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Motor learning in multijoint 
virtual arm movements with novel 
kinematics
Nagisa Inubashiri 1, Shota Hagio 2,3* & Motoki Kouzaki 1,3

Humans move their hands toward precise positions, a skill supported by the coordination of multiple 
joint movements, even in the presence of inherent redundancy. However, it remains unclear how 
the central nervous system learns the relationship between redundant joint movements and hand 
positions when starting from scratch. To address this question, a virtual-arm reaching task was 
performed in which participants were required to move a cursor corresponding to the hand of a virtual 
arm to a target. The joint angles of the virtual arm were determined by the heights of the participants’ 
fingers. The results demonstrated that the participants moved the cursor to the target straighter 
and faster in the late phase than they did in the initial phase of learning. This improvement was 
accompanied by a reduction in the amount of angular changes in the virtual limb joint, predominantly 
characterized by an increased reliance on the virtual shoulder joint as opposed to the virtual wrist 
joint. These findings suggest that the central nervous system selects a combination of multijoint 
movements that minimize motor effort while learning novel upper-limb kinematics.

Humans control movements, precisely managing hand positions or tool endpoints. These endpoint move-
ments rely on how the central nervous system (CNS) coordinates multiple joint movements with redundancy. 
Understanding this coordination is fundamental for human motor control1. The CNS employs internal models, 
which are neural representations linking joint movements to the corresponding movements of the hand or tool 
endpoints2–4. The development of internal models is essential for learning movements involving novel kinemat-
ics; these developments have been observed in infant motor development and in adapting to prosthetic limbs5,6. 
However, a key question remains as to how the CNS orchestrates multiple joint movements while learning 
internal models for novel body kinematics, particularly when starting from scratch.

The CNS controls multiple joint movements considering kinematic properties such as the distance between 
the joint and the hand. Previous studies have investigated the learning of multiple joint movements, focusing on 
the developmental change in reaching movements in infants7–10. Berthier et al. showed that infants largely use 
their shoulder to move their hands to an object8. This finding is believed to result from differences in the rate 
of maturation of the neuromuscular system between the proximal and distal parts of the body. For this reason, 
it is uncertain whether adults use joints in a similar way when learning new internal models of kinematics. The 
CNS may modularly control the degrees of freedom of the body as a control strategy to overcome redundancy 
in the motor system11–13. In contrast, it has been suggested that the covariation pattern of the degrees of freedom 
can be reproduced by the biomechanical properties of the musculoskeletal system14. In addition, because of the 
dynamic interactions and the anatomical connections by biarticular muscles between segments15,16, each joint 
movement is not completely independent. Accordingly, it has not been possible to isolate whether the observed 
joint movement patterns are due to control strategies or simply biomechanical constraints. Elucidation of the 
control strategy for multijoint movements focusing on each joint, which has different kinematic properties, leads 
to an understanding of the learning process of joint control patterns. Hence, an experiment that minimizes the 
effects of biomechanical constraints should be conducted to understand the control strategy employed by the 
CNS to control multiple joint movements during the motor learning process.

Learning internal models of novel body kinematics from scratch is considered to be a different motor learn-
ing type than motor adaptation, which has received much attention in the field of motor control17,18. Previous 
studies have shown that prior motor and/or sports experience influences future motor learning6,19,20. Addition-
ally, the motor learning process may be affected by individual differences in the kinematics to be learned, such 
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as limb length and muscle properties. Thus, it is necessary to reduce the effect of prior motor experience and 
body size when investigating learning internal models of novel body kinematics. Rohde et al. constructed a new 
experimental task on the learning of internal models of kinematics that satisfied this demand21. In this previous 
study, participants had to learn a sensorimotor mapping that reflected the kinematic properties of a three-joint 
virtual arm. This task is effective for investigating strategies used by the CNS to control multiple joint move-
ments during novel kinematics learning because it reduces biomechanical constraints such as limb length and 
biarticular muscles. Although their study showed that the low-dimensional structures of joint movements are 
formed gradually, how control of each joint movement is modulated during novel body kinematics learning is 
unclear. Therefore, we investigated changes in multiple joint movements of the virtual arm as the internal model 
of the virtual arm was learned.

