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An efficient visual servo tracker 
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Wei Luo 1,2,3,4, Guoqing Zhang 1, Quanqin Shao 2,5, Yongxiang Zhao 1, Dongliang Wang 2*, 
Xiongyi Zhang 2, Ke Liu 1, Xiaoliang Li 1, Jiandong Liu 1, Penggang Wang 1, Lin Li 1, 
Guanwu Wang 1, Fulong Wang 1 & Zhongde Yu 1

It is a challenging and meaningful task to carry out UAV-based livestock monitoring in high-altitude 
(more than 4500 m on average) and cold regions (annual average – 4 °C) on the Qinghai Tibet Plateau. 
The purpose of artificial intelligence (AI) is to execute automated tasks and to solve practical problems 
in actual applications by combining the software technology with the hardware carrier to create 
integrated advanced devices. Only in this way, the maximum value of AI could be realized. In this 
paper, a real-time tracking system with dynamic target tracking ability is proposed. It is developed 
based on the tracking-by-detection architecture using YOLOv7 and Deep SORT algorithms for target 
detection and tracking, respectively. In response to the problems encountered in the tracking process 
of complex and dense scenes, our work (1) Uses optical flow to compensate the Kalman filter, to solve 
the problem of mismatch between the target bounding box predicted by the Kalman filter (KF) and 
the input when the target detection in the current frame is complex, thereby improving the prediction 
accuracy; (2) Using a low confidence trajectory filtering method to reduce false positive trajectories 
generated by Deep SORT, thereby mitigating the impact of unreliable detection on target tracking. 
(3) A visual servo controller has been designed for the Unmanned Aerial Vehicle (UAV) to reduce the 
impact of rapid movement on tracking and ensure that the target is always within the field of view of 
the UAV camera, thereby achieving automatic tracking tasks. Finally, the system was tested using 
Tibetan yaks on the Qinghai Tibet Plateau as tracking targets, and the results showed that the system 
has real-time multi tracking ability and ideal visual servo effect in complex and dense scenes.

The fourth agricultural revolution, also known as Agriculture 4.0, aims at improving productivity, efficiency, 
quality, and resilience of agricultural systems, as well as reducing environmental impacts, resource use, and 
costs1. It is a new technology revolution in agriculture supported by policy-makers around the world. It refers 
to the utilization of advanced technologies including AI, biotechnology, big data, internet of things (IoT), and 
robotics to achieve sustainable agriculture development2. These technologies have been used to improve various 
aspects of agriculture such as precision farming, smart irrigation, crop monitoring3,4 and livestock monitoring5. 
However, how to apply Agricultural 4.0 technology to intelligent monitoring of livestock in high-altitude areas 
on the plateau is currently a challenge faced by research.

In high-altitude areas of the plateau, due to their complex terrain and harsh natural environment, traditional 
monitoring methods are difficult to effectively monitor cattle herds, which limits the development of animal 
husbandry in the plateau area. Traditional animal husbandry usually uses manual operation to identify and 
track moving herds to obtain real-time information of the herd status, which is a time-consuming, laborious 
and inefficient method. With the emergence of agriculture 4.0 and the rapid development of the UAV technol-
ogy, autonomous UAV equipped with embedded computer can conduct real-time tracking and individual dif-
ferentiation of herds without human intervention5–7 to achieve the substantive progress of intelligent grazing.

AI technology can be embedded in intelligent UAVs, providing them with powerful data processing and 
real-time analysis capabilities, thereby providing strong technical support for intelligent UAVs to monitor cattle 
herds in livestock farms. AI can assist ranch managers in non-contact and sustainable monitoring and control of 
cattle herds, enabling them to achieve intelligent management. In addition, it can provide sustainable monitoring 
and yield prediction for grasslands by analyzing meteorological data, pest and disease conditions, etc. Issuing 
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warnings during the peak period of disease and pest outbreaks helps ranch managers to apply pesticides in a 
timely manner, ensuring the normal growth of grasslands and the health of livestock. In summary, AI has made 
significant contributions to the sustainable development of Agriculture 4.0 and has foreseeable application value. 
However, it is a challenging task to change the tracking targets from individual animals to groups with the help 
of AI algorithms, and to realize offline real-time monitoring using autonomous UAVs.

Due to the higher flexibility in terms of flight altitude and mission time compared to satellite remote sensing8, 
UAVs show great potential in ecology and conservation zoology research. The development of UAVs provides 
an efficient and low-cost solution for the application of remote sensing technology in ecology and conservation 
zoology. It has been drawing increasing attention from ecologists and conservation zoologists in recent years. 
Especially in wildlife conservation and monitoring, the use of UAV technology can quickly cover large and hard-
to-reach areas, reduce human risk and interference, and provide high-resolution wildlife images and videos9–11.

In addition, the combination of UAVs and deep learning has been used for a variety of animal studies such 
as mapping habitats, estimating species abundance and distribution, monitoring individual and group behavior, 
measuring physiological parameters, assisting in anti-poaching efforts and studying anti-predator responses12,13. 
UAVs can also help dairy patterns, tracking lost cows, and improving safety14,15. However, UAVs also have some 
limitations in monitoring animal. As the camera is mounted to the UAV, the rapid movement of UAV can lead 
to drastic changes in the view field of the camera, resulting in tracking failures or disappearance of the target 
object from the field of view. Therefore, the improvement in the motion control method of UAVs becomes very 
important.

