishing between adenocarcinoma and squamous cell carcinoma of the 
lung is often challenging, necessitating specialized training for pathologists. The development of an AI-based, 
precise, automatic, and rapid diagnostic model that can quickly and in bulk identify lung adenocarcinoma, squa-
mous cell carcinoma, or benign lung tissue holds substantial clinical value. Such a model could assist physicians in 
making swift disease diagnoses, thereby benefiting subsequent treatment strategies. In our research, we introduce 
a deep learning network model tailored for lung cancer cell classification. Utilizing a teacher-student framework, 
our student baseline model adopts the Resnet18 network architecture. To enhance the capture of multi-scale fea-
tures, we have incorporated a Feature Pyramid Network (FPN) for multi-scale feature extraction and added an SE 
module between Resnet18 and FPN. The SE module dynamically adjusts the channel weights of the feature maps 
through learned weights, augmenting the model’s selective capture of information. The teacher model employs 
a pre-trained Resnet50 architecture. To validate the effectiveness of our model, we conducted ablation studies 
to rigorously assess the impact of each improvement measure. In addition to ablation experiments, comparative 
experiments were carried out against traditional image classification models capable of categorizing lung cancer 
cells [VIT, ResNet101, MobileNet, convolutional neural network (CNN)], aiming to demonstrate the superiority 
of our proposed tri-classification model for lung adenocarcinoma, squamous cell carcinoma, and benign lung 
tissue. The experiments indicate that our proposed model achieves optimal classification accuracy.

Methods
Data acquisition
The dataset used in this research is a publicly available collection from  Kaggle19, containing 25,000 histopathologi-
cal images divided into five categories. This set includes 250 images each of benign lung tissue, lung adenocarci-
noma, and lung squamous cell carcinoma, along with 500 images related to colon tissue. Each image is uniformly 
sized at 768 × 768 pixels and is in JPEG format. Our study focuses on the classification and recognition of lung 
cancer, thus removing images of colon tissue. The dataset is exemplified in Fig. 1, with image (a) representing 
lung adenocarcinoma, image (b) showing lung squamous cell carcinoma, and image (c) depicting normal cells.

Lung adenocarcinoma, a leading subtype of non-small cell lung cancer, arises from the epithelial cells of the 
alveoli and is typically found on the lung’s outer edges. Under the microscope, it presents diverse growth patterns, 

Figure 1.  The dataset examples are shown below: image (a) representing lung adenocarcinoma, image (b) 
showing lung squamous cell carcinoma, and image (c) depicting normal cells.
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including acinar, papillary, lepidic, and solid formations, often with mucin secretion. Diagnosis commonly 
depends on specific immunohistochemical staining, like positive TTF-1 expression. Lung adenocarcinoma may 
also exhibit genetic markers such as mutations or rearrangements in EGFR, KRAS, ALK, and ROS1, valuable 
for targeted therapies. Lung squamous cell carcinoma typically develops in the central bronchi and has a strong 
link to smoking. Its cells display pronounced squamous characteristics, including keratinization (keratin pearls 
inside cells) and intercellular bridges. These tumors are usually hard and may have areas of central necrosis. Posi-
tive p63 or p40 immunohistochemical staining assists in distinguishing it from other non-small cell lung cancer 
subtypes. Squamous cell carcinoma often has fewer genetic changes linked to non-smoking but may include 
molecular variations like PIK3CA, SOX2.

Data preprocessing
In this study, to enhance the generalization capability of our model in classifying lung cancer images, we imple-
mented a variety of data augmentation techniques, thereby improving its robustness in practical applications. 
For the training dataset, we executed a series of randomized image processing steps. These included random 
cropping and resizing images to a uniform size of 224 × 224 pixels, random horizontal flipping, and random 
rotations of up to 10 degrees, to simulate transformations encountered in real-world scenarios. Furthermore, 
the images were standardized by scaling each channel using predetermined mean and standard deviation values 
to match the data distribution used during the model training process.

For preprocessing the test dataset, we adopted a more simplified and standardized approach. Specifically, we 
first resized the images so that their shorter side measured 256 pixels, followed by a center crop to obtain images 
of 224 × 224 pixels. This ensured consistency in the input size during the model evaluation phase with that of the 
training phase. The test data were also standardized to maintain the same data distribution as the training data, 
ensuring fairness and consistency in evaluation. The preprocessed dataset is depicted in Fig. 2.