The purpose of this study was to examine how the CNS controls multiple joint movements while forming 
new neural representations of limb kinematics. To this end, we adopted the virtual-arm reaching task21 and 
measured the ability of endpoint control to quantify the learning of new limb kinematics. We also examined 
changes in the use of virtual arm joints, and then, assessed the associations between endpoint control ability and 
joint movement control characteristics.

Results
Participants performed a 3-joint virtual-arm reaching task in which they moved their fingers (left index, right 
index, and right middle fingers) in the vertical direction to manipulate the endpoint of the virtual arm (Fig. 1). 
The heights of their fingers were converted into joint angles (shoulder, elbow, and wrist joint) of the virtual arm, 
and the endpoint of the virtual arm was displayed as a cursor on the monitor. In order to investigate whether the 
stereotyped control strategy for the virtual arm would be observed regardless of the finger-to-joint mapping, the 
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Figure 1.   Experimental setup. (A) Illustration of the experimental setup. Participants sat in a stable chair with 
their chin resting on a chinrest and their arms resting on armrests on a table. The direct vision of their fingers 
was occluded by wearing glasses with plates. (B) The initial posture of the virtual arm (dotted line and block 
circles) and the 10 target positions (black dots) in the task space. The numbers near the targets indicate the 
ordering of the targets in the fixed trial. The gray area represents reachable space. The endpoint of the virtual 
arm was shown as the red cursor on the monitor. The posture of the virtual arm was invisible during the 
experiment. The initial angles (in radians) of the shoulder, elbow, and wrist joints were 0.5, 2, and 2, respectively. 
Ten targets were distributed in a one-third segment of the task space. (C) The participants’ finger positions were 
mapped to the cursor position. The vertical positions of the left index, the right index, and the right middle 
fingers were linearly transformed to joint angles of the virtual arm. The assignment of fingers to joints and of 
flexion/extension between fingers and joint movements was randomized for each participant. The endpoint (red 
circle) of the virtual arm was displayed as the cursor. (D) Protocol of this experiment. The experiment consisted 
of ten blocks of six trials. During a trial, ten targets were presented either in random order (random trial) or in a 
fixed order (fixed trial). In each block, five random trials were followed by a fixed trial.
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assignment of fingers to joints and of flexion/extension between fingers and joint movements was randomized 
across participants. In the task, participants were asked to reach the cursor to a target as fast and straight as pos-
sible. In each trial, 10 targets spread across the task space were displayed in sequence. Ten targets were presented 
either in random order (random trial) or in fixed order (fixed trial). The experiment consisted of ten blocks, each 
consisting of six trials (5 random trials followed by the fixed trial).

