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Automated machine learning 
model for fundus image 
classification by health‑care 
professionals with no coding 
experience
Lucas Zago Ribeiro 1*, Luis Filipe Nakayama 1,2, Fernando Korn Malerbi 1 & 
Caio Vinicius Saito Regatieri 1

To assess the feasibility of code-free deep learning (CFDL) platforms in the prediction of binary 
outcomes from fundus images in ophthalmology, evaluating two distinct online-based platforms 
(Google Vertex and Amazon Rekognition), and two distinct datasets. Two publicly available datasets, 
Messidor-2 and BRSET, were utilized for model development. The Messidor-2 consists of fundus 
photographs from diabetic patients and the BRSET is a multi-label dataset. The CFDL platforms 
were used to create deep learning models, with no preprocessing of the images, by a single 
ophthalmologist without coding expertise. The performance metrics employed to evaluate the models 
were F1 score, area under curve (AUC), precision and recall. The performance metrics for referable 
diabetic retinopathy and macular edema were above 0.9 for both tasks and CFDL. The Google Vertex 
models demonstrated superior performance compared to the Amazon models, with the BRSET 
dataset achieving the highest accuracy (AUC of 0.994). Multi-classification tasks using only BRSET 
achieved similar overall performance between platforms, achieving AUC of 0.994 for laterality, 0.942 
for age grouping, 0.779 for genetic sex identification, 0.857 for optic, and 0.837 for normality with 
Google Vertex. The study demonstrates the feasibility of using automated machine learning platforms 
for predicting binary outcomes from fundus images in ophthalmology. It highlights the high accuracy 
achieved by the models in some tasks and the potential of CFDL as an entry-friendly platform for 
ophthalmologists to familiarize themselves with machine learning concepts.

The application of artificial intelligence (AI) technologies in ophthalmology has grown exponentially in the 
last decade1,2. This expansion can be attributed to the combination of advancements in machine learning per-
formance in the last years and the appropriate characteristics found in ophthalmology for such applications3. 
Ophthalmology provides a suitable field for the diagnosis and evaluation of ocular diseases using non-invasive 
imaging exams, particularly fundus photographs and optical coherence tomography. The main application of AI 
in eye diseases includes screening for diabetic retinopathy (DR)4, age-related macular degeneration5, glaucoma6, 
and keratoconus7.

In addition to facilitating direct examination for the early detection of sight-threatening diseases, the assess-
ment of the retina also allows for the correlation with systemic conditions, including cardiovascular risk8, Alz-
heimer’s disease9, and even sex identification through fundus photographs10.

The machine learning models have reached similar or even better performance than experienced reti-
nal specialists for fundus photography classification tasks such as DR screening4. However, coordinating the 
requirements to develop machine learning algorithms in healthcare is challenging due to limited resources and 
a restriction on access to talented teams of data experts for some research groups, especially in low-and-middle 
income countries, such as Brazil. Besides, there is an important disparity bias in algorithm development and 
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dataset distribution between populations in developed and developing countries, including sociodemographic 
disparities11–13.

To address these challenges, automated machine learning (AutoML) offers a promising solution. AutoML is 
a collection of tools and techniques for optimizing model development by automating the selection of optimal 
network architectures, pre-processing methods, and hyperparameter optimization. As these platforms continue 
to mature, the automation of these processes may reduce the need for programming experience required to 
design such models. Some platforms offer a code-free deep learning approach, which is even more accessible to 
clinicians or researchers without coding expertise.

Despite the potential, there are a limited number of studies evaluating AutoML platforms in ophthalmology, 
which have found high accuracy7,10,14–17. Google AutoML and Amazon Rekognition were the leading platforms 
in previous multi-platform study18. Besides, Google recently integrated the previous Google AutoML Vision plat-
form into the Google Vertex AI, which has been promised as the new generation of Google’s AutoML for images.

We aimed to assess the feasibility of AutoML models to predict binary outcomes from fundus images compar-
ing two distinct online-base code-free deep learning (CFDL) platforms.

Results
Table 1 and 2 provide a summary of the image characteristics and patient demographics. The BRSET dataset is 
predominantly composed of females, accounting for 61.81%, with a mean age of 23.43 ± 8.56 years.

