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A Markov network approach 
for reproducing purchase 
behaviours observed 
in convenience stores
Dan Johansson 1,2, Hideki Takayasu 2,3 & Misako Takayasu 2*

The convenience store industry in Japan holds immense significance, making a thorough 
comprehension of customer purchase behaviour invaluable for companies aiming to gain insights 
into their customer base. In this paper, we propose a novel application of a Markov network model 
to simulate purchases guided by stopping probabilities calculated from real data. Each node in the 
Markov network represents different product categories available for purchase. Additionally, we 
introduce the concept of a “driving force,” quantifying the influence of purchasing product A on the 
likelihood of purchasing product B, compared to random purchasing. For instance, our analysis reveals 
that the inclusion of nutrient bars in a purchase set leads to, on average, a 13% reduction in tobacco 
purchases compared to random patterns. To validate our approach, we compare the simulated macro-
level purchase behaviours with real point of Sale (POS) data obtained from a prominent convenience 
store giant, 7-Eleven. The dataset is comprised of roughly 54 million receipts, in which we focus on 
the product categories existing in this dataset rather than individual products. Our model successfully 
replicates the purchase size distribution for 99.9% of all purchases and the purchase counts across 
various product categories, demonstrating its efficacy in capturing broad purchase patterns.

Convenience stores are an integral part of Japanese daily life, offering a wide range of essential items, which 
contributes to their immense popularity. This paper presents a model that effectively captures customer behav-
iour by modelling point of sale (POS) data from convenience stores. POS data comprises crucial information 
recorded during a purchase, including the purchased products, time, location, and payment method. The model 
to be proposed is based on POS data obtained from 7-Eleven, the largest convenience store brand in Japan, with 
over 21,000 stores and gross sales figure of more than 5 trillion Yen (33.7 billion USD)1. Given the significant 
size and substantial financial transactions within the convenience store industry, there is a strong incentive to 
comprehend customer behaviour accurately.

In this paper, a novel approach to simulate purchase behaviours using a Markov model is proposed, which 
incorporates innovative techniques for both the selection of the starting state and the stopping of the Markov 
process through the introduction of stopping probabilities. The versatility and well-established nature of the 
Markov process have led to its widespread utilization in various domains, including  medicine2 , 3,  chemistry4, 
 economics5,  engineering6, network  optimisation6, and disease  modelling7.

The primary objective of our research is twofold: firstly, we aim to investigate whether a simple probabilistic 
model like the Markov model can effectively replicate the complex purchase dynamics observed in real pur-
chase data. Secondly, we introduce the concept of a purchase “driving force,” which quantifies the influence of 
purchasing product B on the likelihood of subsequently purchasing product A, as opposed to making random 
purchases. In essence, this metric measures the inclination to buy more items from category A after already 
choosing a product from category B.

We introduce this concept with dual motivations: first, it provides an intuitive and quantitative means of 
assessing conditional purchase probabilities between product categories. Secondly, by confirming the existence of 
these driving forces within actual purchase data, we can investigate the model’s ability to capture and replicate this 
behaviour in a meaningful and statistically significant manner. While the exploration of conditional probabilities 
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in consumer purchase behaviour is not novel, traditional methods like bivariate hazard  modelling8 and Bayesian 
 modelling9 have been applied in previous studies to model conditional probabilities. We believe that our defini-
tion of driving force and its components present a novel approach to model conditional probabilities within a 
system, and provides future research within this field with an additional tool to understand these behaviours.

While the implementation of the Markov model presented in this paper to model purchase behaviours 
within convenience stores may be innovative, the use of Markov processes to model human behaviours is not 
new. Previous studies have employed Markov models to explore population mobility  behaviour10, web-browsing 
 behaviour11,  traffic12 and driving  behaviour13 and e-commerce purchase  behaviour14 among other examples. 
Despite its prior applications in different contexts, we believe that a model that can capture the purchase behav-
iours observed in connivance stores using a Markov process, and the concept of driving force are novel and 
important additions to the study of purchase behaviour modelling.

The key finding of this paper is that the Markov models developed in this study effectively replicated purchase 
patterns seen in the POS data. These simulated purchases successfully captured various purchase behaviours, 
including purchase size and accurate distribution across product categories. It was also found through big data 
analysis that the purchase size distribution has a power law tail which cannot be explained by a Markov chain 
model. By introducing an additional non-Markovian effect to the model depending on the purchase size, the 
power law tail distribution is realised. Furthermore, our analysis confirmed the existence of driving forces influ-
encing purchasing decisions between different product categories in real-world data. While the Markov model 
demonstrated the capacity to capture this behaviour to some extent, it did not fully replicate the complexity of 
these inter-category influences.