In recent years, deep learning has also been applied to various domains of animal science, such as wildlife 
ecology, conservation biology, animal behaviour, animal welfare and animal breeding16–18. One of the main 
advantages of deep learning is its ability to automatically extract features and patterns from large and complex 
datasets, including images, videos, sounds, texts, etc. This can reduce the needs for human intervention, manual 
annotation and domain-specific knowledge, and simultaneously improve the efficiency and accuracy of data 
analysis. For example, deep learning can automatically identify, describe and count wildlife in the camera-trap 
images, which are widely used for monitoring wild animal populations and habitats17. Besides, deep learning can 
also automatically detect and track animal movements and postures in videos, which are valuable information 
for scientific study of animal behaviour and welfare18–23.

Object detection based on deep learning architectures can be categorized into fast detection, shortcut connec-
tion and region-based networks. These networks are effective from perspectives of processing speed, accuracy 
and so on. Therefore, they are widely used for animal farming. Particularly, Single Shot Multi-Box Detector (SSD) 
and YOLO V3 have the advantage of processing speed, and Regional Convolutional Neural Network (RCNN) 
is advantageous with respect to the processing speed as well as the accuracy, so that they are the mostly applied 
networks currently. In relatively simple cases such as optimal lighting and clear view, the combination of different 
shallow networks (e.g., Visual Geometry Group (VGG) + Convolutional Neural Network (CNN)) might achieve 
satisfactory performance24. However, in complex scenarios such as real commercial environments, to enhance 
the model capacity for sufficient environmental variations, it is necessary to combine multiple networks, for 
example, UNet + Inception V425, and VGGNet + SSD26. Besides, even for the same model, a parallel combination 
to create the two-streamed connection could also improve the detection performance15,27.

Multi-object tracking (MOT) typically refers to the detection, the recognition, and the tracking of multiple 
objects (e.g., pedestrians, cars, and animals) in videos without prior knowledge of the target number. Different 
targets have different IDs to achieve subsequent trajectory prediction, accurate search, and other tasks. In recent 
years, various MOT methods have been proposed and widely applied, such as monitoring28, traffic monitoring29, 
autonomous driving30, and animal monitoring31–33, aiming at object collision avoidance34 or target tracking35,36. 
However, due to the crowded environments and the occluded objects, the results of MOT could be influenced 
by the difficult problem configuration, which leads to performance limitations in such scenarios. In addition, 
due to the extensive application of MOT methods, the importance of the MOT is still a challenging subject for 
the relevant research37–39.

In recent years, with the rapid development of deep learning technology, the target detection performance has 
been significantly improved. With the emergence of the deep learning-based object detectors, tracking through 
detection has already become the most-focused method in MOT research39. This method utilizes the knowledge 
of object location to establish a model that can associate with objects over time. In recent studies, the algorithm 
of KF has been used as the motion model to improve the object correlation over time40–43. In 2016, SORT was 
proposed40, which applies KF to estimate the object states and associates KF prediction with new object detec-
tion using the Hungarian algorithm44. One year later, an optimized Deep SORT was proposed by Wojke et al.43, 
which includes a new cascading association procedure using the object appearance characteristics based on CNN. 
In this data association algorithm, the similarity of the object appearance characteristics and the Mahalanobis 
distances between the object states are combined, and the SORT data association is used in the later stage of 
mismatched states. Despite using CNN, high frame rates on target tracking benchmarks were achieved with the 
Deep SORT approach. Chen et al. proposed an algorithm similar to the Deep SORT, namely MOTDT41, which 
employs a scoring function completely based on CNN to optimally select candidates. The Euclidean distance in 
the extracted object appearance characteristics is also adopted to optimize the association steps. Recently, He 
et al.42 proposed a GMT-CT algorithm, which combines deep feature learning and graph partitioning. The graph 
is constructed using extracted object appearance characteristics for association steps to more accurately model 
the correlation between the measurements and the trajectories.

With the rapid development of autonomous UAVs, the abilities of UAVs for low-speed flying, hovering, 
laterally flying, and maneuvering in confined spaces make visual servo control a promising platform for per-
forming tasks such as inspection, surveillance, and monitoring. In recent years, various studies have been con-
ducted on the visual servo control of the UAVs, including quadrotors45,46, airships47 and UAVs48. Strategies 
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for navigation and control of UVAs using only vision with feedback loops for monitoring known objects were 
proposed previously49. Stability control methods for quadrotor helicopters using vision as the primary sensor 
were also reported50. In this work, the helicopter attitude is estimated and used for vehicle control. Some studies 
on vision-based autonomous flight have been reported previously51–53. Among the different visual servo con-
trol models based on images, adaptive control54, Proportion Integration Differentiation (PID) control55, sliding 
model control56 and neural network control57 have been mainly used to enable one-camera UAVs to explore 
environments and avoid obstacles. Especially, the PID controller has very wide application in this field due to 
its high robustness.

A comprehensive review and analysis of existing methods indicate that using UAVs for MOT in complex and 
dense scenes remains a challenging task in contemporary research. In response to these challenges, this article 
proposes a UAV MOT system suitable for complex and dense scenes. The main contributions of this study are 
as follows:

	 (i)	 Deep SORT is a multi-target tracking method with competitive advantages. However, when the motion 
of the object is complex and the detection of the object in the current frame is lost, the bounding box 
predicted by the KF cannot match the input. To overcome this problem, optical flow is used in this work 
to compensate the KF, improved the prediction accuracy of the target, thereby enhancing the tracking 
effect.

