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Smart traffic management 
of vehicles using faster R‑CNN 
based deep learning method
Arindam Chaudhuri 

With constant growth of civilization and modernization of cities all across the world since past few 
centuries smart traffic management of vehicles is one of the most sorted after problem by research 
community. Smart traffic management basically involves segmentation of vehicles, estimation of 
traffic density and tracking of vehicles. The vehicle segmentation from videos helps realization of 
niche applications such as monitoring of speed and estimation of traffic. When occlusions, background 
with clutters and traffic with density variations, this problem becomes more intractable in nature. 
Keeping this motivation in this research work, we investigate Faster R‑CNN based deep learning 
method towards segmentation of vehicles. This problem is addressed in four steps viz minimization 
with adaptive background model, Faster R‑CNN based subnet operation, Faster R‑CNN initial 
refinement and result optimization with extended topological active nets. The computational 
framework uses adaptive background modeling. It also addresses shadow and illumination issues. 
Higher segmentation accuracy is achieved through topological active net deformable models. 
The topological and extended topological active nets help to achieve stated deformations. Mesh 
deformation is achieved with minimization of energy. The segmentation accuracy is improved with 
modified version of extended topological active net. The experimental results demonstrate superiority 
of this framework with respect to other methods.

Keywords Smart traffic management, Vehicle segmentation, Traffic density estimation, Vehicle tracking, 
Faster R-CNN

We are facing the challenge of continuous increase in traffic density across different cities of world. The present 
world population is heavily dependent on vehicles from smooth commutation purposes. This results from 
constant urbanization of rural areas. In order to address this problem, smart traffic management is studied by 
researchers as traffic regulations solution.

Human vision system has the capability to perform complex tasks very reliably and accurately. Humans detect 
wide spectrum of objects very easily. With recent developments in computer vision coupled with huge data sets, 
better algorithms and faster GPUs, precision and accuracy of object detection and classification  algorithms1,2 have 
increased to an appreciable amount. For traffic monitoring vehicle localization efficiency is very important. The 
vehicles from Indian traffic are presented in Fig. 1. For public safety autonomous vehicle detection  methods3 are 
in place which detect traffic objects in order to achieve correct decisions. Smart traffic management allows us to 
take care of various traffic related issues in an optimum manner. This is achieved using computer vision and image 
processing. Segmentation of vehicle acts as significant enabler in smart traffic management functionality. With 
occlusions, congestion as well as other environmental factors this problem becomes more severe. For smooth 
and effective traffic regulations, smart traffic management is always considered as low cost solution. Congestions, 
emergency vehicles transport, accidents and traffic related violations are easily managed through latest Artificial 
Intelligence algorithms. Vehicle segmentation is an important area towards smart traffic management. Some 
other activities here include traffic estimation, speed control and vehicle tracking. During occlusions, fog, haze, 
clutters and heavy traffic situations things become more complicated.

With the growth of deep learning networks vehicle detection is being studied deeply considering traffic 
congestion and driving  safety4. Vehicle localization is a crucial  problem5 in order to develop intelligent and 
autonomous systems. The detection of abnormalities arising from traffic violations leads to the problem of vehicle 
localization. This is a significant application catering the needs for variety of traffic related problems. The traffic 
surveillance has been a major concern in densely populated geographical areas. These days’ surveillance systems 
are well equipped with traffic flow data where various traffic patterns are recorded. Some notable applications 
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here include many smart cities based applications. Different versions of deep learning network based methods 
are in place which have provided considerable benefits for these  applications3.