The same dataset used for the making of this model have also been used in previous studies to better under-
stand the dynamics in connivance store data, such as the metabolism of products over  time15, optimisation of 
product inventory for reduced waste and higher  profit16, estimation of change of probability for purchase of 
commodities using Possion  process17 and power law relationships of product sale  fluctuations18.

Limitations
There are a couple of noteworthy limitations in this study. Firstly, the POS data is treated as static and uniform, 
without accounting for temporal fluctuations, such as seasonal variations, time of year, or time of day. Secondly, 
the primary focus of this study centres on the transition between category states within the Markov model, 
specifically the inter-category relationships. As a result, the analysis and methodology in this paper are confined 
to purchases of size 2 or larger.

Results
Using two different Markov models (Methods—Markov purchase model) 5 ∗ 107 simulated purchases were 
generated using each model, matching the number of purchases in the real data. Figure 1 displays the cumulative 
distribution of the purchase size for both the real data and the two implemented versions of the Markov model: 
the simple model and the extended model. The simulation was run 10 times for both the simple and extended 
model, the resulting mean is represented by the points and the coloured area is the 95% confidence interval for 
each model. We observe that the confidence interval is narrow except for when the purchase size is very large, 
this shows that the model results are very consistent between runs.

Notably, the simple Markov model closely aligns with the real data for purchase sizes up to 18, recreating 
more than 99.9% of the real purchase sizes before diverging. However, it fails to replicate the power law tail 
observed in the real data for large purchase sizes. To address this limitation and better capture the behaviour 
of larger purchases, the extended Markov model was introduced. In this model, the simple Markov model’s 

Figure 1.  The plot illustrates the purchase size distribution in three different models: real data, simple Markov 
model and extended Markov model and their respective mean and 95% confidence intervals.
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stopping probability PS(c) (Eq. 2) is used for purchase sizes up to 18 products. For purchases larger than 18, a 
modified stopping probability PS,t(c, nt) (Eq. 3) is utilised. As depicted in Fig. 1, the extended model proves to 
be more successful in capturing the power law tail observed in the real data for large purchases. This shows the 
extended model’s ability to accurately reproduce the real data’s behaviour for both small and large purchase sizes.

Shifting focus to the product category purchase ratios. Figure 2 displays a comparison of the purchase ratio 
for the top 15 product categories for the real data and extended Markov model. All categories and their ranking 
are shown in Table 1. Observe that the order of magnitude is consistent between the model and real data and the 
ranking of the categories are mostly consistent. Notable ranking divergences between the simulated purchases 
and the real data, are categories “Ice” and “Sweets 2” , “Noodles” and “Deep-fried food” and finally “Cup Noodle”, 
“Beer” and “Sweets 1” are inconsistent. The standard deviation in the simulated data is very small, barely showing 
up as tiny black dots on top of the category bars in the simulated data, this would indicate that the inconsistency 
in the ranking is not the result of randomness but due to some systematic error. It is also worth mentioning 
that all category ranking inconsistencies are from categories which are very close in purchase ratio magnitude. 
These results suggests that the extended Markov model is able to capture the macro behaviours of the real data, 
i.e. purchase size distribution and the category purchase ratio, to a great extent.

To assess the accuracy of the purchase ratio results, the normalised absolute error ( NAE =
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culated for each category, where y is the real data and ŷ is the results from the extended model. Utilizing this 
result, the mean absolute percentage error ( MAPE = 100

C

∑C
k=1

∣

∣

∣

y−ŷ
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be 7.36%. Figure 3 shows the calculated errors for each category, the errors seem to be non-systematic, and the 

Figure 2.  Purchase ratio ranking comparison for real purchases and extended Markov model simulated 
purchases.
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majority of them lie within one standard deviation. However, there are a few significant outliers that warrant 
attention. The rank 16 category “Oden” (Japanese stew), which is typically sold during the winter season, exhibits 
a larger error. This behaviour might be attributed to the seasonal nature of the product, requiring extra care in 
the modelling process to accurately capture its sales patterns. Rank 47 Category “Copy” poses challenges in 
modelling due to customers paying directly at the copy machine instead of at the cashier, as a result, this category’s 
behaviour might not fully align with the Markov model, contributing to the larger error. Similarly, rank 49 “Cash 
voucher”, rank 52 “Store gift” and rank 54 “Game software” also present outliers in the error plot. The nature of 
these categories, involving non-typical purchase patterns, could contribute to the discrepancies between the real 
data and the model’s predictions. It is noteworthy that the larger errors tend to occur for lower-ranking categories 
or those with unique purchase behaviours, like seasonal products or specialised items. These nuances and outliers 
should be taken into account when interpreting the results and making model-based predictions.