	 (ii)	 The state-of-the-art tracking-by-detection techniques are still suffering from issues such as a large num-
ber of false positive tracks. Therefore, we use a low-confidence trajectory filtering extension in Deep 
SORT to average detection confidence within the first few frames after initialization. Trajectories with 
low average confidence are filtered out to reduce false positive trajectories, so as to reduce the impact of 
unreliable detection on tracking.

	 (iii)	 Due to the installation of the camera on the UAV, the rapid movement of the UAV can cause a drastic 
change in the camera’s field of view, resulting in tracking failure or complete disappearance of objects 
from the field of view. Therefore, this study designed a visual servo controller to keep the target within 
the field of view of the UAV camera, thereby controlling the UAV to automatically complete tracking 
tasks.

The contents of this paper are arranged as follows. Section “Materials and methods” describes the area and 
objects of the study, and introduces the overall framework of this system, including detector, tracker and servo 
control server. In Sections “Results” and “"Discussion”, experimental results are presented and discussed, respec-
tively. Section “Conclusion” summarizes the conclusions.

Materials and methods
Area and objects of study
The area selected for this study is in Maduo County, under the jurisdiction of Golog Tibetan Autonomous Pre-
fecture, in the southern part of Qinghai Province (Fig. 1a). Maduo County locates at the source of the Yellow 
River and belongs to a typical plateau area, with an average annual temperature of − 4.0 °C. Due to its unique 
geographical location and ecological environment, the local flora and fauna resources are very abundant, and 
animal husbandry is particularly developed. It is highly reasonable to choose this area to conduct research on 
AI-based precise grazing technology.

In April 2023, the authors of this paper and research colleagues went to Maduo County for aerial photogra-
phy, flying a total of 20 sorties at height of 100 m for sampling. The sampling points are shown Fig. 1b. Finally, 
the domestic Tibetan yaks were selected as the research objects (Fig. 1c,d), which have a color characteristic of 
mainly black and gray, and rarely white. The yaks move very slowly and steadily, and their stride frequency is 
usually between 120 and 140 steps per minute.

System overview
To acquire data in the selected area, a P600 type intelligent UAV (Chengdu Bobei Technology Co., Ltd., China) 
was used (Fig. 2). The specific parameters of the UAV are detailed in Appendix A to the supplementary mate-
rial. Compared to other models of intelligent UAVs (such as P230, P450, Dji Phantom, etc.), the P600 UAV has 
outstanding advantages in flight stability, endurance, and load capacity, making it more suitable for long-term 
data collection in cold high-altitude areas. It is equipped with an RTK positioning system, with a positioning 
accuracy of up to centimeters, a more precise flight path, and a more stable attitude. It can collect high-quality 
data in complex high-altitude areas and fly safely. The body is equipped with an NX onboard computer with a 
computing power of up to 21TOPS, which can run most mainstream algorithms and perform real-time data 
processing and analysis while collecting data.

In addition, it is equipped with pods, two-dimensional planar Lidar, GPS and other intelligent devices, to 
achieve pod selection and tracking, LiDAR obstacle avoidance, as well as UAV position and speed guidance flight. 
Furthermore, Q10F 10 × single light pod equipped with a USB interface was incorporated with the P600 UAV, 
and a specific robot operating system (ROS2) driver was developed for P600. This equipment is able to capture 
real-time images through the pod within the airborne computer. It could also follow the targets and adjust the 
position to always keep a constant distance from moving targets. During the target tracking process, both UAV 
and pod can achieve fully autonomous control via ROS2.

The Q10F 10 × single light pod can obtain real-time images of targets with an image resolution of up to 5 cm, 
providing target data for the built-in tracking and detection algorithms of ROS2. The ROS2 system can enable 
the P600 UAV to obtain real-time images of targets from the onboard computer through the Q10F 10 × single 
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Figure 1.   The area selected for the present study: (a) The location of Maduo County; (b) the distribution of 
UAV sampling points in Maduo County; (c,d) aerial images of the studied area.

Figure 2.   Data acquisition equipment used for this study.
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light pod. Then, through the built-in tracking algorithm in the onboard system, based on image vision, it can not 
only recognize and track specific targets (targets and UAVs), but also calculate the approximate distance between 
the UAV and the tracked target by changing the size of the target detection box in the vision. In addition, the 
ROS2 system can also adjust the UAV’s position as the target approaches, always maintaining a fixed distance 
from the target to avoid interfering with the target’s activities. The combination of the Q10F 10 × optronic pod 
and the ROS2 system allows the P600 UAV to not only be fully autonomous, but also to track the target with an 
intelligent pod.

Based on the function, the system can be divided into three components, including the controller, the detec-
tor, and the tracker. The overall technical route is shown in Fig. 3. In this study, two walking Tibetan yaks were 
selected as the tracking objectives. When each of the camera frames processes, several confirmed tracking paths 
are sent to the control system, which calculates the required speed in 4 different control variables in accordance 
with the embedded algorithms and the real-time location of UAV. Afterwards, the speed is sent to the autopilot 
to control UAV for tracking the targets. As a basic component of the control system, ROS2 plays a crucial role in 
information exchange between UAV and the tracking program. Moreover, the algorithms for speed calculation 
in 4 control variables differ from each other, so that they are described separately in Section “Improved Deep 
SORT algorithm”.