In this research work, we investigate Faster R-CNN based deep learning method towards segmentation 
of vehicles. This problem is addressed in four  steps5: (a) minimization with adaptive background model (b) 
Faster R-CNN based subnet operation (c) Faster R-CNN initial refinement and (d) result optimization with 
extended topological active nets. Adaptive gain function is used adaptive background modeling. The gain 
function compensates for shadow and illumination issues. Higher accuracy in segmentation is provided by 
topological active net deformable model in various situations. Deformable models provide various curvatures 
with respect to image surfaces. The smoothness from deformation is achieved through several forces considering 
objects of interest. The topological and extended topological active nets are used here in order to achieve stated 
deformations. This helps in fitting objects on 2D surface mesh of image. The deformation of mesh is achieved 
with minimization of energy. For problems with complex shapes energy is changed through extended topological 
active net with certain thresholds. The segmentation accuracy is increased with improved version of extended 
topological active net. This solution has combined effect from all models using which better segmentation 
boundaries are achieved. The performance of stated method is compared with respect to some important metrics 
such as accuracy, specificity, recall, precision and F1-score values as well as Type I and Type II errors. This method 
provides better segmentation performance in comparison to other methods. The experimental hypothesis is 
justified with benchmarked datasets. The model provides appreciable results for different sets of image datasets. 
This research work has been approved by Research and Development Review Board at Samsung R&D Institute 
Delhi. This chapter is structured as follows. The literature review is presented in “Literature review” section. 
In “Computational method” section highlights detailed discussion on computational method. The simulation 
results are shown in “Experiments and results” section. Finally, conclusion is provided in “Conclusion” section.

Literature review
During recent decades’ smart traffic management involving vehicle detection has gained considerable attention. 
Some of the notable works are discussed here. In Ref.6 a pixel wise classification method based on dynamic 
bayesian network for vehicle detection is proposed. In Ref.7 an object detection scheme is presented which 
identifies changes in image series. Foreground vehicle segmentation using gaussian mixture model is highlighted 
in Ref.8. An adaptive background model having frames averaging with respect to time is discussed in Ref.9. 
For vehicle localization ResNet model is used in Ref.10. A vehicle classification system involving deep learning 
is presented in Ref.11. An integrated vehicle detection and classification method is discussed in Ref.12. Song 
et al.13discusses YOLOv3 algorithm for vehicle detection. Lee et al.14 presents receptive field based neural 
network. Semantic image segmentation is used in Ref.15. Mask R-CNN with transfer learning is used in Ref.16. 
Shan et al.17discusses YOLO based solution. A review on vehicle detection is highlighted in Ref.18. In Ref.19 deep 
learning assisted vehicle segmentation is discussed.

In Ref.20 vehicles in airborne images are detected. An ensemble based method using image descriptors is 
discussed in Ref.21. In Refs.22,23 methods are developed through application of gaussian mixture model. In Ref.24 
support vector machines is used for vehicle detection. SIFT algorithm is integrated with support vector machines 
in Ref.25 to achieve vehicle detection. For autonomous vehicles an object detection system is highlighted in Ref.26. 
Some R-CNN version of vehicle detection algorithms are discussed in Refs.28,44,54. Several significant YOLO based 
multi object vehicle detection algorithms are highlighted in Refs.27,32–35,37–39,42. Vehicle detection algorithms in 
different weather conditions are presented in Refs.29,30,52. Deep learning networks for vehicle detection are used 
in Refs.31,36,41,43,45,46,55,56. Several other notable works are available in Refs.40,47–51,53,57.

Computational method
In this section, smart traffic vehicle management using Faster R-CNN based deep learning based ensemble 
method is highlighted. The research problem revolves around traffic management which involves vehicle 
segmentation at different background  levels5. In order to achieve this, we study Faster R-CNN5 which analyses 
vehicles in smart traffic. The segmentation activity on various strategic areas of smart traffic analytics provide 
information related to decision-making activities. All methods were performed in accordance with the relevant 
guidelines and regulations by Samsung R&D Institute Delhi.

Figure 1.  A real life crowded place from Indian traffic.
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Datasets used
The experimental datasets are adopted from Ref.58. The datasets are prepared keeping in view different traffic 
conditions. At the very first instance multi-class vehicle objects are considered. Several challenge factors such as 
traffic jams and overlapping vehicles are incorporated in dataset. Broadly speaking datasets are developed with 
respect to two different situations viz high density and low density traffic scenes. The former comes with several 
objects in single image while later has single class per image having no overlapping. In order to achieve better 
training, images from both above mentioned situations are placed in different datasets. The high density traffic 
scenes are considered from several places having traffic which are less crowded in nature. A total of 1000 images 
from six classes of vehicles viz two wheelers, three wheelers, four wheelers, six wheelers, eight wheelers and ten 
wheelers are developed. Figure 2a,b highlight some sample images. High density traffic scenes are considered 
from daily traffic which are congested in nature. 5000 images from above stated classes are created. Certain critical 
factors such as illumination, occlusions etc. are incorporated irrespective of appearance, shape, scale and size 
in this dataset. Table 1 highlights certain high and low density dataset statistics along with annotations of class. 
These datasets are preprocessed and augmented as discussed in “Data annotation and augmentation” section. 
Each of these datasets are benchmarked with respect to standard  datasets58.