Driving force
The driving force ratios (Methods - Driving force) was calculated for three combinations of purchase data (Eq. 5). 
These combination were: real data—null model and simulated data—null model, with the null model represent-
ing complete random purchasing. These results can be seen in Fig. 4, in which the three distributions seem to 
be distinct from one another, providing evidence of the existence of driving forces in the real data. However, it 
seems also that the model fails to capture the specific driving forces observed in the real data. A few intuitive 
examples of driving forces observed in the real data are

• Soft drink → ice: 1.25

Figure 3.  Absolute normalised error for the purchase ratio of all categories ordered according to their purchase 
ratio rank from Table 1.

Figure 4.  Driving Force Histogram. The histogram presents three driving force distributions: in green, the PDF 
for Real-Null driving force; in red, the driving force distribution for Simulated-Null.
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• Tobacco → Beer: 1.12
• Nutrient bars → Tobacco: 0.87

These ratios imply that, for instance, if soft drinks are selected for purchase, there is a 25% increase in the likeli-
hood of purchasing ice compared to a random selection. Conversely, the purchase of nutrient bars is associated 
with a 13% decrease in the likelihood of buying tobacco products. To statistically validate the existence of driv-
ing forces in the real data, a two sample Kolmogorov-Smirnov (KS) test was conducted. This test compared the 
distribution of the driving forces in the real and simulated data. The test resulted in a KS statistic of 0.495 and a 
p-value of 2.29× 10−147 , indicating significant differences between these distributions. This outcome confirms 
the presence of driving forces in the real data. However, it also highlights the model’s limitation in fully captur-
ing these forces.

Discussion
As observed in the results shown in Fig. 1, the simple Markov model demonstrated high accuracy in modelling 
approximately 99.9% of the purchase size cumulative distribution function (CDF). The remaining 0.1% of larger 
purchases, which could be considered outliers, might not be crucial to model accurately. This raises the question 
of whether there is a real need for the extended Markov model. In the context of this specific dataset, achiev-
ing 100% accuracy in modelling all purchases might not be essential. Instead, the focus could be on accurately 
modelling the more common purchase sizes. However, both the simple Markov model and the extended Markov 
model remain valuable contributions, especially for other potential datasets where the purchase distribution 
could differ significantly. The extended model’s ability to introduce a power law tail proves valuable in such 
scenarios. Regarding the purchase ratio results, there were some outliers with larger errors. For instance, rank 
16 category “Oden” (Japanese stew), being a seasonal product, exhibits a unique purchase behaviour that is not 
fully captured by the static model used in this study. Introducing a time-dependent transition matrix would 
be a natural next step to address this limitation. By incorporating temporal dynamics, the model could better 
represent seasonal or daily purchase behaviours. Additionally, a significant weakness of the current dataset is the 
lack of information about the purchase order of products. In the model, this is approximated using the starting 
node scheme (Eq. 4). However, there is currently no way to measure the accuracy of this approximation, and 
the starting node probabilities are heavily influenced by the transition probabilities (Eq. 1). In reality, the first 
product selected, which drives the purchase, may have a more nuanced effect on subsequent purchase decisions. 
Developing methods to better infer and incorporate the driving product category could significantly enhance 
the model’s accuracy. Moreover, the model could be improved to more accurately capture single-item purchases. 
In such cases, the driving product is known since it is a single item. Calculating the purchase ratio specifically 
for single-item purchases and then performing a weighted combination with the purchase ratio for purchases 
larger then 1 could lead to a more comprehensive and accurate representation of customer purchase behaviours.