Model construction
Proposed deep learning model
In recent times, the approach to diagnosing lung cancer through image analysis has received increasing focus. 
Traditionally, classifying various cancer subtypes has been a time-intensive and laborious process, relying heav-
ily on medical expertise. With the progression of deep learning, automated methods for image analysis have 
been gradually evolving. Notably, deep neural networks leveraging multiple features, like Convolutional Neural 
Networks (CNNs)20 and traditional Transformer architectures for image  classification21, have been explored. 
However, CNN-based models primarily extract local features using smaller convolutional kernels, posing chal-
lenges in capturing global contextual features. On the other hand, Transformer-based neural networks, despite 
their extensive parameter sets, face difficulties in handling sequential data efficiently.

To overcome these limitations, we developed the MFStudentLNet model. This model utilizes Resnet18 for 
feature extraction and integrates FPN at varying scales within each Resnet18 layer. SE modules are inserted 
between the Resnet and FPN layers to adaptively gauge the significance of each channel in classifying lung cancer. 
Furthermore, we employ knowledge distillation from the larger teacher model, Resnet50, to the more compact 
student model. This strategy decreases computational and storage demands while boosting the student model’s 
accuracy. The smaller student models, with their reduced parameter count and complexity, are more interpretable 
and understandable, a vital aspect in fields requiring clarity on model decision-making, like medical diagnostics 
and safety applications. Figure 3 depicts the specific structure of the student model.

This paper introduces a unique network architecture, incorporating residual connections to tackle the issues 
of vanishing and exploding gradients prevalent in deep networks. By extracting features at multiple levels, the 
model captures diverse semantic information, with higher-level features identifying broader aspects and lower-
level ones detailing finer nuances. Overall, image classification models play a pivotal role in lung cancer classifi-
cation, potentially improving early diagnosis, treatment outcomes, and patient survival rates, and contributing 
to enhanced medical workflow, quality, and efficiency in healthcare.

Comparing model
This study conducts a comparative analysis of several CNN models, which include MobileNet, a conven-
tional CNN, and ResNet-101. These models are juxtaposed with our hybrid approach, which integrates a 

Figure 2.  Dataset preprocessing display.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10471  | https://doi.org/10.1038/s41598-024-61101-7

www.nature.com/scientificreports/

ResNet18-based student model and a ResNet50 teacher model. The comparative experiments reveal that the 
combination of the ResNet18 student model and the ResNet50 teacher model surpasses the performance of 
 ResNet10122, indicating the potential advantages of our model configuration.

MobileNet23 is distinguished by its lightweight architecture, designed to minimize network parameters. It 
achieves a balance between accuracy and latency through deep separable convolutions, making it particularly 
well-suited for environments with constrained computational resources, like mobile devices.

CNNs efficiently capture local features through convolution operations and autonomously learn structural 
patterns in images by progressively extracting and amalgamating these features. CNNs have shown remarkable 
performance in various image recognition tasks, including the classification of lung cancer cells.

ResNet-101, a deeper variant in the ResNet series, is known for its introduction of residual blocks. These 
blocks enable the network to maintain effective training capabilities even as it deepens. Boasting 101 convolu-
tional layers, ResNet-101 is tailored for complex tasks that demand extensive deep feature learning.

Experiment setup
To ensure the rigor of the experiments and prevent random errors, this study employed five-fold cross-validation 
in both ablation and comparative experiments. This method mitigates biases resulting from uneven data distribu-
tion by averaging results over multiple evaluations. In the ablation experiments, different model optimization 
strategies were applied to the baseline model to assess the effectiveness of each component. Subsequently, the 
optimized models were thoroughly analyzed in the comparative experiments, with a particular focus on the 
performance of different models (such as MobileNet, CNN, ResNet101) in terms of accuracy in lung cancer detec-
tion and classification. All model parameters were optimized to ensure stability and prevent overfitting. These 
experiments were conducted on a Windows operating system using Python 3.8 and Pytorch 1.8.2, supported by 
an Nvidia RTX3060Ti GPU and an AMD 6900HX CPU. Table 1 shows all the training details, with a description.

Model evaluation
In this study, to comprehensively evaluate model performance, we meticulously selected several metrics, includ-
ing Accuracy, Matthews Correlation Coefficient (MCC), Precision, Recall, and F1-score. Accuracy was chosen to 
reflect the overall performance of the model, representing the proportion of correct predictions made. Precision 
was selected to gauge the quality of the model’s positive class predictions, i.e., the proportion of actual positive 
samples among those predicted as positive. Recall assesses the extent to which the model correctly identifies 
positive samples, representing the proportion of correct positive predictions out of all actual positive samples. 
The F1-score, as the harmonic mean of Precision and Recall, serves to balance these two metrics, making it 
particularly suitable for scenarios where both Precision and Recall are equally important.