Data annotation and augmentation
In order to achieve reliable vehicle detection dataset classes are labelled. Based on motivation from Ref.5 an 
image  tool57 has been used here towards labeling and annotation of this dataset. As shown in Fig. 3a,b for each 
object in image, a bounding box is assigned manually. In high density datasets (HDD) from high density traffic 
many bounding boxes are present. In low density datasets (LDD) from low density traffic few bounding boxes 
are present in single image. The label of respective class is specified by these bounding boxes. As mentioned in 
“Datasets used” section, the whole dataset is defined through six classes. In order to increase features of datasets 
such that better results are obtained data preprocessing and augmentation is used. These addresses various issues 
which can be present in images such as noise, inconsistency and unbalanced classes. The data augmentation 
process used here are in lines with discussed in Refs.5,57. Since augmented dataset has an unknown distribution 
it is benchmarked adhering to certain  standards58.

Faster R‑CNN based method
Now we present a detailed description of proposed method. The method is highlighted considering four  steps5 viz 
(a) minimization with adaptive background model (b) Faster R-CNN based subnet operation (c) Faster R-CNN 
initial refinement and (d) result optimization with extended topological active nets.

Figure 2.  (a) Sample images from dataset—low density traffic (b) sample images from dataset—high density 
traffic.

Table 1.  Statistics of dataset images.

Dataset Low density traffic High density traffic

Source images 5000 1400

Annotations 50,595 2000

Classes

Two wheeler 9000 120

Three wheeler 9351 200

Four wheeler 10,879 880

Six wheeler 10,500 600

Eight wheeler 5990 110

Ten wheeler 4875 90
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Adaptive background modeling is used to construct background with traffic video as input. The video frames 
are analyzed in order to develop background model. The objective here is to find best background estimate. With 
this on foreground model shadow and illumination change impacts are minimized. This process is initiated 
by first initializing few frames and then continuous updates are done each time. This leads to extraction of 
foreground from next set of frames. The initialization of background model is done considering first frame’s 
pixel values. A subsequent update of model is performed through calculation of value of pixel considering 
background model:

Here yj represents value of pixel with respect to jth frame. The value of pixelj is computed as follows:

Here number of frames considered is N . The gain parameter is denoted by GPj . It takes care of background 
modeling’s learning rate. The new information is learned by increasing GPj as presented in Eq. (3) with prior 
information disappearing slowly.

Here Gain and α parameters take care of sinusoid function’s inflection point. The parameter β controls 
gradient. The parameter cont depends on number of frames. Background model is updated for every frame. 
Considering every fame with background as adaptive, after its subtraction we reach to foreground objects. After 
adaptive background model based minimization is performed, we present basic Faster R-CNN architecture 
used in this research. The architecture of Faster R-CNN is considered from Ref.5 having variation based baseline 
considered from Ref.45. The architecture is highlighted in Fig. 4. In order to validate proposed method, datasets 
mentioned in “Datasets used” section are used.

The convolutional feature map is developed when entire image is processed convolutional and max pooling 
layers. For each object’s RoI pooling layer, feature vector of fixed length is extracted. The input of sequence of 
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Figure 3.  (a) Sample annotated images from dataset—video images (b) sample annotated images from 
dataset—annotated images.

Figure 4.  Architecture of vehicle segmentation method.
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fully connected layers are feature vectors. From a set of fully connected layers, output passes to sibling layers 
where softmax probability estimates are produced. The object classes estimate softmax probability. Here back-
ground class with set of other layers are considered. The encoding is performed on set of values with respect to 
refined positions in bounding box for each object class. For RoI pooling layer we use max pooling. This allows 
conversion of features into small feature map. Here convolutional feature map based RoI is defined through 
4-tuple. RoI max pooling divides rectangular window into sub window grids. The channel independent pooling 
is applied for each feature map. The network weights are trained through backpropagation in Faster R-CNN. 
A hierarchical sampling of RoIs is performed for each image. Stochastic gradient descent (SGD) training for 
Faster R-CNN is done in mini-batches. For training with larger datasets, execution of SGD is done for more 
iterations. Faster R-CNN makes use of sibling output layers. For each RoI we have discrete probability distribu-
tion as initial output. The probabilities for fully connected layer have outputs as softmax. The labeling for RoI is 
performed with respect to ground truth class. For each training bounding box regression having ground truth is 
considered. For each labeled RoI considering multitask loss, joint classification is present with respect to training 
and bounding-box regression. The optimization of multitask loss is performed as highlighted in Ref.5. For whole 
image classification, convolutional layers’ calculation time is greater than fully connected layers. RoIs processing 
time is appreciably large for detection.