The concept of the driving force in real data was intriguing, and while it seems to exist intuitively, proving 
its presence was an exciting result. However, as stated in the results, the model struggled to fully capture these 
micro-level purchase behaviours. Complex systems often exhibit simpler macro behaviours that are easier to 
model, whereas the micro behaviours, such as individual human purchase decisions, tend to be more challeng-
ing to represent probabilistically, especially within a Markov model framework. Human purchase behaviour is 
inherently non-probabilistic, as customers typically enter a store with a predetermined agenda, which poses a 
significant challenge for probabilistic models like the Markov model. To improve the model’s ability to capture 
micro-level behaviours, a potential avenue for future research involves implementing a weighting scheme for 
the transition probabilities using the driving force, thus letting already selected products influence the future 
transitions. This introduces another form of memory into the model, further deviating it from being purely 
Markovian. However, this approach could potentially lead to a more accurate representation of human purchase 
behaviour by better considering the influence of past purchases on current decisions.

Methods
The method section will contain three major subsection, firstly an analysis of the POS data to give key insight 
into the purchase behaviours and data distributions, which leads into the second subsection on constructing the 
Markov purchase model. The section then ends with the introduction and definition of driving force.

Data analysis
In accordance with the relevant guidelines and regulations outlined in the editorial and publishing policies 
of Scientific Reports, all methods employed in this study were conducted with strict adherence to established 
standards. The experimental protocols employed in this research were ethically sound and received approval by 
Misako Takayasu Lab. which are responsible for overseeing these research activities. Furthermore, the dataset 
used for this research was completely anonymised before acquisition of Misako Takayasu Lab. We affirm that 
informed consent of the affected parties, as required by the guidelines and regulations was upheld.

The data analysed and used to develop the purchase simulation model comes from 7-Eleven point of sales 
data (POS). POS data is data collected during a customer sales transaction and usually contains a large set of 
features such as time of purchase, cost metrics and product categories. Since POS data is usually feature rich, 
it may require a lot of preprocessing to be used in a model. The POS data was collected from 326 chain stores 
of the leading Japanese convenience store company, 7-Eleven Japan Co., Ltd., during 153 days from 1 June to 
31 October 2010. More specifically, the data was sourced from 326 stores located in Kanagawa prefecture and 
Yamaguchi prefecture. Individual owners mainly franchise the stores and sell an extensive range of products, 
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such as processed food, fast food, daily perishables, and non-food items. In total the dataset contains 60 unique 
product categories, these categories will be the focus of the paper rather than the individual products within these 
categories. The receipt dataset that was used for the analysis contains 54,099,713 unique customer purchases 
during this time period. All categories present in the data including their rank, purchase count and purchase 
ratio can be found in Table 1, which shows that the distribution of category popularity follows a significant dis-
parity. The top-ranking categories have immense popularity, being orders of magnitude more frequented than 
the lower-ranking ones. Notably, the purchase count experiences a rapid decay as the ranking increases. The data 
reveals a clear concentration of purchasing activity around a few highly favoured categories, while a vast array 
of lower-ranking categories experiences comparatively lower demand.

In Fig. 5, the CDF of product category purchase counts is observed. Notably, there is a region of slow decay 
in the CDF for purchase counts ranging from 1 to 105 , followed by a rapid decay as the purchase count increases 
towards the maximum of approximately 107 . This pattern suggests that there are numerous product categories 
with a relatively moderate purchase frequency, but only a few categories with extremely high purchase counts. 
The significance of this observation warrants further investigation.

Another essential purchase behaviour to explore is the purchase size distribution, which reflects the number 
of items people tend to purchase. Figure 6 shows the cumulative distribution for purchase sizes. Notably, around 
40% of all purchases consist of single-item purchases. Additionally, the red dotted line indicates that 99% of all 
purchases comprise of 11 items or fewer. We can further discern that in the 1–10 item range, in a log-log plot 
the CDF decays exponentially, whereas for purchases larger than 10 items, the CDF exhibits a more linear in 
behaviour. This suggests the existence of a power law like relationship for larger purchase sizes, which is a crucial 
aspect to consider when developing the model later on. Understanding the distribution of purchase sizes provides 
valuable insights into the typical buying habits of the population under study.

Table 1.  Category rank table showing all categories in the network and their ranking according to their 
respective purchase counts. The table also contains the purchase ratio of each category which is the purchase 
count divided by the sum off all purchase counts.