Task performance
Figure 2 shows the cursor trajectories of a representative participant in the first and the last trials of the fixed 
trials. The cursor trajectory was curved remarkably and reached only targets close to the start position of the 
cursor in the first trial (Fig. 2A), whereas it was approximately straight and reached all targets in the last trial 
(Fig. 2B). To visualize typical examples of virtual joint movements during point-to-point goal-directed move-
ments, the joint angles from movement onset on a current target to the next target appearance in a trial were 
extracted, i.e., ten reaching movements were extracted in a trial, and the angle at movement onset was subtracted 
from the joint angles. These joint angle data were then time-normalized to 100 points and averaged at each time 
point. Figure 3 shows these joint angles for all joints of the virtual arm of a representative participant in the 
first and the last trials of the fixed trials. In the first block, all virtual joints were used, and the amount of joint 
angular changes was large (Fig. 3A). On the other hand, the virtual shoulder was mainly used, and the amount of 
angular change in all joints decreased in the last block (Fig. 3B). Figure 4A shows the mean number of successful 
reaching movements in a trial. The mean number of successful reaching movements increased gradually during 
the experiment. The mean number of successful reaching movements in the last block was significantly higher 
than that in the first block (the first block, 3.96 ± 1.55; the last block, 7.04 ± 2.34; p < 0.001). Figure 4B shows the 
mean directional errors between the cursor and the straight-line path between targets during the experiment. 
This value also decreased gradually during the experiment. The mean directional error in the last block was 
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Figure 2.   The cursor trajectories of the representative participant. Cursor trajectories during the fixed trial in 
the first and last blocks for the same participant. (A) The first block. (B) The last block. The gray line indicates 
the cursor trajectory. The black and red dots represent the target position and the initial position of the cursor, 
respectively. The gray area represents reachable space.
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Figure 3.   The joint angles of the representative participant. The joint angles of the virtual arm of the same 
participant during a single point-to-point reaching. (A) The fixed trial in the first block. (B) The fixed trial in the 
last block. Angles are expressed relative to the initial joint configuration. The red, green, and blue lines indicate 
the average over 10 point-to-point reaching movements of the virtual shoulder, virtual elbow, and virtual wrist 
joints, respectively. The shaded area represents the standard error of the mean (SEM).



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10421  | https://doi.org/10.1038/s41598-024-60844-7

www.nature.com/scientificreports/

significantly smaller than that in the first block (the first block, 0.81 ± 0.20 cm; the last block, 0.48 ± 0.21 cm; 
p < 0.001). In addition, Fig. 4C shows the mean movement times during the experiment. The mean movement 
time in the last block was significantly shorter than that in the first block (the first block, 3.82 ± 0.49 s; the last 
block, 2.70 ± 0.87 s; p < 0.001).

The amount of joint angular change
To evaluate the ability to move the cursor, we quantified the amount of joint angular changes in the virtual arm, 
normalized by displacements of the cursor during a trial. Figure 5A shows the time course of the mean normal-
ized joint angular change summed over all joints. The normalized joint angular change was significantly lower 
in the last block than in the first block (the first block, 57.38 ± 5.96 deg/cm; the last block, 54.05 ± 5.32 deg/cm; 
p = 0.032; Fig. 5C). In contrast, according to the two-way repeated-measures ANOVA, no statistically significant 
differences were detected for the interaction effect between the joints of the virtual arm and blocks (F2,54 = 2.86, 
p = 0.066) or for the main effects of the joints of the virtual arm (F2,54 = 0.98, p = 0.382) or blocks (F1,54 = 1.90, 
p = 0.174) (Fig. 5B,D).

Relative use of each joint
To investigate how participants controlled joint movements of the virtual arm, we quantified the ratio of the angu-
lar change in each virtual joint to the sum of joint angular changes in all virtual joints. Figure 6 shows the time 
course of the mean relative use of each joint of the virtual arm. Two-way repeated- measures ANOVA revealed 
no significant main effect of the joints of the virtual arm (F1,54 = 1.434 × 10−10, p = 1.000) or blocks (F2,54 = 1.75, 
p = 0.184). We observed a significant interaction between the joint and the block (F2,54 = 3.59, p = 0.035). The 
simple main effects showed a significant difference among joints in the last block (virtual shoulder, 38.1 ± 11.6%; 
virtual elbow, 32.2 ± 7.1%; virtual wrist, 29.8 ± 11.7%; p = 0.049). Post hoc tests showed that the relative use of 
the virtual shoulder was significantly greater than that of the virtual wrist (p = 0.045). In addition, we evaluated 
the associations between the amount of use of each virtual joint and motor learning ability. As a result, no sta-
tistically significant correlation was found between the relative use of joints of the virtual arm and the number 
of successful reaching movements (shoulder, r = 0.491, p = 0.099; elbow, r =  − 0.349, p = 0.429; wrist, r =  − 0.275, 
p = 0.765; Fig. 7). Finally, in order to clarify whether the kinematics of the virtual arm were learned regardless 
of the finger-to-joint mapping, we calculated the relative use of fingers (the left index, right index, and right 
middle fingers). Two-way repeated-measures ANOVA showed that no significant differences were detected for 
the interaction effect between the fingers and blocks (F2,54 = 0.475, p = 0.636) or for the main effects of the fingers 
(F2,54 = 0.204, p = 0.816) or blocks (F1,54 = 1.287 × 10−10, p = 1.000) (see Supplementary Fig. S2 online).

