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Quantum error channels in high 
energetic photonic systems
B. C. Hiesmayr 1*, W. Krzemień 2 & M. Bała 3

In medical applications—such as positron emission tomography (PET)—511 keV photons that 
experience Compton scattering are studied. We present a consistent framework based on quantum 
error-correction channels—intensively studied in quantum computing—to fully describe the 
quantum information-theoretic content of high energetic photons undergoing Compton scattering, 
characterized by the Klein–Nishina formula in unoriented matter. In this way, we can predict the 
expected spatial distribution of two or more, pure or mixed, polarization entangled or separable 
photons. This framework allows us to characterize the accessible and inaccessible information for 
different parameter ranges. It also answers the question of how to describe successive multi-photon 
scattering. In addition our formalism provides a complete framework for dealing with single and 
all multi-partite errors that can occur in the propagation, providing the basis for modeling future 
dedicated experiments that will then have applications in medicine, such as reducing errors in PET 
imaging or exploring possibilities for quantum-based diagnostic indicators.

In the domain of low energetic systems such as e.g. currently intensively studied for quantum  computing1 Kraus 
representations of error channels are one way to characterize errors. In this paper we show that and how the 
error correction theory can be extended to the domain of high energetic photons for Compton scattering events 
based on the Klein–Nishina formula. Typically errors that entangle portions of the system of interest with the 
environment appear to be non-unitary quantum operations, i.e. one can no longer assume or simplify the system 
of interest as a pure state, hence our knowledge of the state of interest is not complete. Generally, one assumes 
that the mathematical object to cover any available information of a quantum system is given by a semi-positive-
definite Hermitian density operator ρ =

∑

j pj |ψj��ψj|, representing a statistical mixture of different states |ψj� 
that occur with probabilities pj obeying in general 

∑

j pj = 1 . However, as is well known the decomposition is not 
unique. Only if one probability equals one, we have a pure state, complete information of the system is available. 
Generally one assumes that an allowed dynamic of a physical system during some time interval �t transforms 
ρ into a semi-positive-definite Hermitian matrix ρ′ and this dynamic is identified by completely-positive trace-
preserving  maps2. Therefore, in the so-called Kraus representation, one can describe a transformation by

with the completeness relation 
∑

l K
†
l Kl = 1 , which follows from the invariance of the trace under cyclic permu-

tations of the operators. One important feature of the Kraus representation is that these operators are not unique, 
i.e. defining Fl =

∑

k Ulk Kk it follows 
∑

l Klρ(t)K
†
l =

∑

l Flρ(t)F
†
l  with U being a unitary transformation. This 

property will be the key to solve fundamental issues in this high energetic systems, or differently stated to test if 
the fundamental laws of quantum theory also apply in this energy regime.

In error correction  theory3–7 and when working in the interaction picture, the set of Kraus operators 
{K1,K2, . . . } is interpreted as the transformation of a state under various errors. So for instance, a set of errors 
could be a qubit suffering from bit flip K1 =

√
p1 σ1 and a phase flip K2 =

√
p2 σ3 and therefore the case that no 

error occurs is given by K3 =
√
1− p1 − p2 12 . Typically, one interprets the expectation value

(1)ρ′ = ρ(t +�t) =
∑

l

Kl ρ(t) K
†
l

(2)�K†
l Kl� = Tr

(

Kl ρ(t) K
†
l

)

= pl
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as the probability that the kth error will occur or has occurred. In error correction theories those probabilities 
are e.g. exploited to construct logical codewords by the Knill-Laflamme  condition8.

In this paper, we consider the Compton scattering process of 511keV photons, initiated by the propagation of 
photons through a medium described by the Klein–Nishina  formula9, along the theoretic framework described 
above. In the following, we denote this process as a Compton–Klein–Nishina (CKN) scattering event.