Now subnet operation with Faster R-CNN is presented. The foreground image considers a mesh. This is moved 
towards subnet operation for Faster R-CNN. The training image dataset is adopted from Ref.19. This is marked 
with respect to active net grids. The subnet is represented is binary matrix with 1 as indicator for link presence 
of mesh and 0 as indicator for link absence. Here Faster R-CNN is trained where features are learned in order to 
produce ground truth specific results. The U-Net based CNN Ref.59 helps us to perform initial subnet operation. 
The extended topological active net refines initial subnet. Faster R-CNN produces hole based mesh consider-
ing all background. The objects have mesh nodes. Those mesh nodes which where boundary is not crossed are 
removed. It is reached though extended topological active net energy minimization. The energy function used 
here is highlighted in Eq. (4). By using Eq. (1) adaptive background model is developed.

The mesh deformation is done using greedy approach. In situations with complex deformation of shapes, 
extended topological active net produces different energy term. This it achieves through various thresholds. When 
clutters and occlusion are present in vehicle image segmentation extended topological active net always reaches 
local minima. This results in low segmentation accuracy. The improved version of extended topological active 
net provides resolution to these problems. The combined effect of all models used here leads us to better results.

Training process
The training process is now briefly discussed. The annotated and augmented data is trained using Faster R-CNN 
algorithm. In order to perform training, several parameters like size of batch, epochs needed and resolution of 
image are used. Since network is trained from scratch, random weight initialization is performed. Here initially 
trained COCO  weights5 are used towards model training with appreciable time and computation benefits. The 
best weight values are obtained using initially trained Faster R-CNN having transfer learning. Chaudhuri 5 
datasets are used as benchmark in order to train stated custom datasets. The batch sizes of 5, 10, 20, 30 and 40 
are considered. The epochs are also changed to 100, 200, 300, 400 and 500. The confidence values are considered 
between 0.4 and 0.6. The best weights are used to detect objects in datasets. The predicted labels and assessment 
images incorporating bounding boxes with confidence values are also obtained.

Evaluation criteria
Some of the significant metrics in evaluation of smart cities  include5 key process indicators alignment with respect 
to several community priorities spanning neighborhoods, alignment of investment with respect to community 
priorities, investment efficiency, information flow density, infrastructure services and community benefits inher-
ent quality. In this research various evaluation  metrics5 are used for measuring performance of our method which 
are discussed in “Experiments and results” section. These metrics help to identify efficiency and robustness of 
proposed method. Here, mean average precision (mAP) is calculated for recall values lying between 0 and 1. 
Along with this some comparative analysis of results is also performed.

Ethical approval and informed consent
Author has ethical and informed consent for data used in this research.

Experiments and results
Here a detailed discussion on simulation results is presented. We conducted detailed experiments in Google 
Colab having T4 GPU with Intel Xeon CPU and 64 GB of RAM. Python version 3.11.5 has been used as simu-
lation tool in this research. In order to assess vehicle detection method performance, several state-of-the-art 
detectors are evaluated. Also various comparisons are performed with stated method considering accuracy and 
execution times. All methods are trained on data adapted from  COCO60 and  DAWN61 datasets.

The detection and segmentation of objects is performed by COCO dataset considering natural  contexts5. 
In Table 2 COCO dataset highlights several objects collected from complex scenes. The dataset has images of 
100 different object types with 3 million instance labels. The results are highlighted in Fig. 5. Certain YOLOv5 
semantics are adopted from Ref.57. All vehicles are accurately detected by stated method considering variation 
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Table 2.  Certain dataset specific statistics. HDD high density dataset from high density traffic, LDD low 
density dataset from low density traffic.