Moreover, we employed the MCC as part of our performance evaluation because it offers a comprehensive 
metric ranging between – 1 and 1, where 1 indicates perfect prediction, 0 signifies random prediction, and – 1 
represents entirely incorrect prediction. MCC takes into account all four elements of the confusion matrix (true 
positives, false positives, true negatives, and false negatives), rendering it a reliable performance assessment 
tool, especially in imbalanced datasets. The calculation methods for all metrics are shown in formulas (1)–(5).

Figure 3.  Specific architecture of the model.
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The rationale behind selecting these metrics was to reflect the model’s performance from various angles 
comprehensively and reveal the model’s strengths and limitations in specific tasks. By elucidating the differ-
ent metrics, we gained a deeper understanding of the multi-dimensional nature of model performance and 
its impact on practical applications. This multi-faceted analytical approach has facilitated a comprehensive 
evaluation and improvement of model performance, enhancing our understanding of the model’s behavior and 
decision-making process.

Results
Ablation experiment results
In this study, our ablation and comparative experiments were rigorously conducted using a five-fold cross-
validation method. This involved randomly splitting the entire dataset into five equally sized subsets. For each 
experiment round, one subset was designated as the test set, and the remaining four were combined as the 
training set. We trained and evaluated the model on each unique pairing of training and test sets. This iterative 
process, conducted five times with varying test sets, allowed us to obtain a comprehensive set of performance 
evaluations, from which we calculated the mean and standard deviation. This approach provided a robust assess-
ment of the model’s stability and reliability.

The experimental setup also entailed specific training parameters. The learning rate was initially set at 0.001 
and reduced by 20% every 10 epochs. We utilized the Adam optimizer for its efficiency in automatic learning rate 
adjustment. The softmax function was chosen as the loss function, a suitable choice for multi-class classification 
challenges. The batch size was set to 32, balancing the training speed against memory usage. Each model was 
iterated until performance plateaued, ensuring the validity of our results.

In our ablation study, the baseline model was ResNet18. We augmented this model by integrating the FPN for 
extracting multi-scale features, combining inputs from both shallow and deep layers of ResNet18. SE modules 
were inserted between the FPN and the original layers of ResNet18 to extract attention mechanisms across dif-
ferent levels. Finally, we applied model distillation, using ResNet50 as the teacher model to enhance the learning 
capabilities of our proposed student model. These modifications were aimed at improving the model’s feature 
extraction and representational capacity, thereby boosting overall performance. Table 2 details the ablation 
experiment results with the inclusion of these various modules.

The results of the ablation experiments confirmed that the model components proposed in this paper signifi-
cantly enhance the model’s precision, thereby validating their effectiveness. Notably, the introduction of the FPN 
layers and the application of Model Distillation techniques played a substantial role in improving the overall per-
formance of the model. The FPN layers, with their multi-scale feature extraction capability, effectively enhanced 
the model’s processing power. In addition, model distillation, by transferring complex knowledge to smaller and 
more efficient models, further boosted the model’s performance. These enhancements underscore the importance 
of adopting advanced architectures and techniques in deep learning models to improve efficiency and accuracy.

(1)Accuracy =
TP+TN

TP+TN+FP+FN

(2)MCC =
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(3)Precision =
TP

TP+FP

(4)Recall = TP
TP+FN

(5)F1− score =
2(precision×Recall)
precision+Recall

Table 1.  Hyperparameter on experiment.

Hyperparameter Value Description

Learning rate 0.001 Starting learning rate for the optimizer

Learning rate decay Reduce by 20% every 10 epochs Learning rate decreases by 20% every 10 epochs

Batch size 32 Number of samples per forward/backward pass

Optimizer Adam Optimizer for automatic learning rate adjustment

Loss function Softmax Loss function used for multi-class classification

Kernel size 3 × 3 Kernel size for the convolutional layers

Stride 1 Stride for the convolutional layers

Scheduler Gamma 0.7 Gamma parameter in the learning rate scheduler for adjusting 
the learning rate

Normalization (mean) [0.485, 0.456, 0.406] Mean values for image normalization

Normalization (standard deviation) [0.229, 0.224, 0.225] Standard deviation values for image normalization
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On the other hand, for a more visual representation of the model’s performance, this paper presents the clas-
sification confusion matrix results for different ablation components and their corresponding Receiver Operating 
Characteristic (ROC) curves, as illustrated in Fig. 4.