The proper modelling of the CKN processes is important in developing new medical imaging applications 
for positron emission tomography (PET). PET is a non-invasive medical imaging technique used commonly in 
diagnostics enabling metabolic imaging of pathological tissues. The radiopharmaceutical (typically fluorode-
oxyglucose, FDG) is administrated to the patient and absorbed by organs and tissues. The positron originating 
from the β+ decay of the radionuclide annihilates with an electron from the patient’s body, and in consequence, 
two back-to-back photons are emitted. The set of the photon pairs (coincidences) registered within the time 
window by the scanner serves as input data for the iterative algorithm (e.g. Maximum Likelihood Expectation 
Maximization) that reconstructs the original distribution of the activity in the patient’s body forming a 3-D image 
that is further analysed by the medical doctors.

For decades PET imaging was based on the two-photon model mostly omitting the details of the quantum-
mechanical description of the process. Indeed direct electron-positron annihilation happens only in about 40% 
of the cases, otherwise, the positron and electron form a quasi-stable atom called positronium. The positronium 
atom can be in either a symmetric or antisymmetric spin state so that it decays into an even or an odd number 
of photons. This means that three photon events also occur, but are not exploited in standard hospital devices. 
Interestingly, depending on the angles between the photons different entangled states are formed, and predicted 
for nearly all angles to be genuine multipartite entangled, i.e. the three-photon events are predicted to exist in the 
strongest form of entanglement (for more details see Ref.10). For the two-photon events a maximally entangled 
state is predicted that we also discuss in this contribution.

Recently, it was proposed to exploit the properties of the positronium such as e.g. its lifetime or complemen-
tary information about the processes at the cellular level in the patient’s  body11,12. This opens new possibilities 
for the next generation of PET scanners. Also, other properties of the positronium system might be of medical 
interest. One of the consequences of positronium formation is that the pairs (or triples) of photons decaying 
from a defined quantum state can carry the correlated polarization information. It turns out that the high-energy 
photon polarization can be partly determined via measuring the scattering angles of the photon process and 
this paper presents its foundations from the quantum information theoretic view via quantum channels build 
up by Kraus operators.

The possible applications of the photon-pair quantum correlation in the context of PET medical imaging 
are twofold. First, the quantum correlation can be exploited to reduce the unwanted false  coincidences13–15, 
that deteriorates the final PET image quality. The false coincidences consist of pairs in which the two registered 
photons do not originate from the same origin (so-called randoms), or at least one of the photons is deflected 
via the Compton scattering in the patient’s body before reaching the scanner. The random coincidences are by 
definition uncorrelated. A more complex situation is the question of what happens with the quantum correla-
tions after one of the photons undergoes the Compton scattering in the patient’s body. The key idea is that the 
measurement of the polarization degree of freedoms would allow for better discrimination of the unwanted pairs 
and lead to improved contrast.

The second more exploratory approach consists of the analysis of the the quantum correlations carried by 
the photons as a new type of diagnostic indicator, that might bring complementary information to the biological 
processes of the patient’s  body10,16. Although, currently not possible to achieve technically, this approach seems 
like an interesting path to investigate.

The measurements of the polarization require the detection of the photon scattering in the scanner device. The 
current standard PET devices operating in hospitals consist of inorganic crystals like BGO or LYSO that record 
the 511 keV photons through the photoelectric effect. However, several novel setups have been proposed. E.g. a 
novel plastic-based PET device (called J-PET) is currently being built on the basis of new technology (e.g. Refs.17) 
and is already undergoing its first clinical tests. Also, so-called Compton PET systems are being investigated 
(Ref.14,18) as well as other setups capable of polarization measurement (e.g. Ref.15).

To study the underlying physics exploited in the PET scenario based on plastic scintillators one needs to 
understand the Compton–Klein–Nishina scattering of single photons (“Section Kraus formalism for single 
Compton–Klein–Nishina scattered photons”). In “Section Compton–Klein–Nishina scattering as a quantum 
channel” we formulate this interaction as a Kraus channel illustrating the similarities to the error correction 
theory. In the next step one needs to apply the formalism to two photons. This is not straight forward since the 
two photons can be in an entangled state. We solve this conceptual problem by the Kraus formalism given in 
“Section Scattering of bipartite photons and their losses to the environment”. In the following up we present par-
ticular results of our consistent formalism and conclude with a discussion (“Section Discussion and conclusion”).

Methods
Here we show firstly how the Compton–Klein–Nishina  formula9 can be reformulated by two Kraus operators 
analogous to Ref.16, however, we take the overall normalization into account. This allows us to find the third 
Kraus operator to complete the completeness relation and therefore study which information is transferred to 
the environment.