M
ov

em
en

t t
im

e 
[s

]

1

2

3

4

5

Trial number
0 10 5020 30 40 60

0

0.5

1

1.5

Er
ro

r [
cm

]

Trial number
0 10 5020 30 40 60

Trial number

0

2

4

6

8

0 10 5020 30 40 60

10

# 
of

 s
uc

ce
ss

fu
l r

ea
ch

in
g

Block1 Block10
0

2

4

6

8

10

# 
of

 s
uc

ce
ss

fu
l r

ea
ch

in
g p < 0.001

Block1 Block10
0

0.5

1

1.5

Er
ro

r [
cm

]

p < 0.001

Block1 Block10

p < 0.001

M
ov

em
en

t t
im

e 
[s

]

1

2

3

4

5

D

A B C

E F

Figure 4.   Task performance. (A) The number of successful reaching movements. (B) The directional error of 
the cursor. (C) The movement time. The black line indicates the average across participants. The shaded area 
represents the SEM. (D–F) Boxplot in the first (trial number: 1–6) and last (trial number: 55–60) block of task 
performance. Each dot represents the mean value during each block of an individual participant.
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Figure 5.   The amount of joint angular change. The amount of joint angular change summed over all joints of 
the virtual arm. (A) The black line indicates the average across participants. (B) The amount of joint angular 
changes in the virtual shoulder, the virtual elbow, and the virtual wrist joints averaged across participants. The 
red, green, and blue lines indicate the shoulder, the elbow, and the wrist joints, respectively. The shaded area 
represents the SEM. (C) Boxplot in the first (trial number: 1–6) and last (trial number: 55–60) block of joint 
angular change. Each dot represents the mean value during each block of an individual participant. (D) Joint 
angular change for each joint in the first (trial number: 1–6) and last (trial number: 55–60) block. All error bars 
represent the SEM.
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Discussion
In this study, we aimed to investigate how the CNS controls multiple joint movements while learning new limb 
kinematics. To this end, we used the virtual-arm reaching task, in which each finger movement of the participants 
corresponded to each joint movement of the virtual arm. Participants had to learn the relationship between 
their finger movements and the position of the cursor indicating the endpoint of the virtual arm to successfully 
perform the task. Participants were able to move the cursor to the target straighter and faster after learning than 
in the initial phase of learning (Fig. 4). As the experiment progressed, participants were able to move the cursor 
with fewer joint movements of the virtual arm after learning (Fig. 5). After learning, the shoulder joint of the 
virtual arm was used more than the wrist joint was (Fig. 6).

In the current study, we adopted the reaching task, in which participants manipulate the virtual arm21. Since 
this task minimizes the influence of biomechanical constraints and previous motor experience on joint control, 
we were able to explore strategies for controlling multiple joints while learning novel kinematics. Participants in 
the current study were not told that the cursor movement depended on the posture of the virtual arm. Further-
more, there were many possible combinations of multiple joint movements to complete this task. Even in this 
situation, the common joint control characteristic of greater use of the shoulder joint of the virtual arm than 
of the wrist joint was observed after learning. The results indicate that participants learned the relationships 
between the joint angles and the endpoint of the virtual arm behind the acquisition of finger-to-cursor mapping.