We assessed the performance of the classification models for non-referable DR (NRDR) vs referable DR 
(RDR) using Google and Amazon Web Services (AWS) AutoML platforms for binary classification and using 

Table 1.   The performance of the models evaluating referable diabetic retinopathy classification and macular 
edema. DME diabetic macular edema, NRDR non-referable diabetic retinopathy, RDR referable diabetic 
retinopathy.

Dataset Labels

Performance

PlatformF1 score Precision Recall

Messidor-2

No DME DME

1593 151 0.919 0.924 0.915 Amazon

1593 151 0.977 0.977 0.977 Google

NRDR RDR

1279 465 0.907 0.937 0.885 Amazon

1279 465 0.937 0.937 0.937 Google

BRSET

NRDR RDR

1883 810 0.935 0.943 0.928 Amazon

1883 810 0.963 0.963 0.963 Google

No DME DME

2334 359 0.914 0.922 0.907 Amazon

2334 359 0.967 0.967 0.967 Google

Table 2.   The performance of the models evaluating multi-label tasks using the BRSET dataset images.

Task Labels

Performance

PlatformF1 Score Precision Recall

Laterality

Right eye Left eye

7056 7221 0.992 0.992 0.992 Amazon

7056 7221 0.992 0.992 0.992 Google

Age

 < 65 yo  ≥ 65 yo

5960 3898 0.858 0.857 0.858 Amazon

5960 3898 0.88 0.88 0.88 Google

Genetic sex

Male Female

5451 8826 0.779 0.723 0.845 Amazon

5451 8826 0.777 0.777 0.777 Google

Normality

Normal Abnormal

7291 6986 0.837 0.812 0.868 Amazon

7291 6986 0.833 0.833 0.833 Google

Optic disc cupping

Normal Enlarged

11,361 2916 0.857 0.852 0.862 Amazon

11,361 2916 0.895 0.895 0.895 Google
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Messidor-2 (1744 images) and BRSET (2693 images) datasets. The AWS models obtained an F1 score of 0.907 
for Messidor-2 and 0.95 for the BRSET dataset, while the Google Vertex models obtained 0.937 (AUC of 0.992) 
and 0.963 (AUC of 0.994), respectively (Table 1 and Figs. 1, 2).

The F1 score obtained for the classification of the presence or absence of macular edema using the AWS 
models were 0.919 for the Messidor-2 and 0.935 for the BRSET, and the Google models were 0.977 (AUC of 
0.973) for the Messidor-2 and 0.967 (AUC of 0.986) for the BRSET. (Fig. 2).

The Google platform offers a feature-based explanation for each image in the model, indicating the contribu-
tion of each feature to the predictions for a given instance. This explanation generates a heat map overlaying the 
fundus photo, illustrating the regions that influenced the model’s predictions. Figure 1 showcases an explainable 
image of RDR, created using the integrated gradients method.

External validation is available only on Google’s platform, which supports batch prediction, and was per-
formed using the IDRiD diabetic retinopathy dataset19. The referable models for Google Messidor and Google 
BRSET demonstrated F1 score; (precision, recall, AUC) of 0.897 (0.829, 0.977, 0.873) and 0.846 (1.0, 0.733, 0.966), 
respectively. The macular edema models for the Messidor and BRSET demonstrated 0.857 (0.907, 0.812, 0.920) 
and 0.886 (0.975, 0.812, 0.922), respectively.

After excluding missing labels for the multi-classification tasks using the BRSET. We included 14,277 images 
for laterality, sex identification, normality and optic disc cupping, and included 7886 images for age groups 
identification.

The performance of multi-classification binary tasks using the BRSET images by the Google Vertex, repre-
sented as F1 score (AUC), for laterality was 0.992 (0.994), age was 0.88 (0.942), sex was 0.777 (0.849), optic disc 
cupping was 0.895 (0.958) and normality was 0.833 (0.915). The performance for the AWS models, represented 
as F1 score, for laterality was 0.992, age was 0.858, sex was 0.779, optic disc cupping was 0.857 and normality 
was 0.837 (Table 2 and Fig. 3).