Kraus formalism for single Compton–Klein–Nishina scattered photons
In Ref.16 the authors have presented a pseudo Kraus representation leading to the same result as the Klein–Nishina 
 formula9 when summing over final states. It is called pseudo Kraus representation, because the two Kraus 
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operators do not satisfy the completeness relation. In the following, we present Kraus operators satisfying the 
completeness relation from which a full description of the CKN scattering events can be deduced, this result is 
relevant for improving e.g. positron-emission-tomograph (PET)  imaging14,15,19–26.

Different to Ref.16 we define the Kraus operators with an overall normalization of the scattering process by

Here the angles (θs ,φs) describe the chosen coordinate systems and (θa,φa) the respective change of the propa-
gation direction of the photon undergoing the CKN scattering. The distribution in real space is then given by 
the probability

where ρ is the density matrix defining the polarization of the source with respect to the chosen coordinate sys-
tem (θs ,φs) . This formula is identical to the scattering cross section of 511 keV photons undergoing a Compton 
scattering e.g. in a plastic scintillator or in crystals. Here one assumes that the scattering at such high energies 
as 511 keV is described in a good approximation independent of the electron momentum distributions, the 
orientations of the electron spins and the nuclear spins in the target materials. The qualitative validity of this 
formula has been shown in several  experiments14,15,19–26.

Compton–Klein–Nishina scattering as a quantum channel
Usually, a system of interest that has no unitary evolution is modelled by adding the environment such that it 
becomes a closed system and evolves according to the Schrödinger equation. So the question is whether we can 
find one or more Kraus operators that satisfy the completeness relation.

Indeed, we can find such a completeness relation. A third Kraus operator doing the job, i.e. 
∑3

l=1 K
†
l Kl = 1 , 

can be found (for which we have chosen θs = 0,φs = 0)

with

In Fig. 1a we have plotted the probabilities p1 = Tr(K1ρK
†
1 ), p2 = Tr(K2ρK

†
2 ), p3 = Tr(K3ρK

†
3 ) = 1− p1 − p2 

as a function of the Compton scattering angle θa for a completely unpolarized photon ( ρ = 1
21 ) for a fixed 

coordinate system (θs = 0,φs = 0) . It is found that the first error, corresponding to K1 , increases slowly with 
the Compton scattering angle, in contrast to the second error, corresponding to K2 , which decreases rapidly 
with increasing Compton scattering angle. The third error, corresponding to K3 , may be interpreted as the loss 
to the environment (i.e. electrons in this case). For scattering angles larger than 82◦ , a maximum loss of about 
80% to the environment is reached. Unfortunately, also the second error, corresponding to K2 , decreases then, 
which is the one sensitive to the polarisation of the photon. Thus this illustrates the three known regimes of the 
Compton–Klein–Nishina scattering events: small scattering angles (we choose in the following θa = 10◦ ), large 
scattering angles ( θa = 170◦ ) and the optimal angle for deducing polarization θa = 82◦.

In Fig.  1b–d, p1 = Tr(K1ρK
†
1 ), p2 = Tr(K2ρK

†
2 ), p3 = Tr(K3ρK

†
3 ) = 1− p1 − p2 for pure initial states 

are plotted as a function of φa for three different Compton scattering angles θa = 10◦, 82◦, 170◦ . The blue and 
green oscillating curves are the results for an initial |H� or |V� state (with respect to a fixed coordinate sys-
tem (θs = 0,φs = 0) ). The upper and lower bounds show the unitary optimization over all pure states, i.e., 
pj = maxU Tr(Kj U |H��H|U†Kj) and pj = minU Tr(Kj U |H��H|U†Kj) , respectively. We observe that the range 
of the probability for Compton scattering angles around 82◦ is quite large compared to smaller or larger scatter-
ing angles. This is because at the extremal values the term in front of the oscillation, the fringe visibility, is quite 
low, and explains why this is an optimal angle for deducing the polarization.