Detector
Since this study aims at tracking and identifying target objects in scenarios with high dynamic density and low 
training data, YOLOv758 was chosen as the baseline model for balancing the limited computational power and 
the airborne computer speed.

The YOLOv7 model was developed in 2022 by Wang and Bochkovskiy et al., integrating strategies includ-
ing E-ELAN (Extended Efficient Layer Aggregation Network)23, cascade-based model scaling59 and model 
reparameterization60 to appropriately balance the detection efficiency and accuracy. The YOLOv 7 network 
comprises 4 different modules: Input module, backbone network, head network, and prediction network.

The main reason for choosing YOLOv7 as the detection model is that current deep learning based object 
detection algorithms can be divided into two-stage detection methods and single-stage detection methods. The 
two-stage detection methods include RCNN, Fast-RCNN, Mask RCNN, etc. Single stage detection methods 
include SSD, YOLOv1-YOLOv8, etc. Compared to two-stage detection methods, single-stage detection meth-
ods have better real-time performance and are more suitable for UAV platforms. In the single-stage detection 
method, compared with SSD and YOLOv1-YOLOv6 models, YOLOv7 performs better in terms of comprehensive 
detection accuracy, detection rate, and network convergence speed. Compared to the YOLOv8 model, although 
YOLOv7 may not perform as well as YOLOv8 in terms of detection speed and accuracy, it is lighter in model 
complexity and can be deployed on unmanned aerial vehicle platforms with limited computing power.

Figure 3.   The overall technical framework proposed in this study.
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We selected 20 domestic yak video sequence data from the study area as datasets, 10 of which were used as 
target detection datasets and 10 as target tracking datasets. These two sets of data were used as two benchmarks 
for yak detection and tracking, and YOLOv7 model detection was used to identify yaks.

To improve the model’s ability to detect yaks, the target detection dataset was further divided into 3 sets, 
including training, validation and test sets with a ratio of 7:2:1. The YOLOv7 model is adopted to train the dataset 
by adjusting the model parameters to achieve high stability of the model. The yak hair color is generally pure 
black or black and white. In order to obtain more yak hair texture features, 2400 yak hair images from 10 video 
sequences in the target detection dataset were intercepted and the dataset was divided with the ratio of 7:2:1, 
which was trained again using YOLOv7.

Tracker
The Deep SORT algorithm was used as the baseline algorithm for the tracker and two improvements in the 
algorithm were made. Firstly, optical flow for motion estimation7 was introduced into the scheme to improve 
the motion prediction accuracy of KF. Secondly, an extended version of the original tracking method, named 
as low confidence track filtering method, was used to improve the ability of the tracker for handling unreliable 
detection results, which might occur in the real-world target detection due to the complex environment. By this 
means, the quantity of the false positive paths could be significantly reduced, avoiding the unreliable detection. 
The specific process is shown in Fig. 4.

In order to apply Deep SORT to yak tracking and monitoring, we first need a large number of yak datasets 
to extract the appearance features of trained yaks. Since the target tracking dataset has 10 video sequence data, 
which is insufficient, we re-generate the target tracking dataset by setting the truncation rate and occlusion rate 
parameters to cut, rotate and synthesize the video frame images.

The occlusion rate defines the degree of occlusion by the proportion of the yak bounding box that is occluded. 
We categorize the degree of occlusion into three categories: no occlusion, partial occlusion, and heavy occlusion. 
Specifically, a yak is defined as partially shaded if it is between 1 and 50% shaded, and as heavily shaded if it is 
greater than 50% shaded.

The cutoff rate is an indication of how far the yak is outside the bounding box and is used for training sample 
selection. In order to minimize the effect of noise, we discarded yak data with truncation rate more than 0.5 or 
occlusion rate more than 0.5. About 100 video data with the same interval were selected as a batch, and the video 
frames were intercepted and then resized to JPEG images of the same size (500,500) to obtain a total of 6000 yak 
images. We annotated the 6000 images using Label-image software and stored them in XML format as a target 
tracking dataset to be used as a benchmark for yak tracking.

The Deep SORT algorithm adopted in this work uses KF to estimate the existing track in the current frame. 
The states applied in KF are defined as (x, y, γ , h, ẋ, ẏ, γ̇ , ḣ) , in which (x, y, γ , h) represents the bounding box posi-
tion, and (ẋ, ẏ, γ̇ , ḣ) represents the single coordinate velocity. KF involved in Deep SORT is the standard version 
using a constant velocity and a linear observation. When each new frame appears, the position of each existing 
track will be estimated based on the previous one, and the track estimation only needs spatial information.

In order to achieve the appearance information of the detection results and tracks, appearance descriptors 
were used for extracting features from the detection images and tracking the images from the previous frames. 
As a CNN model trained on a large-scale recognition dataset, the appearance descriptor is capable of extracting 
features in the feature space based on that the features from same identity are similar to each other.