Comparative experiment results
In the field of lung cancer diagnostics, our research extended beyond the fundamental implementation of CNN 
models to a detailed comparison of advanced architectures like MobileNet and ResNet101. The key goal of this 
comparative analysis was to assess and juxtapose the efficacy of these diverse models in lung cancer detection 
tasks. Known for its lightweight and efficient design, MobileNet is particularly suited for environments with com-
putational constraints, while ResNet101 is acclaimed for its depth and complexity, excelling in detailed feature 
capture and learning. This comparative study aimed to highlight the advantages and limitations of each model 
in processing lung cancer image diagnostics, thus providing an informed basis for selecting the most appropri-
ate model for clinical use. This approach allowed for a more comprehensive understanding of the viability and 
impact of different network structures in automated lung cancer diagnosis.

In our research, we implemented five-fold cross-validation for experiments and outlined the thorough results 
in Table 3. This encompassed an in-depth comparative analysis of ResNet101, CNN, MobileNet, VIT, and our 
proposed model, inclusive of each model’s evaluation metrics. To maintain consistency and rigor in the experi-
mental results, the parameters and settings for the comparative experiments were kept uniform with the ablation 
study. This ensured standardization across all model evaluations, allowing for an equitable comparison of their 
performances. The application of five-fold cross-validation further bolstered the reliability and stability of our 
findings, solidifying the scientific validity and accuracy of our conclusions.

As shown in Table 3, based on the results of the comparative experiments, it’s evident that our model demon-
strates a significant advantage over the MobileNet, CNN, ResNet101, and VIT models across various evaluation 
metrics. Specifically, our model exhibits the highest Recall, indicating superior sensitivity in identifying positive 
classes, such as lung cancer cells. Furthermore, it also achieves the highest Precision among all models, implying 
greater accuracy and a lower false-positive rate in predicting positive classes. In terms of Accuracy, our model 
leads as well, indicating the highest proportion of correct classifications across all tasks. Finally, our model scores 
the highest in the MCC, a balanced performance metric that considers true positives, false positives, true nega-
tives, and false negatives, indicating robust classification performance under various conditions.

Additionally, the data in Table 3 indicates that our model requires only 91 s for training per epoch, which 
is significantly superior compared to all other models evaluated. Or training duration is notably shorter when 
compared with other high-accuracy models such as Resnet101 (183 s) and VIT (244 s), while still maintaining 
an exceptionally high precision rate (0.9827) and accuracy (0.9884). Although the training time for the CNN 
model exceeds that of our model by 2%, our model achieves an improvement in precision of over 10% relative 
to the CNN. This performance not only highlights the success of our model in computational optimization but 
also showcases its exceptional balance of performance and efficiency.

In conclusion, the comparative experiments validate that our model’s exceptional performance on these key 
indicators makes it highly reliable and accurate for lung cancer detection tasks, crucial advantages for selecting 
a lung cancer diagnostic model. Additionally, we have illustrated the ROC curves and confusion matrix results 
of the different comparative models in Fig. 5.

Generalization experiment results
To further verify the model’s ability to generalize across different demographic groups and categories, we have 
expanded the scale of our data. This measure aims to assess the model’s generalizability, ensuring that it maintains 
stable performance in a diversified data environment. In our experiments on generalization capabilities, we not 
only focus on the task of lung cancer classification but also extend our research to other diseases such as colon 
adenocarcinoma on the basis of public datasets, thereby enhancing the diversity of the dataset. Our goal is to 
validate whether the model can exhibit superior performance on a more varied dataset through this approach.

Accordingly, we have supplemented the original dataset with two new categories: colon adenocarcinoma and 
benign colon tissue, with 5,000 images for each category, thus increasing the total dataset size to 25,000 images. 
The choice of hyperparameters and the detailed configuration of the model remain consistent with previous 
comparative trials and ablation studies. On this expanded dataset, we conducted a comparative analysis against 
different datasets previously used, with the results displayed in Table 4.

Concurrently, the results depicted in Fig. 6 indicate that the augmentation of the dataset’s diversity and size 
can validate the generalization ability of our model. Specifically, by expanding the dataset, the model is capable 
of learning a broader range of variations and features, thereby maintaining a high level of recognition capability 

Table 2.  Results of the ablation experiments.