Interestingly, although at a scattering angle of about 82◦ the information loss to the environment p3 is quite 
high, this is the best region to validate the oscillation of a polarized photon, in contrast to the region of small 
Compton scattering angles, where both, the information losses to the environment p3 are small and the sen-
sitivity to the oscillation is quite small. For large scattering angles, we observe large information losses to the 

(3)K1 =

(

(sin θs sin θa cos(φs−φa)+cos θs cos θa−1)2

− sin θs sin θa cos(φs−φa)−cos θs cos θa+2

)3/2

√
2(− sin θs sin θa cos(φs − φa)− cos θs cos θa + 1)2

(

1 0
0 1

)

(4)K2 =
(

1
(cos θs cos θa−2)sec(φs−φa)+sin θs sin θa

− i cos θs sin(φs−φa)
sin θs sin θa cos(φs−φa)+cos θs cos θa−2

i cos θa sin(φs−φa)
sin θs sin(θ(a)) cos(φs−φa)+cos θs cos θa−2 − cos θs cos θa cos(φs−φa)+sin θs sin θa

sin θs sin θa cos(φs−φa)+cos θs cos θa−2

)

.

(5)p(θs ,φs , θa,φa; ρ) =
2

∑

i=1

Tr(Ki ρ K†
i ),

(6)

K3 =
1√
2

�

1− A−
�

(1− A)2 − B2







�

1−A−B cos(2φa)+
√

(1−A)2−B2
�

B i sin(2φa)

i sin(2φa) −
�

1−A+B cos(2φa)+
√

(1−A)2−B2
�

B







(7)
A =

15 cos θa − 6(cos(2θa)+ 3)+ cos(3θa)

8(cos θa − 2)3

B =
sin2 θa

2(cos θa − 2)2
.
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environment and low sensitivity to the oscillation. In summary, the quantum information in bipartite Comp-
ton–Klein–Nishina scattering is a tradeoff between the loss of information to the environment and the sensitivity 
to the polarization introduced oscillation.

Results
Here, we apply our formalism to bipartite systems with and without further scattering, which allows us to predict 
the possible processes allowed by the quantum theory.

Scattering of bipartite photons and their losses to the environment
In experiments, one uses sources that produce a photon pair with energy 511 keV, at which each photon of the 
pair scatters. It is still open which initial polarization state of a photon pair has to be assumed for typical sources, 
most experiments assume that the maximally entangled Bell state |ψ+� = 1√

2
(|HV� + |VH�) is the relevant one. 

However, as we show below also a separable state, i.e. ρmixed = 1
2

(

|ψ+��ψ+| + |ψ−��ψ−|
)

 with 
|ψ−� = 1√

2
(|HV� − |VH�) leads to the same probabilities. Therefore it can be doubted whether the source pro-

duces correlations via entanglement.
According to the postulates of quantum theory and assuming the formalism for a single photon CKN scat-

tering is valid the spatial probability of a photon pair each undergoing a CKN scattering should be given by

for any initial two-particle state ρ , being either pure or mixed and either being separable or entangled. The spatial 
distribution has been recorded e.g. for a source of 22 Na radioisotope emitting positrons, which interact with an 
electron and then likely form positronium atoms, which subsequently decay into two or three  photons10,19. These 
photon pairs seem to qualitatively behave according to the above  formula21. Researchers currently also develop 
new sources with different quantum  properties27.

(8)

pdouble scattering(θs ,φs , θa, θb,φa,φb, ρ)

= Tr





2
�

i,j=1

Ki ⊗ Kl ρ K†
i ⊗ K†

l





Figure 1.  These graphics show the result of the three probabilities p1 = Tr(K1ρK
†
1 ) , p2 = Tr(K2ρK

†
2 ) and 

p3 = Tr(K3ρK
†
3 ) = 1− p1 − p2 deduced from the Kraus operators for (a) unpolarized states ρ = 1

2
1 and 

(b)–(d) different pure states. In (b)–(d) the blue and green curves corresponds to |H� and |V� polarized states 
(with respect to the chosen coordinate system (θs = 0,φs = 0) ), respectively. The plots show the result for the 
scattering angles θa = 10◦, 82◦, 170◦ , characterizing the three different regions of CKN events. The dashed lines 
correspond to pure states optimized over unitaries (more details are given in the “Appendix 1”).
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In Fig. 2 we plotted the results based on the formula (8) for different scattering angles and pure initial states. 
If the initial state is entangled we observe that the region of possible values is far more restricted than if the 
initial state is separable.