By estimating the position and appearance information of existing tracks, in each future frame new detection 
results could be associated with the existing tracks. New detection results need to have confidence levels above 
the detection confidence threshold td to become candidates for data association. All the detections do not meet 
this criterion will be filtered out. A cost matrix is used in Deep SORT for representing spatial and visual similarity 

Figure 4.   Multiple object tracking pipeline.
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between the new detections and the existing tracks, which contains two distance parameters. The first one is the 
Mahalanobis distance represented by formula (1) for spatial information:

where yi represents the i-th orbit, s−1
i  represents the covariance of d and y, (yi , si) represents the projection of the 

i-th orbit in the space of measurement, and dj represents the j-th new detection. It is the distance between the 
estimated position of the i-th orbit and the j-th new detection. The second distance represents the appearance 
information as shown below by formula (2):

where r represents an appearance descriptor, Ri represents the appearance of the last one hundred objects asso-
ciated to the i-th track. Besides, each of the distance is accompanied by gate matrix b(1)i,j  and b(2)i,j  , if the distance 
is less than a predefined threshold, it is equal to 1, otherwise it is equal to 0. The comprehensive cost matrix is 
presented in formula (3):

The gate function bi,j =
∏

2
m=1b

(m)
i,j  is used to set the threshold, it is equal to 1 only when both the space and 

the appearance gate functions are 1, otherwise, it is equal to 0, indicating whether (i, j) effectively matches both 
space and appearance. The cost matrix is used for each of the new frame to associate the new detection with the 
tracks of the existing gate matrix.

In case of a successful association of the new detection with the existing track, the new detection is included 
into the track, and track shows a non-association age of zero. In case the new detection cannot be associated with 
the existing track in the F-frame, it is initialized as a tentative track. The original algorithm of Deep SORT veri-
fies whether the tentative track is associated to the new detection in the frame (f + 1), (f + 2), ... (f + ttentative) . 
In case of a successful association, an update of the track to a confirmed one will be conducted. Otherwise, the 
temporary track will be immediately deleted. For existing tracks without successful association with the new 
detection in each frame, their non-association ages increase by 1. In case that the non-association ages exceed 
the threshold, the corresponding tracks will also be removed.

Improved deep SORT algorithm
Combination of KF and optical flow
As a classic tracking algorithm, the Lucas-Kanad (LK) optical flow61 algorithm has been widely applied due to 
its competitive real-time speed and strong robustness. To address the problems derived from KF, optical flow 
is also used to estimate objects in this study, and several assumptions are made, including constant brightness 
between the adjacent frames, slow movement of the targets, and similar motion pixels of the same images. There 
is no doubt that the loss of the object detection will challenge the updating of KF and lead to the interruption 
of trajectory. Therefore, the boundary frames of objects are predicted by using the light flow. In addition to the 
bounding frame of the F-frame generated with original detector in the data set, optical flow is also adopted to 

(1)d(1)(i, j) = (dj − yi)
T s−1

i (dj − yi)

(2)d(2)(i, j) = min

{

1− rTj r
(i)
k |r

(i)
k ∈ Ri

}

(3)ci,j = �d(1)(i, j)+ (1− �)d(2)(i, j)

Figure 5.   Comparison of the detection results (yellow bounding boxes: Original detection results; red 
bounding boxes: Detection results from optical flow).
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predict the position of the object based upon information in the previous frame. It could provide more historical 
clues to the information of the previous frame. As shown in Fig. 5, the yellow-colored bounding boxes represent 
the original detection results and the red ones are the results of the optical flow.

It can be observed that the former produces a more accurate trace input, nevertheless, the primitive detection 
in complex environments cannot be ignored. To compensate for the adverse effect on performance, combination 
of them as input for current frame tracking is required, which could provide more reliable state of motion for KF. 
At the same time, a constant velocity of the object in the frame is assumed, and KF is used to construct a model 
of linear motion defined in 8-dimensional space:

where (x, y) represent bounding box center coordinates, γ  represents the aspect ratio, h means high, and 
(ẋ, ẏ, γ̇ , ḣ) represents the speed of objects in the frame.

Filtering of low confidence tracks
False positive tracks derived from unreliable detection results seriously affect the performance of the tracker. At 
present, the most advanced detection tracking technology still faces a large number of false positive tracks and 
other problems. To better solve this problem, a filter for low confidence tracks was included into our tracker.

In this tracker, not only a confidence threshold td is used to filter out detections with confidence below 
this threshold, but also average confidence values taved are calculated for new detections in the frame 
(f + 1), (f + 2), ... (f + ttentative) related to tentative tracks. Only when these average values are greater than 
the predefined threshold taved , update of the corresponding tentative tracks to the confirmed tracks could be 
performed. Otherwise, these tentative tracks will be deleted. By this means, the detection results are filtered 
by two threshold stages of td and taved rather than simply by td alone. Therefore, the threshold td with a preset 
lower value can avoid losing detection, and extraction helps for suppressing false positive tracks produced with 
low confidence threshold (low td ). The algorithm used in this study to filter low confidence tracks is detailed in 
Appendix B to the supplementary material.

Visual servo control
In this study, a servo control system using helicopters and cameras62 is applied for MOT. The system consists of 
4 control variables, including lateral control, longitudinal control, vertical control, as well as yaw rate control.

The lateral control aims at keeping the camera frame center aligning with the horizontal middle of tracked 
objects by using a PID controller that takes the sum of the horizontal distances of each object as the propor-
tional input, the sum of the differences between the current and previous centers as the derivative input, and the 
cumulative error as the integral input.