Table 1 and 2 summarizes the performance and distribution sets for all the tasks.

Figure 1.   Google AutoML performance report demonstrates precision-recall curves of BRSET and Messidor-2 
in detecting referable diabetic retinopathy (A) along with the related saliency map, showing the input image (B) 
and the resulting saliency map (C).
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Discussion
The performance metrics for detecting referable DR tasks were above 0.9 on both datasets and CFDL platforms. 
The highest accuracy was achieved with the Google Vertex models over the AWS models, and the highest accu-
racy was observed with the BRSET. Previous study from Korot in 202118, which was the first to demonstrate the 
use of multiple datasets and platforms in ophthalmology, found models with lower performance using the same 
Messidor-2 dataset tasks on Google and AWS CFDL platforms, with F1 scores of 0.848 and 0.885, respectively. 
This could highlight that the platforms are continually updating to achieve more optimized predictions. Google’s 
website suggests improved performance with Vertex AI, accompanied by migration tutorials from AutoML 
Vision to Vertex AI.

Although the Messidor-2 dataset has been used by several groups, there are different allocations of referable 
DR images20,21 and usually used for external validation, not allowing direct comparison with previous traditional 
machine learning studies22,23.

The metrics related to the detection of referable DME using both datasets were also above 0.9, with the high-
est accuracy achieved with the BRSET and Google Vertex (AUC of 0.986). Previous study obtained an AUC of 
0.958 using non automated machine learning24.

Figure 2.   Models performance for diabetic retinopathy, comparing the datasets and platforms.

Figure 3.   Models performance for multi-task classification using BRSET dataset, and comparing the platforms.
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The results of the multi-classification tasks showed heterogeneity depending on the evaluation point, as 
expected25. Both platforms achieved similar F1 scores for most tasks, with an performance above 0.8 for lateral-
ity, age, optic disc cupping, and normality. Google performed significantly better than AWS for optic disc cup-
ping (0.895 × 0.857) and age grouping (0.88 × 0.858). We opted to perform a simple task such as differentiating 
between right and left eye to check the platforms’ functionality within the BRSET. Both platforms achieved an 
equal F1 score of 0.992 for this task.

Previous studies have demonstrated high performance of machine learning models for genetic sex identifica-
tion, achieving an AUC of 0.93 using Google AutoML trained with the 173,819-image UK Biobank dataset10. 
One possible explanation for the lower accuracy observed in our study is the significantly smaller dataset used 
(BRSET, with 14,277 images), which resulted in the highest AUC of 0.849 with the Google platform.

The presence of imbalanced distribution between classes and overfitting is a concern of any machine learn-
ing algorithm26. This issue affects the accuracy of models and especially real-world performance27. In our study, 
the DR tasks were the most imbalanced ones, and the external validation of the Google Vertex models revealed 
good performance with the IDRiD dataset for both referable and macular edema tasks. Additionally, in line with 
what most previous studies have done, we chose not to divide eyes from the same patient into different subsets, 
although it could introduce bias into our findings.

Despite being known as code-free platforms, training AutoML models still requires the management of large 
image datasets and working with “.csv” files. It is an interesting way for ophthalmologists to become more familiar 
with machine learning concepts and challenges. Both the platforms tested offer feasible research grant programs 
that allow using and testing the platform, for even initial researches, with free credits. The future of healthcare is 
expected to be significantly influenced by advancements in AI, and CFDL serves as an entry-friendly platform 
for learning fundamental concepts.

Our study demonstrates that ophthalmologists with no coding experience can construct high-accuracy CFDL 
models using a locally developed dataset28 and compare the performance of two different platforms. Although 
this facilitates access to machine learning for small research groups and non-experts, it remains crucial to utilize 
appropriate datasets, as smaller or lower-quality datasets may introduce greater bias29.

The clinical application of AutoML models still faces several barriers, including high costs, the difficulty in 
extracting useful information from the “black box” nature of the models30, and the fact that platforms are not 
yet suitable for approval by regulatory agencies at the level required for clinical trials16. Furthermore, there are 
currently no real-world applications of AutoML models in ophthalmology.