Rank Category name Purchase count Purchase ratio Rank Category name Purchase count Purchase ratio

1 Soft drink 19,382,223 0.145518531 31 Hair styling products 402,907 0.003024959

2 Onigiri & Bento (Lunch 
box) 18,699,674 0.140394066 32 Manga books 348,149 0.002613845

3 Pack beverage 10,715,945 0.080453546 33 Office supplies 320,661 0.00240747

4 Bread 2 9,349,197 0.070192228 34 Nutrient solid food 310,624 0.002332114

5 Tobacco 8,323,758 0.062493401 35 Seasoning 254,929 0.001913965

6 Side dishes 6,439,963 0.048350179 36 Tissues 221,133 0.00166023

7 Ice 5,754,022 0.043200247 37 Cheese 214,416 0.0016098

8 Sweets 2 5,598,961 0.042036075 38 Food products 200,819 0.001507716

9 Noodles 4,293,192 0.032232577 39 Cleaning supplies 192,273 0.001443554

10 Deep-fried food 4,278,475 0.032122084 40 Assortment etc. 168,545 0.001265408

11 Sandwiches 3,814,734 0.028640393 41 Egg 167,240 0.00125561

12 Desserts 3,759,675 0.028227019 42 Detergent 165,953 0.001245948

13 Sweets 1 3,506,748 0.026328085 43 Bath & Oral care 159,524 0.00119768

14 Cup Noodle 3,483,621 0.026154451 44 Stamp 124,367 0.000933727

15 Beer 3,397,907 0.025510925 45 Men’s clothing 97,526 0.000732209

16 Oden (Japanese stew) 2,764,175 0.02075297 46 Medical supplies 95,418 0.000716383

17 Magazines 219,9692 0.016514924 47 Copy 79,007 0.000593172

18 Snacks 1,899,244 0.01425921 48 Paperback 47,069 0.000353386

19 Energy drinks 1,712,964 0.012860651 49 Cash vouchers 40,041 0.000300621

20 Bread 1 1,663,500 0.012489283 50 Coffee (Self service) 18,791 0.00014108

21 Newspapers 1,663,499 0.012489276 51 Rice 13,582 0.000101971

22 Chuhai plum wine 1,524,602 0.01144646 52 Store gift 10,435 7.83E-05

23 Snacks 1065922 0.008002766 53 Movie DVDs etc. 1983 1.49E-05

24 Frozen food 991,286 0.007442412 54 Game software 1344 1.01E-05

25 Packed food 812,059 0.006096805 55 Boxed products 1254 9.41E-06

26 Electrical system 570,731 0.004284954 56 Electronic products & 
Calendars 413 3.10E–06

27 Jelly cake mix tea bags 539,344 0.004049306 57 CD etc. 364 2.73E–06

28 Sake shochu (Alcohol) 478,990 0.003596178 58 Promotion 221 1.66E–06

29 Character product 430,491 0.003232055 59 For tasting 164 1.23E–06

30 Handmade products 420,443 0.003156617 60 Coupon 2 1.50E–08
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The category matrix M is a C × C matrix, where each element mi,j represents the number of times category 
i was purchased together with category j. In the case of this dataset since it contains 60 categories, C is equal to 
60. This matrix serves as a fundamental component in our investigation of product category relationships. To 
construct M , we calculated the co-occurrence counts using all available purchase data. A subset of the resulting 
matrix is showcased in Table 2, providing concrete values for specific example categories. A heat map show-
ing all categories and their respective number co-occurrences can be seen in Appendix 5 Fig. 10. It is worth 
emphasising that certain combinations of categories were never purchased together, resulting in zero entries in 
M . Notice also that M is symmetric.

The inherent nature of the category matrix introduces a constraint as it exclusively considers purchases with 
a purchase size n greater than 1. Moreover, the concept of ’driving forces’ between products is meaningful only 
within the context of purchase sizes where n > 1 . Consequently, this paper, along with the proposed methods 
and results, is intentionally confined to an analysis focusing solely on purchases with a purchase size greater than 

Figure 5.  Cumulative distribution of purchase count for all product categories.

Figure 6.  Cumulative distribution of purchase size distribution. The red dotted lines highlight where the CDF 
reaches a value of ∼ 10−2 at a purchase size of 11, representing that a purchase size of 11 includes 99% of all 
purchases.

Table 2.  Subset of category matrix M containing the purchase count for all possible combinations of categories 
in the data.

Soft drink Beer Sweets . . .

Soft drink 2,142,460 189,494 425,541

Beer 189,494 117,951 81,364

Sweets 425,541 81,364 222,048
.
.
.