The primary outcome of this study was greater relative use of the shoulder joint than of the wrist joint in the 
virtual arm (Fig. 6). This finding may be attributed to the different effectiveness of virtual arm joints in manipulat-
ing the cursor. It has been known that the multijoint movements are determined by taking into account the effect 
of each joint on the endpoint variability22. The virtual shoulder joint, which is the farthest from the endpoint of 
the virtual arm, translates finger movements into larger cursor movements than the other virtual joints. Conse-
quently, virtual shoulder joint movements were effective at moving the cursor over a wide area of the task space. 
This preference for the proximal joint of the virtual arm is consistent with what has been observed in the Goal 
Babbling simulation, which is a computational approach to novel internal model learning in robotics21. In this 
computational approach, more effective joints were actively used when learning new inverse kinematics, which 
leads to minimizing effort costs when exploring motor solutions23,24. In contrast, human participants tended 
to use ineffective joints the most during learning21. This opposite trend between the Goal Babbling simulation 
and human behavior was interpreted to be due to the human preference for using joints that were less affected 
by motor noise. Although in this previous study, participants saw only the ellipse, which reflected the distance 
between the endpoint of the virtual arm and the target location, we provided visual feedback about the cursor 
location. Visual feedback about the cursor in the task space might have enabled active use of the proximal joint 
of the virtual arm. Furthermore, the training volume of the current study was greater than that of the previous 
study. Because motor skill learning is considered a form of motor learning that takes a long time25, extensive 
training experience improves the ability of the virtual arm to learn kinematics. Qualitatively, absolute virtual 
wrist joint use decreased as the experiment progressed, whereas shoulder use did not change (Fig. 5B). The 
extensive training may have led to a greater reliance on proximal joints over distal joints, allowing participants 
to move the cursor with fewer finger movements. Taken together, the greater use of the virtual shoulder joint 
relative to the virtual wrist joint with the improvement in cursor control indicates that the CNS has learned joint 
control for the virtual arm to move the cursor effortlessly. In addition, the greater use of the virtual shoulder 
joint is consistent with the joint control characteristics during the reaching of young infants8. The predominant 
use of the proximal joint in infants is believed to be due to the neural development of the proximal body parts 
after birth26,27. Our results suggest that the use of the proximal joint relative to the distal joint is explained by the 
neural strategy, which reaches with fewer joint movements, as well as the neural development.

Additionally, to estimate the optimal usage of the virtual joints, we simulated the generation of desired tra-
jectories for the virtual arm. This simulation assumed that the endpoint of the virtual arm follows the shortest 
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straight-line path between all pairs of targets, while minimizing the angular changes of the virtual joints (see 
Supplementary Methods online). Consequently, the relative use of the virtual joints from the simulated data was 
found to be higher in the middle joint (see Supplementary Fig. S1 online), which contrasts with our experimental 
results indicating a higher relative use of the virtual shoulder joint. This discrepancy was thought to be due to 
differences in learning stages. We simulated the optimal control for the virtual arm, assuming the participants 
learned well. Motor skill learning is a form of learning that takes a long time25. Thus, the ability of virtual arm 
control improved, but participants were still considered to be in the early stages of learning. Therefore, it is likely 
that the participants in our study prioritized moving the cursor on the screen across a large area while minimiz-
ing motor effort costs rather than moving the cursor in a straight line.

There were individual differences in cursor control ability after learning. We found no statistically significant 
correlation between the relative use of each joint of the virtual arm and the number of successful reaching move-
ments (Fig. 7). However, there was a trend that the relative use of the virtual shoulder was positively correlated 
with the motor learning performance. A potential explanation for this trend is that strategies to control joints 
during motor exploration affect motor learning performance. Previous studies have demonstrated that motor 
exploration may be a key factor in acquiring new internal models28–31. Similarly, Berger et al. reported that long-
time exploration of task space contributes to the learning of new muscle coordination patterns32. Therefore, the 
reduced use of the wrist joint of the virtual arm, indicating greater use of the virtual shoulder joint, might have 
facilitated the exploration of a larger area of task space, which produced improved motor performance.