Let us emphasize that the probability given by formula 8 does not change by choosing for ρ the states 
|ψ±� and ρmixed . This is because in this case, the probability pdouble scattering becomes effectively dependent on 
�φ = φb − φa . It also reflects the Bose symmetry, and is not sensitive to the sign in the superposition. More 
details to this can be found in Ref.16. The loss to the environment is now given by the sum of all contributions 
including at least one K3 , quantifying in detail what kind of loss in each case is relevant.

One photon in the pair scatters a second time
Now let us investigate the situation that a photon pair is generated and one of the photons undergoes a 
CKN scattering a second time. Using the idea that the CKN scattering process introduces either K1 or K2 
or both errors, we could think of two different scenarios, namely either all intermediate states are included 
∑2

c,a,b=1 Kc .Ka ⊗ Kb ρ K†
aK

†
c ⊗ K†

b or only a particular “error” Kz happens 
∑2

c,b=1 Kc .Kz ⊗ Kb ρ K†
z K

†
c ⊗ K†

b . 
On the other hand, we know that the representation of the Kraus-operators is not unique, i.e. 
∑

l Klρ(t)K
†
l =

∑

l Flρ(t)F
†
l  with Fj =

∑

k Ujk Kk . In both discussed cases the U does not cancel out via per-
mutations under the trace, in contrast to the double scattering case (8). Therefore, we conclude that the CKN 
scattering process has to be considered a measurement-like process. Thus the photon after the scattering is 
described by the reduced state and then undergoes a CKN scattering process. This gives probabilities that do 
not depend on the choice of the Kraus operators

Note, here TrB denotes the trace over all degrees of Bob’s (i.e. the second) system, namely the photon that does 
not scatter a second time. Again the sum over c is necessary, since we assume no orientations in the scattering 
material. Consequently, this is the experimental result to be expected if our assumptions above are valid. Note 
that after a scattering the energy may be reduced, thus one has to adapt the corresponding Kraus operators for 
those energies.

Errors in the propagation
Having established a quantum channel to describe fully the CKN scattering process, we also established a theo-
retical framework to handle potential errors. Here, we have now different possibilities such as an error occurring 
to one photon or simultaneously both photons and so on. If the error is of a locally unitary form, i.e. U1 ⊗ U2 , no 
difference is expected for the probability pdouble scattering nor pscattered due to the permutation symmetry under 
the trace. Thus only a global unitary error or a non-unitary interaction in one subsystem introduces deviations. 
Whether such experimental settings with high enough statistics are achievable must be clarified by further stud-
ies out of the scope of this contribution.

Property of the CKN error channel
In Fig. 3 we show that the channel describing the double scattering of the pair is entanglement  breaking28 if the 
initial state is assumed to be a Bell state. On the other hand starting with the separable mixed state ρmixed for 
all values, we found no revival of entanglement. Counter-intuitively, the information in principle accessible via 
experiments (big orange dots) shows higher values of entanglement than the corresponding information for the 
state including the environment (small blue dots). This is due to the entanglement  monogamy31, i.e. the funda-
mental property that entanglement cannot be freely shared between arbitrarily many parties.

pscattered =
2

∑

c,a,b=1

Tr
(

K̃cTrB

(

Ka ⊗ Kb ρ K†
a ⊗ K†

b

)

K̃†
c

)

.

Figure 2.  These graphics show the result of the probabilities observed in experiment for pure bipartite states ρ 
for different scattering scenarios (a) both photons scatter either under θa = θb = 10◦ or θa = θb = 82◦ and (b) 
one photon under θa = 82◦ and the other one under θb = 10◦ in dependence of �φ = φa − φb (with φb = 0 ). 
The bold lines bound the grey area which is the region for any initial separable states, whereas the dashed blue 
lines bound the region for any initial entangled state (more details can be found in “Appendix 1”). The loss of 
information is high if the scattering angles are both not small.
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Discussion and conclusion
For a long time it was unclear how to treat Compton scattering at high energies from the point of view of quan-
tum information theory: Is the scattering a measurement process? What information about the polarization is 
revealed? What is the state of the photon after another scattering process? How do errors propagate? We have 
answered these questions by presenting a consistent framework that treats scattering as a quantum error channel. 
This theoretical framework will be the starting point for the development of a Monte Carlo simulator that will 
finally allow comparison with experimental data. This in turn will provide the basis for improving, for example, 
PET imaging based on the decay of positronium by improving the filtering and classification of scattering events.