.

.

.

.

.

.
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1 which effectively eliminates roughly 40% of the purchase data. We found that single item purchases behave 
differently than multi item purchases since there is no inter-category relationships present.

Markov purchase model
The Markov model aims to generate synthetic purchase data for comparison with actual purchase data. This 
model comprises three key components. Firstly, the starting node selection determines the initial product cat-
egory from which the simulated purchase process begins. This choice is crucial, given that most purchases typi-
cally involve only a few items. Secondly, the transition probabilities govern the movement between different states 
within the state space, where each state represents a product category available for purchase. Lastly, a stopping 
probability is introduced to determine when the purchase process concludes.

To gain insight into the network structure of the model, let us see how the transition probabilities between 
nodes were calculated. The transition matrix P , also a C × C matrix, is derived from the category matrix M . The 
rows of P represent source nodes, while the columns represent destination nodes. The elements in P correspond 
to the transition probabilities between nodes in the network and are defined as follows for a given transition 
from node j to i.

Equation (1) normalises each value in M by dividing it by the sum of its respective row, yielding the transition 
probabilities. The sum of each row in M represents the count of how many times a category was involved in 
any purchase combination. Since these sums are unique for each category, the symmetry of M is lost during the 
calculation of P , resulting in non-symmetric transition probabilities between nodes.Importantly, both M and P 
contain zero values due to the absence of certain category combinations in the purchase data. Consequently, the 
network represented by P is not fully connected.

Figure 7a illustrates an example sub-graph of the category network, displaying transition probabilities between 
a few selected nodes. Notably, the transition probabilities are non-symmetric, and self-connections are present, 
representing instances of buying multiple items of the same category in sequence. Additionally, the non-fully 
connected nature of the network is shown.

The cumulative distribution of the transition probabilities in P is illustrated in Fig. 7b. The figure provides 
us with a better understanding of the nature of the transition probabilities within the network, notably the CDF 
exhibits two distinct regions. In the first region, where the transition probabilities are < 10−3 , a gradual decline 
in the CDF value is observed, indicating an abundance of transition probabilities in this range. This implies that 
the majority of connections between nodes are characterised by relatively weak transition probabilities. Con-
versely, in the second region, where the transition probabilities are > 10−3 , the CDF shows a rapid decrease. This 
suggests that larger transition probabilities are infrequent within this network. In essence, strong connections 
with high transition probabilities are rare occurrences. To gain a deeper insight into the network structure, a 
network graph plot was constructed and is presented in Fig. 7c. In this visualisation, each node is represented by 
its rank, and the directional edges display the largest transition probabilities for each category. The size of each 
node is proportional to its degree. Several notable nodes stand out as key attractors for other nodes, namely “Soft 
drink,” “Onigiri/Bento,” “Beer,” and “Side dishes”. The most popular categories “Soft drink” and “Onigiri/Bento” 
display the highest degree, due to their popularity these categories act as large attractors for other less popular 
categories. But interestingly there are categories whose relationships exerts a stronger influence, surpassing the 
attractive force of the strongly attracting categories. These findings have significant implications for understand-
ing consumer behaviour and category associations. While popular categories undoubtedly have strong influences, 
it is equally essential to consider the network dynamics and the strength of connections between less popular 
categories that might reveal subnetworks as can be seen with “Beer” and “Side dishes” in Fig. 7c.

Stopping probability
The choice of stopping probability is of paramount importance to the model, as it directly controls the size 
of the purchases generated. Since different categories are purchased in varying quantities, it was essential to 
introduce a state-dependent stopping probability based on data. To achieve this, we introduced the concept 
of conditioned mean purchase size, denoted as E(n|c) . This quantity represents the expected purchase size n 
conditional on the purchase containing category c. To better describe this quantity, let us first define the subset 
V = {n | purchase of size n contains category c} , which in turn define the conditioned mean purchase size as

Then utilising the conditioned mean purchase size, the stopping probability is approximated using

The Markov model that uses this stopping probability we refer to as the simple Markov model. Here, kS serves 
as a hyperparameter, allowing us to tailor the model to fit the real data. While the model currently operates as 
a true Markovian process, as shown in Fig. 1, this alone is insufficient to fully capture all the purchase behav-
iour observed in the POS data. This leads to the expansion of Eq. (2). Its important to note ks is conditioned 
ks ≤ min(E(n|c)) which ensures 0 ≤ PS(c) ≤ 1.