We also found that the normalized joint angular change summed across all joints decreased as motor learning 
progressed (Fig. 5A). In the present study, participants moved their fingers to control the cursor, so a decrease 
in joint angular change indicated a decrease in finger movements. The CNS generates motor commands that 
minimize motor effort costs when executing well-learned movements33,34. It has also been reported that multi-
effector movements are coordinated to minimize motor effort costs35. In addition, a previous study on skill 
learning reported that the CNS selects the movement solution that minimizes effort during learning36. Similarly, 
previous studies using arm-reaching tasks have shown that joint configurations at target locations depend on 
effort37,38. Hence, decreasing finger movements suggests that the CNS minimizes motor effort costs while learn-
ing new internal models of limb kinematics.

In the task of this study, enslaving, which refers to the involuntary movement of non-intended fingers dur-
ing finger movements, can occur39. Finger enslaving could affect motor learning. To reduce the effect of finger 
enslaving, we randomized the finger-to-joint mapping across the participants. In addition, we investigated the 
effect of finger enslaving by examining whether the learning was constrained by the biomechanical structure 
of the fingers or by the kinematics of the virtual arm. As a result, in the last block, although the relative use was 
similar among fingers (see Supplementary Fig. S2 online), the relative use of the virtual shoulder was higher than 
that of the virtual wrist (Fig. 6). This result indicates that the participants learned the kinematics of the virtual 
arm with little effect of the finger enslavement.

We investigated the neural control strategies employed by the CNS to combine multiple joint movements 
while learning novel limb kinematics. It should be noted that the task of this study reduced biomechanical con-
straints such as interaction torque and anatomical connections between joints, and participants also received 
no proprioceptive information about limb state. Thus, how interactions between biomechanical constraints or 
proprioceptive information and neural control strategies affect joint control during the learning of new internal 
models has not been determined. Previous studies have shown that the biomechanical properties of limbs affect 
neural activity in the primary motor cortex40 and joint coordination patterns in redundant motor systems41. 
An experimental task involving the manipulation of a virtual arm with muscles acting on multiple joints or via 
proprioceptive feedback enables us to understand neural control strategies involving biomechanical constraints 
or proprioceptive information.

Conclusion
In this study, we demonstrated that during the learning of redundant multijoint virtual arm movements with 
novel limb kinematics, the proximal joint was more actively utilized than the distal joint. Furthermore, joint 
angular displacement decreased as learning progressed. These results suggest that, in the absence of biomechani-
cal constraints such as interaction torque and sensory feedback regarding limb state, the CNS adopts a learning 
strategy that favors the combination of multiple joint movements while minimizing motor effort costs. These 
findings enhance our understanding of how the CNS adapts to novel motor tasks, emphasizing the role of joint-
specific strategies in motor learning.

Materials and Methods
Participants
Nineteen healthy right-handed adults (15 males, 4 females; age: 23.1 ± 2.1 years, mean ± standard deviation [SD]) 
participated in this study. Participants provided written informed consent to participate in the study prior to the 
experiment. This study was conducted in accordance with the Declaration of Helsinki, and all procedures were 
approved by the Local Ethics Committee of the Graduate School of Human and Environmental Studies, Kyoto 
University (Approval number: 20-H-6).