Data availability
All data generated or analysed during this study are included in this published article.

Appendix 1: Explicit formulae
Here we give the explicit formulae for different initial states of equation (8) describing the double scattering 
events. More details are discussed in Ref.16.

For an initial maximally entangled state |ψ+� = 1√
2
{|HV� − |VH�} or the separable mixed state 

ρmixed = 1
2 |HV��VH| + 1

2 |VH��HV | we choose the coordinate system such that the two Compton scattering 
angles θa, θb are the opening angles between the line spanned between the two back-to-back propagating photons 
(corresponding to θs = 0)

where |H�, |V� are chosen in a computational basis with respect to the change given by the Compton scattering 
angle θa . The angle φs was chosen such that one matches the polarisation of the right and left photon and respects 
the Bose symmetry (see also the appendix of Ref.16). The reason why both states give the same result lies in the 
fact that for those basis choices the off-diagonal states do vanish due to the structure of the Kraus operators.

The pure state |HV� and |VH� compute to

(9)

pdouble scattering(|ψ+�) =pdouble scattering(ρmixed)

=
(15 cos θa − 6(cos(2θa)+ 3)+ cos(3θa))(15 cos θb − 6(cos(2θb)+ 3)+ cos(3θb))

64(cos(θa)− 2)3(cos θb − 2)3

−16 sin2 θa(cos θa − 2) sin2 θb(cos θb − 2) cos(2(φa − φb))

64(cos(θa)− 2)3(cos θb − 2)3

=pdouble scattering(θa, θb,φa − φb),

Figure 3.  This graphic shows the result of the value of a measure of entanglement (here, the one of Ref.29,30 
and explicitly given in the “Appendix 2”) of 5000 states generated via ρ =

∑3
i,j=1 Ki ⊗ Kj|ψ+��ψ+|K†

i ⊗ K†
j  

(small blue dots) or ρaccessible =
∑2

i,j=1 Ki ⊗ Kj|ψ+��ψ+|K†
i ⊗ K†

j /Tr(
∑2

i,j=1 Ki ⊗ Kj|ψ+��ψ+|K†
i ⊗ K†

j ) (big 
orange dots) for random generated Compton scattering angles θa, θb and random φa ∈ [0, 2π] (plotted at the 
x-axis) with φb = 0 . It proves that the CKN double scattering process is an entanglement breaking channel.
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In Fig. 2 we present the results for particular choices of θa, θb and different initial states, i.e. the maximal and 
minimal value over all possible pure separable or pure entangled states,namely

where U1,U2 are unitary operators and for ρ we chose without loss of generally the separable state |HV� or the 
entangled state |ψ+� . Since local unitary operations conserve the entanglement property, i.e. separable states 
are transformed to separable states and entangled states to entangled states. In this way we could find the region 
of possible values for given θa, θb by assuming either initial separable or entangled states, visualized in Fig. 2.

Appendix 2: Measure of entanglement
The quasipure  approximation29 Cqp provides an efficiently computable lower bound on the  concurrence30 C. Let 
i and j (k and l) enumerate the computational basis vectors of the first (second) partition of the Hilbert space. 
Define A := 4

∑

i<j,k<l |ikjl� − |jkil� − |iljk� + |jlik� × h.c. and let a state be represented in its spectral composi-
tion ρ =

∑

i µi|�i���i| . With a dominant eigenvector |�0� , define |ξ� ∝ A|�0� ⊗ |�0� and

The quasipure concurrence is defined by the singular values Si of the matrix Ti,j

and detects entanglement for positive values. We have Cqp(ρ) = C(ρ) for two qubits. In Fig. 3 we plotted directly 
C(ρ) including the negative values.
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