(1)PT (i|j) =
mj,i

∑C
k=1 mj,k

E(n|c) =
1

|V|

∑

n∈V

n , ∀c ∈ C

(2)PS(c) =
ks

E(n|c)
, ∀c ∈ C
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To address the limitation of the simple Markov model, we introduce the extended Markov model, which 
utilises the stopping probability

after a purchase size activation threshold kt is reached. Thus rendering the extended Markov model truly an 
extension of the simple Markov model, kt acts as a switch for when to transition to the power law behaviour 
which the stopping probability in Eq. (3) induces. In the extended Markov models stopping probability, ke and k0 
are additional hyperparameters that allow for more adjustment of the stopping probability, and nt is the purchase 
size at time step t. By considering the purchase history with the term (1+ nt

k0
) , the extended model introduces 

a temporal element to the stopping probability, enabling a more accurate representation of real-world purchase 
behaviours. Thus capturing the power law tail seen in Fig. 6 when the purchase size is large. Since the stopping 
probability effectively acts an absorbing state within the network, the introduction of this temporal element to 
the stopping probability gives the model a form of memory, which renders the process non-Markovian hence 

(3)PS,t(c, nt) =
ke

E(n|c)(1+ nt
k0
)
, ∀c ∈ C

Figure 7.  (a) Sub-graph example of category network network showing somepopular categories and their 
respective transition probabilities. (b) Cumulative Distribution of all transition probabilities in network. (c) 
Category network with largest transition probabilities and node sizes reflecting connection frequency, the 
numbered nodesare represented by their rank. The figure displays a category network representing transition 
probabilities between all nodes(excluding self-connections). Node sizes are proportional to the number of edges 
connecting to each category. Significantnodes include ’Soft Drink,’ ’Onigiri/Bento,’ ’Side Dishes,’ and ’Beer,’ 
which exhibit a higher number of connections (above 2).
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the name. Similarly to the simple Markov model PS,t(c, nt) is conditioned to 0 ≤ PS,t(c, nt) ≤ 1 . The choice of 
all hyperparameters mentioned up until this point and their chosen values are explained in the coming model 
fitting section.

Starting node scheme
One significant challenge that arose during the construction of this model was task of selecting a starting node. 
In real-world scenarios, customers often have a driving product that leads them to make a purchase, such as a 
refreshing drink on a hot day. Unfortunately, this crucial information is lost in the POS dataset, as the POS data 
consists of customer receipts whose products are in a non-chronological order. Thus there is no means of deter-
mining or calculating the starting probability for different categories. Regrettably, this limitation stands as one of 
the most significant drawbacks of the dataset. To address this issue, a scheme for selecting a starting node when 
iterating the network had to be devised. This led us to introduce the node count vector Nt , containing a value 
for each category in the network at time step t. Initially, Nt starts as a uniform vector, with all elements equal to 
one: N0 = [1, 1, . . . , 1] for all categories c ∈ C . The starting probability for a node is determined proportionally 
to its node count. We calculate the starting node probabilities using

The starting node probability PI ,t(c) for category c at time step t, is calculated by taking the node count for cat-
egory c at that time step and normalising it by the sum of all node counts, as seen in Eq. (4). Initially all categories 
have a node count of one, resulting in all nodes having a uniform probability of being selected as the starting 
node, which is not representative of reality. Thus we introduce the scheme which will give us an approximation 
of the true starting node probabilities. As the network iterates, a start node is selected, transitions between nodes 
occurs and eventually the process stops due to the stopping probability, resulting in one purchase. Each time a 
node c is chosen as the starting node using PI ,t(c) or as the destination of a transition using PT (c) , its respective 
node count Nt(c) is increased by one. Consequently, as the network is iterated, Nt will evolve over time, guided 
by the starting probabilities and transition probabilities. This adaptive approach enables the model to simulate 
the dynamics of customer purchase behaviour while accounting for the absence of explicit starting probabilities 
in the original dataset. Interestingly it was found that the starting node probability converged over time which 
can be seen in Fig. 8. These results show the mean and standard deviation from 10 runs of the simulation where 
5× 107 purchases where generated, reflecting the number of purchases in the POS data. Notably, the starting 
probabilities PI ,t(c) gradually stabilise over time for most categories especially the more popular categories. As 
observed in Fig. 8 the less popular categories take longer to converge, some of the least popular categories does 
not converge at all, reflecting their infrequent purchase occurrences. Given the observation that PI ,t(c) con-
verges over time for the majority of categories, and under the assumption that the least popular categories are 
close to converging at 5 ∗ 107 simulated purchases. We now eliminate its time dependency and instead consider 
the stationary starting probabilities denoted as PI (c) . The resulting converged starting probabilities serve as a 
fundamental aspect of the model.