According to the PID formula, the lateral speed of ẋuav in the lateral coordinate system of the UAV could be 
calculated as follows:

The longitudinal control adjusts the forward and backward speed of the helicopter based on the heights of 
bounding boxes of the objects, which indicate the distance of objects to the camera. This control unit uses a 
PID controller that takes the sum of differences between current and minimum heights and between current 
and maximum heights as the proportional input for calculation of forward and backward speeds, respectively. 
Besides, it takes the sum of height change rates of each object as the derivative input.

The speed required for vertical control of the UAV is divided into two parts: one based on the height of the 
object, and the other based on the area where the object is located. Therefore, the final velocity ẏuav of the UAV 
coordinate system is calculated longitudinally by formula (6).

The vertical control loosely regulates the height of the UAV based on a predefined range. In comparison with 
the response to the lateral speeds, the response of the autopilot to low vertical speeds to achieve accurate height 
adjustment is relatively slower. Therefore, it is often that after the autopilot receives such a vertical speed com-
mand, the height of UAV does not change.

The yaw rate control rotates the helicopter around its vertical axis to keep it perpendicular to the line con-
necting the two objects outermost of the camera frame, which estimate the yaw angle by using a ratio between 
horizontal distance and image width, and a ratio between height difference and standard height for each class 
of objects. Afterwards, this angle is divided by the processing time and multiplied by a coefficient to achieve 
the yaw rate.

Since the final command is the yaw rate, the calculated yaw rate is divided by the processing time and mul-
tiplied by a factor as shown in Eq. (7).

In summary, after introducing the principle for calculation of the required speeds in all 4 directions, the com-
plete equation of the final speed command based on the world transformation Eqs. (5), (6) and (7) is as follows:

(4)S = (x, y, γ , h, ẋ, ẏ, γ̇ , ḣ)

(5)ẋUAV = KpxSpx + KixSix + KdxSdx

(6)
ẏUAV = ẏhUAV + ẏaUAV = KpySpy_a+ KdySdy_a+ KpySpy_hb

+ bf KpySpy_hf + KdySdy_h

(7)φ̇UAV = Kpφ
φUAV

�t



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10463  | https://doi.org/10.1038/s41598-024-60445-4

www.nature.com/scientificreports/

The flight controller can calculate the expected acceleration (that is, the three-axis expected thrust) according 
to VWorld (expected velocity) and the current velocity, and then convert the desired attitude angle according to 
the UAV dynamics model. The highly dynamic control algorithm of the UAV attitude loop can ensure the speed 
and stability of attitude tracking.

Results
The intelligent unmanned field platform embedded with Jetson AGX Xavier launched by NVIDIA6 was used 
for onboard image processing in the experiments. This modular supercomputer has a 512 CUDA-core NVIDIA 
Volta GPU with a 8-core ARMv8.2 CPU and strong power of AI computation. It shows a 10 times higher power 
consumption ratio and a 20 times higher performance compared to the previous Jetson TX2 platform (256 
CUDA-core NVIDIA Pascal GUP with a CPU of quad-core ARM).

Metrics for tracking
To objectively compare the performance of different trackers, the experimental results from this study were 
evaluated based on the metrics defined in the CLEAR MOT metrics:

•	 PR-MOTA: Under different confidence thresholds, the values of precision and recall are obtained separately, 
and then the corresponding PR-MOTA can be obtained based on the different precision and recall. MOTA 
is the multi-target tracking accuracy , a key score for evaluating the tracking performance. It is composed of 
3 calculation errors, including false positive (FP), lost target (FN), and identity switch (IDs). It measures the 
performance of the tracker in detecting targets and maintaining trajectories, independent of the accuracy of 
the target location estimation.

•	 PR-MOTP: It is derived from the values of precision and recall under different confidence thresholds. MOTP 
is the multi-target tracking precision, which is a measure of the tracker’s ability to estimate the target position.

•	 PR-MT: It is originated from the values of precision and recall for different confidence thresholds. MT is the 
number of primary tracking traces that are successfully tracked during at least 80% of the target’s lifetime.

•	 PR-ML: It is derived from the values of precision and recall under different confidence thresholds. ML is 
the quantity of the mostly lost tracks that are not successfully tracked during minimum 20% of the target’s 
lifetime.

•	 PR-FP: It is the total quantity of FPs.
•	 PR-FN: It means total quantity of FNs (target not met).
•	 PR-FM: With different confidence thresholds, the PR-FM is derived from the values of precision and recall. 

FM is the times of interruption for a track due to missing detection.
•	 PR-IDSw: It is found under different confidence thresholds based on the values of precision and recall. IDSw, 

also known as IDs, is the times of the IDs switch for the same target due to misjudgment of the tracking 
algorithm. The ideal IDs in the tracking algorithm should be 0. It is the total number of identity switches.

Evaluation of benchmarks
The resulting mean detection confidence threshold was chosen experimentally. 10 sequences were selected 
from the target-tracking dataset that were filmed in a relatively more complex environment. It was found that 
taved = 0.0 ~ 1.0 for these 10 sequences. The tracker in this study used the YOLOV7 detection method as detection 
input. The 10 sequences were tested, and the final tracking results were evaluated. Figure 6 shows a comparison 
of these results.