Dataset Number of classes Training Validation Testing

HDD 6 16,799 20,575 20,685

LDD 6 80,577 10,879 10,780

COCO 90 300,000 18,000 12,000

Figure 5.  COCO dataset vehicle detection results.

Table 3.  COCO dataset accuracy comparison.

Computation backbone Input size Multi-scale mAP (%)

CSPDarkNet5342 512 × 512 False 48.64

CNN43 512 × 512 False 49.00

R-CNN44 512 × 512 False 47.40

BottlenectCSP45 512 × 512 False 28.99

VGGNet-1647 512 × 512 False 30.40

ResNet-101-FPN48 512 × 512 False 40.40

VGGNet-1649 800 × 800 False 42.00

ResNet-10150 800 × 800 False 49.40

ResNet-10151 512 × 512 False 40.50

CNN +  SVM52 512 × 512 False 50.10

bn + relu53 512 × 512 False 34.90

ResNet-C4-FPN54 512 × 512 False 32.88

ResNet-5055 512 × 512 False 50.90

SiNet56 512 × 512 False 51.50

CSF57 512 × 512 False 52.45

Our method 512 × 512 False 58.90
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in illumination. In order to further validate superiority of stated method we perform a comparative analysis 
with 14 methods as presented in Table 3. Some significant observations are briefly highlighted here. For images 
with different resolutions, stated computational structure provides best performance in terms of mAP values. 
The methods presented in Refs.49,50,55,56 also provide promising results with respect to COCO datasets. He et al.54 
makes use of ResNet and produces results on lower side for object detection in COCO datasets. Similar results 
are obtained from methods presented in Refs.45,47. Here miscellaneous objects are detected on COCO datasets 
with promising results. These include vehicles of varying shapes and sizes. All results are highlighted in Fig. 5.

The DAWN dataset is used in order to study and investigate performance of stated method. DAWN dataset has 
2000 image with different  variations5. It shows varying traffic situations in different weather conditions. Figure 6 
shows fairly detailed results considering significant observations. The stated method addresses all prevailing 
weather situations such as rainy days, normal dry days and snowy days. A comparison is performed with results 
presented in Table 4. Some observations are highlighted here. In fog  situation54 has highest rank. Our method 
exceeds results of Ref.54. Here Refs.43,52 have lowest ranks. In rain situation our method produces best results 
followed by Refs.45,48,50,51,57. Here Ref.52 has lowest rank. In snow situation our method has highest rank followed 
by Refs.51,57. Here Refs.45,47,50,51 produce similar results. In dry day situation stated method achieves highest rank. 
Here Refs.42,48,49 yield similar results. Min et al.52 has lowest rank.

Now we present some additional insights in this research with respect to diverse range of environments. All 
state-of-the-art object detection methods have been studied in this research. These results are briefly discussed 
here. In Ref.42 BIT-Vehicle and UADETRAC datasets are investigated. In Ref.57 3 different datasets are studied 
which several variations with respect to road conditions, weather as well as complex background. In Refs.43,48 

Figure 6.  Vehicle detection results on DAWN datasets.

Table 4.  Comparison of methods on DAWN datasets.