Step Architecture Precision MCC Accuracy Recall F1

Step 1 Baseline 0.8029 0.7210 0.8013 0.7635 0.7827

Step 2 Step1 + FPN 0.8950 0.8361 0.8880 0.8796 0.8872

Step 3 Step2 + SEBlock 0.9149 0.8613 0.9027 0.8881 0.9013

Step 4 Step3 + model distillation 0.9885 0.9827 0.9884 0.9883 0.9884
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under various conditions, which is crucial for diverse scenarios encountered in practical applications. Conse-
quently, our model has demonstrated potential for application in a wider and more variable environment.

Model interpretability
In the diagnosis and treatment of lung cancer, accurately distinguishing between lung adenocarcinoma, squamous 
cell carcinoma of the lung, and benign lung tissue is crucial. These types of lung lesions differ significantly in 
their cellular characteristics, pathological features, and progression of the condition. These differences determine 

Figure 4.  ROC curves and confusion matrices from the ablation experiments.
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Table 3.  Comparative experiment results table.

Recall Precision Accuracy MCC F1 Times (s)

Mobilenet 0.8785 0.7937 0.8529 0.8249 0.8339 93

CNN 0.8918 0.8143 0.8684 0.8446 0.8513 83

Resnet101 0.9809 0.9709 0.9804 0.9799 0.9759 183

Desnet121 0.9632 0.9638 0.9636 0.9455 0.9635 127

Resnet50 0.9448 0.9490 0.9471 0.9217 0.9469 128

VIT 0.9063 0.8545 0.9013 0.8964 0.8796 244

Our 0.9885 0.9827 0.9884 0.9883 0.9856 91

Figure 5.  Results of the comparative experiments.
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the treatment plan and prognosis for patients. Lung adenocarcinoma typically originates from glandular cells in 
the lungs and is characterized by nuclear atypia and distinct glandular structures. Squamous cell carcinoma of 
the lung, arising from the squamous cells covering the respiratory tract, is characterized by cell keratinization 
and prominent intercellular bridges. In contrast to these two malignant pathologies, benign lung tissues exhibit 
normal cellular arrangement and structure.

Given this context, the performance of our model in differentiating these types of lung lesions is particularly 
critical, directly impacting whether patients receive accurate diagnoses and timely, effective treatment. In Fig. 7, 
we demonstrate the model’s ability to identify lung adenocarcinoma, squamous cell carcinoma, and benign lung 
tissues. The first row in Fig. 7 represents lung adenocarcinoma, the second squamous cell carcinoma, and the 
third normal cells. By contrasting the original images with the model’s focus areas at deeper layers, we demon-
strate how the model recognizes and differentiates lesions at different levels, revealing the distribution of the 
model’s specific focal points. In these heatmaps, the model’s sensitivity to cellular morphology is particularly 
evident. In the images of lung adenocarcinoma and squamous cell carcinoma, the model focuses on cellular 
areas with potential pathological significance. The variations in color intensity in the heatmaps highlight these 
areas, with warmer tones like red and yellow indicating high attention, often around the nuclei, where tumor cell 
mutations are most apparent. The degree of focus correlates with the potential malignancy of the cells, providing 
very specific visual clues pointing to potential malignant changes identified by the model.

Conversely, the heatmaps for normal cells show a relatively uniform distribution of blue and green, indicat-
ing a more dispersed attention without distinct focal areas. This low-intensity color distribution corresponds 
with the stable structure of normal cells and their lack of malignant features. Through this contrast, the model 
not only identifies the differences between pathological and normal cells but also reveals changes within the 
cells at a finer level.

Table 4.  Experiments to evaluate generalization capacity.

F1 Precision Accuracy MCC Recall

Mobilenet 0.9474 0.9508 0.9475 0.9352 0.9440

CNN 0.9189 0.9258 0.9195 0.9012 0.9121

Resnet101 0.9764 0.9764 0.9765 0.9707 0.9764

VIT 0.8923 0.9013 0.8920 0.8672 0.8835

Resnet50 0.9451 0.9513 0.9453 0.9333 0.9389

Desnet121 0.9660 0.9689 0.9661 0.9585 0.9631

Our 0.9800 0.9812 0.9800 0.9753 0.9788

Figure 6.  Results of the generalization experiments.
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Discussion
In this research, we developed a model tailored for differentiating various lung cancer cell types, achieving sub-
stantial model optimization through a series of strategies. The incorporation of a multi-channel FPN enhances 
the model’s capability to process complex imagery. Concurrently, the integration of SE (Squeeze-and-Excitation) 
modules facilitates multi-scale analysis of each channel’s significance in classifying lung cancer, bolstering the 
model’s accuracy. Knowledge distillation from larger teacher models, like ResNet50, to more compact student 
models, ensures a balance between reducing computational and storage demands and maintaining precision. 
Overall, the proposed model in this study skillfully combines multiple advanced techniques to effectively balance 
accuracy, computational efficiency, and interpretability, crucial in vital fields such as medical image analysis.