As shown in Fig. 6, MOTA is better in the presence of taved (not equal to 0) than in the absence of taved (equal 
to 0). The tracking accuracy of the YOLOV7 method keeps improving until taved reaches 0.7. Therefore, taved = 0.7 
was selected for the experiment of the tracker on the YOLOV7 detection results. It is worth noting that for this 
detection method, the tracker does not work when taved is greater than 0.7, because all trajectories are filtered 
out under that condition.

The tracking results obtained with the proposed tracker in the train sequence "Tibetanyak2023042607" of 
the target tracking dataset are shown in Fig. 7. This is the result of tracking using the YOLOv7 detection, where 
the td and taved thresholds were set to 0 and 0.7, respectively.

It can be seen from Fig. 7 that there are many red boxes without the identification label. They are the false 
positive detection filtered out by the filtering algorithm for low confidence tracking. The experimental results 
show that when taved = 0.7, the MOTA using the YOLOv7 detection method reaches the optimal value. Tracks with 
lower average detection confidence in the initial few frames will be deleted. Therefore, the detection confidence 
td can be set to a lower value or even zero, to avoid missing detection. When td = 0.0, many red bounding boxes 
appear, however, they do not affect the final result of tracking.

(8)
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Figure 6.   Comparison of the MOTA values of tracking results for 10 training sequences using YOLOV7 
detection method under different average detection confidence thresholds.

Figure 7.   The tracking results on the self-made training sequence “Tibetanyak2023042607” using YOLOv7 
detections (td = 0.0 and taved = 0.7).
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The proposed method was tested on an overall test dataset of the target tracks containing ten sequences. 
As described above, the YOLOv7 tracking results were used as the test input. This detector was chosen for this 
study because it is the baseline detection method used by most of other trackers, and it exhibits a general good 
performance. Table 1 shows a comparison of the proposed tracker and state-of-the-art ones with respect to the 
tracking performance. All these trackers were divided into batch class and online class. In the batch trackers, 
both the previous and the future information are used for generating tracks in the current frame, while in the 
online trackers, only the previous information is applied for generating tracks.

Validation in actual scenarios
In this study, visual servo controller was used to control parameters from four aspects, i. e., lateral, longitudinal, 
vertical, and yaw rate controls, to assist P600 intelligent UAV flight, and to track and identify multiple yaks. To 
simultaneously test the comprehensive performances of the visual servo controller in all directions, an experi-
ment with relatively complex object trajectories was designed. In this experiment, a pure black yak and a yak 
with black and white color were chosen as target objects to verify the tracking ability of the UAV with the visual 
servo controller. The two yaks walked along concentric arcs of different radii. No overlapped trajectories of yaks 
and UAVs were observed. Figure 8 shows the relevant trajectories in real scenes.

Aiming at further verifying the yaw rate performance of the visual servo controller, the starting points of the 
trajectories were marked with solid points of the corresponding colors, just similar to the trajectories in Fig. 8. 
Fifteen arrows were presented on the UAV P600 trajectory to point out the current YUAV axis directions. In 
addition, on each locus of the two objects, fifteen hollow circles were presented, which correspond to the arrows 
in the experiment. The fifteen time points were also marked and exhibited in Fig. 9, which shows the angle 
between the two object connection lines plus Π/2 and Xworld, and the angle curve between YUAV and Xworld. 
YUAV is the trajectory of the UAV and Xworld is the trajectory of the two objects.

As shown in Fig. 9, the maximum distance between the UAV trajectory line and the trajectory lines of the 
two yaks occurred at 21.086 s was − 0.342 rad. This was because that the positions of the two target objects 
(Xworld,Yworld) changed rapidly, and the yaw rate visual servo controller was unable to respond quickly to 
the abrupt change. During the later half period of the experiment, the controller always kept a distance around 
0.26 rad, and at the final stage, it adjusted YUAV nearly perpendicular to the connection line. These results can 
demonstrate the performance of the visual servo controller to some extent.

Discussion
Table 1 shows that 33.6% of PR-MOTA on YOLOV7 detection was achieved with the proposed tracker. It’s the 
highest value for all the online trackers (Online tracker –Real time processing tasks are required to track the 
position of objects in future frames through past and present frames) and comparable to the highest PR-MOTA 
for the batch IOU tracker. Note that the original algorithm of Deep SORT trained on appearance descriptors of 
our dataset was already able to achieve high PR-MOTA of 30.4% on YOLOV7 detection. Based on the improved 
algorithm, the proposed tracker could further enhance PR-MOTA of the original tracker by about 3.2%. Fur-
thermore, a 4443.5 PR-FP decrease on the improved algorithm compared to Deep SORT was observed, revealing 
that PR-FP could be significantly reduced using the algorithm optimized in this paper. Meanwhile, the ID of 
our tracker significantly decreased compared to the ID of Deep SORT on the YOLOV7 detection. Moreover, in 
comparison with MOTDT and other methods based on Deep SORT improvement, the method proposed in this 
paper has the highest PR-MOTA value and the lowest PR-FP value, demonstrating better tracking performance. 
Results from experiments indicate that the improved algorithm could reduce false positive targets and enhance 
the tracking accuracy.

In summary, our method showed excellent tracking performance, which is reflected in three aspects: Detec-
tor, tracker and controller.

Table 1.   Comparison of the results from the proposed method and other methods (tests conducted on the 
self-made training date set).