Computation backbone Fog Rail Snow Dry day

CSPDarkNet5342 26.40 31.55 39.95 24.10

CNN43 24.00 21.10 38.32 23.80

r-cnn44 27.20 21.30 28.30 18.00

BottlenectCSP45 29.31 41.21 43.00 24.02

VGGNet-1647 23.40 24.60 37.90 15.83

ResNet-101-FPN48 28.95 41.10 43.00 24.09

VGGNet-1649 23.10 27.65 34.00 24.10

ResNet-10150 29.70 40.10 43.00 23.99

resnet-10151 28.10 40.40 43.02 24.10

CNN +  SVM52 16.50 14.08 15.38 10.69

bn + relu53 25.08 19.14 23.18 17.38

FtesNet-C4-FPN54 29.68 30.32 33.93 24.00

ResNet-5055 28.83 27.68 30.19 24.03

SiNet56 26.45 20.09 27.92 11.31

CSP57 29.66 41.21 43.01 24.14

Our method 30.40 45.55 45.79 25.60
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primary concentrations are on KITTI and DAWN datasets with certain deviations which produces appreciable 
results. In Ref.44 investigation of object detection capability is performed on COCO and DAWN datasets. In Ref.45 
CARLA dataset is explored. The results presented here extends method’s detection capability to 3 other datasets. 
PASCAL VOC 2007 dataset is studied in Refs.47,51. In Ref.37 PASCAL dataset is studied which contains annotated 
images of various objects. Here detection capability of method is expanded to 3 different vehicle datasets. In 
Refs.49,50,53,54 COCO and DAWN datasets are used in order to validate methods for object detection. In Ref.54 
various object detection methods are presented for detection of different objects. PETS2009 and changedetection.
net 2012 datasets are studied in Ref.52 with DLR Munich vehicle and VEDAI datasets in Ref.55 and KITTI and 
LSVH datasets in Ref.56. The vehicle detection methods on these datasets produce appreciable results. In DAWN 
dataset has more challenging images with fog, rain, dry day and snow. However, as shown in Fig. 7 very low 
vehicle detection results are achieved. But our method performs well in this situation. Considering several state-
of-the-art approaches, a detailed comparison of is performed alongwith our method. It is seen that in different 
situations our method performs well. In COCO dataset our method produces appreciable results in comparison 
to other methods.

The metrics for Type I and Type II errors account for false positives and false negatives respectively. The 
Table 5 highlight results with respect to Type I and Type II errors for HDD, LDD, COCO and DAWN datasets. 
The illustrative loss functions are applied to Type I and Type II errors. A loss function is imposed when accuracy 
report is chosen. When loss function is minimized accuracy increases. As a result of this care needs to be enforced 
when using loss functions. Here loss is reduced through minimization of objective  function5 which is weighted 
sum of localization and confidence  losses5. The localization loss is smooth L1 loss between true values and 
predicted bounding box correction. The coordinate correction transformation is identical to R-CNN in bounding 
box regression. The confidence loss represents how likely an object is contained in bounding box. It is calculated 
using logistic regression function based on intersection over union (IoU) between predicted bounding box and 
ground truth bounding box. These results are further strengthened with accuracy, specificity, sensitivity (recall), 
precision and F1-score values in Table 6. In order to highlight significance of results more, Fig. 8 represents 
comparative performance of our method with respect to structural similarity index, spatial overlap distance and 
hausdroff  distance5,15,16,21 metrics.

Figure 7.  Vehicle detection method on sample image.

Table 5.  Type I and type II errors for HDD, LDD, COCO and DAWN datasets.

Dataset Classes Validation

Errors in 
validation

Testing

Errors in testing

Type I Type II Type I Type II

HDD 6 20575 277 200 20,685 335 236

LDD 6 10,879 176 160 10,780 184 175

COCO 90 18,000 265 180 12,000 207 205

DAWN 4 12,879 187 179 12,790 189 177
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Conclusion
In this research work smart traffic management of vehicles is studied using Faster R-CNN based deep learning 
method. It is an intractable problem in computer vision and artificial intelligence domain. When occlusions, 
background with clutters and traffic with density variations are present, this problem becomes more challenging. 
The computational paradigm involves four steps viz minimization with adaptive background model, Faster 
R-CNN based subnet operation, Faster R-CNN initial refinement and result optimization with extended 
topological active nets. The concept of adaptive background modeling is incorporated in this framework. The 
shadow and illumination related issues are also addressed. The topological active net deformable models help to 
achieve higher segmentation accuracy. The deformations are reached with topological and extended topological 
active nets. Mesh deformation helps in minimization of energy. The segmentation accuracy is improved with 
modified version of extended topological active net. The superiority of this method in comparison to other 
methods is highlighted with experimental results. This achieved using different performance metrics such as Type 
I (for false positives) and Type II (for false negatives) errors, accuracy, specificity, sensitivity (recall), precision 
and F1-score values. The results are made more significant through comparative performance of our method with 
other methods with respect to structural similarity index, spatial overlap distance and hausdroff distance metrics.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request. All data used in this research has been developed at Samsung R & D Institute New Delhi 
India as mentioned in Reference 58. The Institution does not allow to share and provide access to research data 
to public domains. In view of this, data used in this research cannot be shared. However, two more datasets 
COCO and DAWN used in this research are highlighted in References 60 and 61 can be shared and accessed.
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Table 6.  Achieved results of our method with accuracy, specificity, sensitivity, precision and F1-score 
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