Precise identification of lung cancer cell types offers enhanced diagnostic accuracy for disease confirmation 
and classification, supporting more informed clinical decision-making by physicians. Such models contribute 
to the early detection of abnormal changes in lung cancer cells, enabling timely intervention and potentially 
increasing patient survival and recovery rates. In pathological assessments, manual evaluations can carry inherent 
subjectivity and errors. Automated classification models reduce such discrepancies, providing more consistent 
and reliable analysis. The data obtained from accurate classifications are invaluable for lung cancer research, 
aiding the development of novel medications and treatment approaches.

Compared to prior research, the model introduced in this study shows notable advancements in accuracy. We 
conducted a comparative analysis with several lung cancer classification models from existing literature, including 
Support Vector Machine (SVM), Random Forest, K-Nearest Neighbors (KNN), and CNN-RNN  networks24–28. 
As indicated in Table 5, which presents a comparison of accuracy results, our model demonstrates exceptional 
performance relative to earlier experimental outcomes. This not only asserts the pioneering nature of our research 
but also corroborates its effectiveness.

While there have been positive advancements in the performance of the tri-classification model for lung 
cancer, it’s important to note that the model’s performance heavily relies on the quality and quantity of the train-
ing data. Insufficient or biased training data could impact the model’s accuracy and generalization capabilities. 
Additionally, the model’s external testing is currently limited, so enhancing its external generalizability on mul-
tiple datasets in future work is of utmost importance. Moreover, the decision-making process of deep learning 
models can be challenging to interpret, which may pose issues in the medical field. Physicians and patients often 
require a clear understanding of the basis for diagnoses. Therefore, future work should also focus on improving 
the interpretability of the model.

Figure 7.  Model’s recognition capability for lung cancer pathology.
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Conclusions
In this study, we developed an automated classification scheme specifically for diagnosing lung cancer cells 
in medical imaging. By incorporating FPN and SE modules for multi-scale feature extraction and employing 
knowledge distillation techniques from larger teacher models to more compact student models, we significantly 
improved the accuracy of lung cancer cell classification. Ablation studies validated the importance and util-
ity of these model components. Comparative analyses with traditional medical cell classification models like 
MobileNet, CNN, ResNet101, VIT, Densenet121, and ResNet50 demonstrated that our method achieved sub-
stantial improvements across multiple performance metrics, with 98.84% of images correctly classified, under-
scoring the efficiency and feasibility of our system in the cytodiagnosis of lung cancer cells. Moreover, testing on 
larger datasets revealed the model’s excellent generalizability, with an accuracy rate of 98%, further confirming 
its potential in practical applications. However, the lack of high-quality lung cancer pathology databases limits 
the assessment of the model’s universality. Therefore, future work should focus on enhancing the model’s inter-
pretability and generalizability across diverse datasets to support its application in a broader medical context, 
advancing personalized medicine and precision treatment.

This study, by integrating advanced machine learning techniques with medical imaging, has not only advanced 
the development of lung cancer diagnosis but also set a precedent for applying similar methods across a broader 
spectrum of medical fields. The success of this automated classification system in accurately diagnosing lung 
cancer from medical images highlights the potential of AI tools to revolutionize healthcare, offering faster and 
more accurate diagnoses and personalized treatment plans. This could lead to earlier detection of lung cancer, 
thereby increasing treatment success rates and improving patient outcomes.

Furthermore, the methodological framework established in this research can be applied to other types of 
cancer detection and various medical applications, fostering innovation in medical diagnostics and treatment 
planning. It paves the way for the development of universal diagnostic models that can be applied across differ-
ent types of medical data and diseases, contributing to the broader field of precision medicine. By enhancing 
the model’s interpretability and generalizability, we are moving towards a future where AI-driven diagnostics 
become an integral part of clinical practice, thus improving healthcare services on a global scale.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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