Large language models (LLMs), popularized by the emergence of ChatGPT and already tested in ophthal-
mology using question banks31,32, could play an important role in assisting the development of machine learn-
ing models for non-experts, such as coding33 or at least in helping to interpret the steps required. Even when 
using CFDL platforms, which are designed to be user-friendly, there is still a requirement to manipulate large 
sets of images and work with “.csv” and “.jsonl” files. In our opinion, LLMs can provide assistance at each step 
of using most AutoML platforms. It is important to use it with caution, and verify their outputs with external 
methodologies34.

Limitations of some CFDL platforms, such AWS used in this study, is the absence of batch prediction, which 
makes external validation of the models challenging.

In conclusion, we demonstrate the feasibility of using CFDL by retina specialists without coding experience, 
reaching similar performance as previous studies, particularly when evaluating diabetic retinopathy tasks. We 
emphasize the high accuracy achieved by the models in specific tasks and the potential of CFDL as a user-entry-
friendly platform for ophthalmologists to become acquainted with machine learning concepts.

Methods
The study was approved by the Federal University of São Paulo (UNIFESP) ethics committee (CAAE 
49171021.6.0000.5505).

Data source and data preparation
We included two distinct publicly available datasets for deep learning model development to evaluate referable 
diabetic retinopathy (DR): Messidor-2 and BRSET. The Messidor-2 is a well-known ophthalmology dataset that 
consists of 1744 fundus photographs in .png format taken with a Topcon TRC NW6 fundus camera (Tokyo, 
Japan), labeled according to the DR ICDR protocol (grades 0–4) and diabetic macular edema classification35. The 
Brazilian multilabel ophthalmological dataset (BRSET) is a multi-labeled ophthalmological dataset, developed 
by our research group, which consists of 16,266 fundus photographs in .jpg format from 8524 Brazilian patients 
taken with a Nikon NF505 (Tokyo, Japan) and a Canon CR-2 (Melville, USA)28.

Both dataset labels were regrouped considering the ICDR protocol DR classification into NRDR, which 
includes absence or mild retinopathy, and RDR, which includes moderate or worse retinopathy. Only images 
from diabetic patients were included from BRSET, to become comparable to the Messidor-2 dataset, resulting 
in a total of 2693 images.

Code‑free deep learning platforms
Two online-based CFDL platforms were used to develop deep learning models from the datasets above, which 
were Google Cloud AutoML Vertex AI and AWS Rekognition Custom Labels. The images were not pre-pro-
cessed before upload to the platforms and the models were created by a single ophthalmologist with no coding 
experience.
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Outcomes
The multi-label tasks included only the BRSET dataset and we opted to exclude from analysis the images with 
low quality parameters (focus, illumination, image field and artifacts) provided by the dataset labels28. So, 14,277 
images were included and the multi-label two-class parameters grading: normality, laterality, sex identification, 
age grouping, and optic disc cupping referral.

Images were randomized into the following: training (80%), optimization/validation (10%), and testing 
(10%), with the distribution sets manually configured. The images were pre-processed and the platform used 
pre-trained models as a starting point, optimizing parameters and fine-tuning to achieve the best algorithm for 
the sample data.

Models outcome and performance evaluation
The CFDL platform reveals the performance obtained by the created algorithm for the used dataset. The Google 
AutoML evaluates performance as average precision (calculated by the area under the precision-recall curve), 
precision (positive predictive value) and recall (sensitivity), using a confidence threshold of 0.5. The AWS Rekog-
nition measures performance as F1 score, average precision and overall recall. The F1 score combines precision 
and recall into one metric by calculating the harmonic mean between those two, and usually performs better 
on imbalanced datasets36.

The F1 score was calculated for the Google platform using precision and recall, to be comparable with the 
AWS metrics.

External validation was performed for the diabetic retinopathy models using the IDRiD dataset19 on the 
batch prediction section of the Google platform. Outcome metrics were F1 score, AUC, precision and recall.

Data availability
The primary datasets included in this study are publicly available (Messidor-222,35, BRSET28 and IDRiD19).
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