Experimental setup
Participants sat in a stable chair with their chin resting on a chinrest and their arms resting on armrests on 
a table (Fig. 1A). The positions of the chinrest and armrests were adjusted individually for each participant. 
Participants wore glasses; these glasses occluded the direct vision of their fingers. A 27-inch monitor (refresh 
rate: 120 Hz) was placed 0.5 m in front of participants at eye level, and the participants were shown a target 
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(0.3 cm radius circle), a cursor (red cursor), a line indicating a home position of their fingers (yellow horizontal 
line), or a vertical position of their fingers (white cursor). The vertical positions of the fingers were captured by 
a real-time motion tracking system. Rigid bodies with four or five infrared reflective markers were attached to 
the left index, right index, and right middle finger. The rigid body coordinates were sampled at 100 Hz by using 
a three-dimensional optical motion capture system (OptiTrack V100, Natural Point Inc., Oregon, United States) 
with 4 cameras spaced around the participant’s fingers. NatNet SDK 3.0.1 (https://​www.​optit​rack.​jp/​suppo​rt/​
suppo​rt01/​suppo​rt01-​02/) provided by OptiTrack was used to extract motion data from Motive 2.1.2 software 
(Natural Point Inc., Oregon, United States, https://​www.​optit​rack.​jp/​suppo​rt/​suppo​rt01/). This allowed for rigid 
body coordinates to be streamed in real time to LabVIEW (National Instruments, Texas, United States). The 
vertical position of each finger relative to the home position was transformed into a displacement of the joint 
angle of the virtual arm from the initial joint angle. Moving the finger 1 cm corresponded to a 60-degree change 
in the joint angle. The assignment of fingers to joint angles of the virtual arm and the correspondence of flexion/
extension between fingers and joint movements were randomized among participants.

Virtual reaching task
Participants performed a virtual reaching task in which they were required to move a cursor corresponding to 
the endpoint of the virtual arm to a target. (Fig. 1B). This task was redundant because there are many joint con-
figurations of the virtual arm that satisfy the requirements of the task, and this approach allowed us to investigate 
the process of forming an internal model of novel kinematics from scratch. In the task, participants were asked 
to reach the cursor to a target on the monitor by moving their three fingers (left index, right index, and right 
middle finger) in a vertical direction. The cursor and a target were presented on the monitor during the task. 
The posture of the virtual arm, when participants held all fingers in the home position, was defined as the initial 
posture q (angles in radians) = (0.5,2,2). The home position of the fingers was defined as the position where all 
fingers were located at the midpoint of the vertical range of motion (ROM) of each finger. All segments of the 
virtual arm are of equal length (1 cm), and each joint angle can be varied in the range [ −π ,π ] from the initial 
angles. The vertical position of each finger relative to the home position was linearly mapped to each joint angle 
of the virtual arm (Fig. 1C). Joint angles of the virtual arm were expressed as positive for extension and negative 
for flexion. The 2-dimensional location of the cursor (x, y) was represented by the following equation:

 where L represents the length of each segment of the virtual arm, with all lengths equal to 1 cm. θ1, θ2, and θ3 
denote the joint angles of the shoulder, elbow, and wrist, respectively. As described above, the cursor position 
(x, y) corresponded to the endpoint of the virtual arm. Thus, participants were required to change the posture 
of the virtual arm by controlling the vertical movements of their fingers to move the cursor to the target. Ten 
targets were evenly placed in one-third of the segment of the circular task space (distances from the initial cursor 
position: 1.5, 2.5 cm; angles: 30, 60, 90, 120, 150 deg; Fig. 1B).

Experimental procedure
Before the experiment, we measured the ROM in the vertical direction of each finger while keeping the other 
fingers immobile to minimize enslaving. As mentioned above, the ROM was used to set the home position of 
the fingers. During the task, participants were instructed to reach the cursor to the targets as fast and straight as 
possible by moving their fingers in a vertical direction. At the beginning of each trial, participants were asked 
to set their fingers, indicated as white dots, at the home position, displayed as the reference line on the monitor. 
Next, the participants maintained their fingers for 2 s, after which the finger positions disappeared, and a green 
target and cursor were presented. After the participants held their fingers for an additional 3 to 4 s, the color 
of the target turned magenta, which was the cue that participants should start the task. When the cursor was 
within the target, the reaching was judged successful. The next target in the sequence was not presented until 
participants successfully reached the current target or 5 s had elapsed since the current target was presented. Ten 
targets were presented either in random order (random trial) or in fixed order (fixed trial). The fixed trial was 
designed to eliminate the effect of differences in the order of target presentation on joint control of the virtual 
arm. Each trial consisted of ten point-to-point reaching movements. After a trial, participants returned their 
fingers to the home position. Ten blocks, each consisting of six trials, were performed with a 30 s rest between 
blocks (Fig. 1D). In summary, the experiment consisted of 10 reaching movements per trial, with each block 
comprising 6 trials. The participants completed a total of 10 blocks, resulting in a total of 600 reaching move-
ments throughout the experiment.