Now, given all the individual components of the Markov models, Fig. 9 depicts a flowchart for the genera-
tion of synthetic purchases. Using the presented methodology, all purchases analysed in the result section were 
synthesised.

(4)PI ,t(c) =
Nt(c)

∑C
j=1 Nt(c)

, ∀c ∈ C

Figure 8.  Starting node probability PI ,t(c) convergence over time, coloured according to category purchase 
count from table 1. For each category the mean and 95% confidence interval is displayed.
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Model fitting
For optimal performance of the models presented, it was imperative to fine-tune their hyperparameters. This 
tuning was achieved through a traditional grid search approach. The performance metric used for this optimi-
sation was the root mean squared error between the predicted and actual data, specifically in the CDF space, 
as illustrated in Fig. 1. For the simple Markov model ks = 1.42 was found to have the best fit. For the extended 
model below activation threshold for the extended stopping probability ks = 1.42 was also used. The activation 
threshold kt and ke , k0 were fitted in the same fashion, their values was found to be kt = 18 , ke = 2.15 and k0 = 10 . 
Using the these hyper parameters, all purchases analysed in the result section were synthesised.

Driving force
Driving force refers to the influence of purchasing product j on the likelihood of subsequently purchasing prod-
uct i, as opposed to making random purchases. This metric measures the inclination to buy more items from 
category i after already choosing a product from category j. The driving force present in the real and simulated 
purchases is thus defined as

which calculates the driving force for the target category i conditioned on category j. Here, E(ni|cj) represents 
the mean number of category i in a purchase, conditioned on the presence of category j in that same purchase.

In simpler terms, E(ni|cj) measures how much of category i is typically bought when category j is present in 
the purchase. The driving force is then computed as the ratio of these conditional means between the real data and 
the random purchase data from the null model, as shown in Eq. (5). A description of the null model is provided 
in the following section. The driving force provides valuable insights into the magnitude of the purchase driving 
forces that exists between different product categories in the real or simulated data, relative to random purchases. 
If the ratio is greater than one, it indicates that the presence of category j positively influences the likelihood 
of purchasing category i beyond what would be expected by random chance. By examining these driving force 
ratios for various category pairs, meaningful relationships between product categories can be identified. For 
instance, a ratio significantly greater than one suggests a strong association, where the presence of one category 
consistently drives the purchase of another.

Null model
The null model consists of randomised purchase data, which was generated using a straightforward randomisa-
tion scheme. Initially, all real purchases are converted into empty sets, while still retaining their original purchase 

(5)Di,j =
E(ni|cj)m

E(ni|cj)Null
, m = Real, Simulated

Figure 9.  Flowchart of model showing the process of generating purchases.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10487  | https://doi.org/10.1038/s41598-024-60752-w

www.nature.com/scientificreports/

sizes. Subsequently, all the products from these purchases were combined into a large vector G . To create the ran-
domised purchases, we randomly sampled from G , without replacement and filled the empty purchase sets with 
these randomly selected products. This randomisation process guarantees that the inter-category relationships 
are lost to randomness, effectively breaking any existing associations between products. However, it ensures that 
the overall purchase size distribution and the ratio of product categories are preserved in the randomised data.

Using the above method many new sets of randomised purchases were generated. The null model was then 
created by averaging E(ni|cj) for all categories over all random sets, resulting in E(ni|cj)Null.

Data availibility
The data was provided by Seven-Eleven Japan Co., Ltd. for academic study in 2010. The raw data cannot be copied 
freely without permission of the data provider, Seven-Eleven Japan Co., Ltd. How to access the data: POS data 
in general can be purchased from data provider companies or be obtained directly from individual companies 
which are using POS data in their business. To request the data used in this study, contact Misako Takayasu∗.

A Category matrix heat map

Received: 3 August 2023; Accepted: 26 April 2024

Figure 10.  Heat map of the category matrix showing all categories according to their rank and colored by the 
category combination purchase count.
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