Data analysis
Offline analysis was performed in MATLAB (R2023a, The MathWorks Inc., Natick, MA, United States). First, the 
data were resampled at 50 Hz. We quantified task performance by the number of successful reaching movements, 
the directional error, and the movement time. An unsuccessful reach was defined as a reach in which the cur-
sor did not reach the target within 5 s after the appearance of the target. The sum of successful reaches in a trial 
was calculated as the number of successful reaching movements. Thus, if participants did not reach any targets 
in a given trial, the number of successful reaching movements was 0. Next, the cursor trajectories were filtered 
by using a fourth-order low-pass Butterworth filter with a cut-off of 5 Hz, after which the data from each trial 
were divided into 10 reaching movements. The directional error was computed from the absolute perpendicular 
distance of the cursor from the straight line connecting two consecutive targets. The sum of the distances was 

(1)
[

x
y

]

=

[

L cos (θ1)+ L cos (θ1 + θ2)+ L cos (θ1 + θ2 + θ3)

L sin (θ1)+ L sin (θ1 + θ2)+ L sin (θ1 + θ2 + θ3)

]

https://www.optitrack.jp/support/support01/support01-02/
https://www.optitrack.jp/support/support01/support01-02/
https://www.optitrack.jp/support/support01/
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subsequently divided by the number of timeframes during a reach. The mean of these values over ten reaches 
was defined as the directional error in a trial. The movement time was the elapsed time from the appearance of a 
target until the cursor reached the target. If participants did not reach the target, the movement time was 5 s. The 
mean movement time between two consecutive targets was calculated as the movement time in a trial. We then 
focused the change in the ratio of the amount of use of each joint during learning. To quantify the relative use of 
each joint, the ratio of the amount of joint angular change during a trial among the three joints was calculated. 
When participants used three joints equally, the relative use of each joint was 33.3%. To assess the ability to move 
the cursor effortlessly, we quantified the amount of angular change in the joint of the virtual arm. Specifically, 
the absolute value of the difference in joint angles between two consecutive time points in a trial was calculated 
and summed over a trial. This value was then normalized by the displacement of the cursor in the trial.

Statistical analysis
We confirmed the normality of all the tested data by using Shapiro‒Wilk tests (p > 0.05). We performed paired 
t tests to compare task performance (number of successful reaching movements, directional error, and move-
ment time) between the first block and the last block. In addition, a paired t test was conducted to test the dif-
ferences in the amount of joint angular change summed across all joints of the virtual arm between the first and 
last blocks. The differences in the amount of joint angular changes among joints of the virtual arm and between 
the first and the last block were tested by using two-way repeated-measures analysis of variance (ANOVA). 
Two-way repeated-measures ANOVA was conducted to compare the relative use among joints of the virtual 
arm and between the first and the last block. Significant ANOVA results were followed up by post hoc multiple 
comparisons with Tukey’s method. The associations between the relative use of joints in the virtual arm and the 
number of successful reaching were assessed by Pearson’s correlation coefficients. The p values of the correlation 
analysis were corrected using the Holm-Bonferroni correction. All statistical analyses were performed using JASP 
version 0.18.342 with a significance level of 0.05. The data were presented as mean ± SD.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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