Tracker Detector Method PR-MOTA PR-MOTP PR-MT PR-ML PR-FM PR-FP PR-FN PR-IDs

IOU66 R-CNN63 Batch 18.3% 41.9% 14.3% 20.6% 523 2313.5 19,845.1 513

IOU66 Comp ACT​65 Batch 18.4% 41.3% 14.7% 20.1% 379 2459.2 17,125.6 245

IOU66 EB64 Batch 23.5% 33.2% 17.5% 16..7 248 1456.6 17,054.4 233

IOU66 YOLOv758 Batch 33.8% 40.2% 34.6% 19.4% 88 1731.5 17,945.5 70

MOTDT41 EB64 Online 21.2% 45.6% 18.0% 17.2% 202 3815.8 16,565.2 206

MOTDT41 YOLOv758 Online 31.6% 39.3% 33.6% 18.8% 148 7652.4 16,123.5 279

GMT-CT42 EB64 Online 22.3% 45.5% 18.5% 17.1% 206 5653.2 16,683.2 158

GMT-CT42 YOLOv758 Online 32.2% 39.6% 34.6% 18.1% 162 9653.7 16,253.2 186

Deep SORT43 EB64 Online 20.6% 45.3% 18.1% 17.2% 201 3501.9 16,874.5 180

Ours EB64 Online 22.9% 45.3% 17.8% 17.3% 205 2009.7 17,012.4 166

Deep SORT43 YOLOv758 Online 30.4% 39.1% 34.3% 18.5% 159 6456.6 16,456.7 245

Ours YOLOv758 Online 33.6% 39.2% 32.9% 19.7% 126 2013.1 17,913.2 198
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Figure 8.   The trajectories of the UAV (red line) and the yaks (yellow and green lines). The left 3 images show 
the UAV views at the corresponding positions of ua, ub and uc.

Figure 9.   Angle between two object connectors plus Π/2 and Xworld and the angle curve between YUAV and 
Xworld.
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A powerful detector can improve the performance for target tracking. However, the performance of the target 
detection model in the livestock scene is easily influenced by many factors, such as illumination and occlusion. 
This is because of the poor generalization performance of the deep neural networks. Compared to R-CNN63, 
EB64 and other detection models, the YOLOv758 detection model used as our detection component can more 
effectively alleviate the above problems, and thus improve the tracking performance.

In terms of target tracking, Alameer et al.67 used faster R-CNN and YOLOv2 as the detectors and Deep SORT 
as the tracker to overcome the problems of lighting variations and pig occlusion in commercial environments. 
In addition, they designed a deep learn-based pig posture and motor activity detection and Deep SORT tracking 
algorithm to analyze pig behavior changes in experimental pig houses under different greenhouse gas levels. 
These behavioral changes may be subtle indicators of declining health and welfare, which cannot be simply 
observed next to the farm fence. Their approaches were effective for detection and tracking behaviors. However, 
as video frames grow, due to dense overlap and occlusion, the pig ID errors occur during tracking. Therefore, 
their method is difficult to use for long-term tracking of different pig behaviors and cannot achieve accurate 
tracking of targets in dense occlusion scenes.

Tu et al.68 realized that the targets in pig videos are severely occluded and overlapped, and the lighting changes 
lead to incorrect switching of pig IDs during the tracking process, which reduces tracking quality. Therefore, they 
used the YOLO v5 detector to detect pigs and classify their behavior. In addition, it has developed an improved 
Deep SORT for pig behavior tracking and reducing error changes in pig IDs by improving trajectory processing 
(limiting target object ID growth specific to pig scenes) and data association (adding a second round of Intersec-
tion Over Union (IOU) matching to associate detection and tracking of mismatches). The methods can achieve 
pig behavior tracking with stable ID values under commercial conditions and provide scalable technical support 
for contactless automated pig monitoring.

But this method still has some limitations. In long-term tracking, the removal of detections with lower scores 
in the detector could result in erroneous deletion of some traces. The reason is that low-confidence detection 
boxes sometimes indicate the presence of objects, for example, occluded objects. Filtering out these objects 
causes irreversible errors in MOT and leads to non-negligible loss of detection and fragmentation trajectories. 
To solve this problem, we added a low-confidence trajectory filtering extension in Deep SORT, which provides 
an average confidence threshold for a two-stage filtration process. It reduces the false positive trajectory gener-
ated by Deep SORT, thereby mitigating the impact of unreliable detection on target tracking. Compared to the 
above methods, our method achieves better tracking and monitoring of animal herds in densely occluded scenes.

Wu et al.69 proposed a wheat counting method based on the UAV video multi-target tracking method by 
optimizing the YOLOv7 model and the Deep SORT algorithm. They used a modified deep ranking feature 
extractor to extract the feature information of wheat spikes and to re-identify the constructed dataset. Finally, 
the modified Deep SORT algorithm was used to calculate the number of different IDs appeared in the video, 
and then to develop an improved method based on the YOLOv7 and Deep SORT algorithms to calculate the 
number of small wheat ears in large fields. This method can efficiently detect, track and count wheat ears based 
on the ID values in the video. However, it is only applicable for the wheat field video with almost uniform speed, 
and its accuracy decreases in the complex scene of target movement.

In contrast, our method uses optical flow to compensate for the Kalman filter, which solves the problem of 
mismatched target bounding boxes predicted by the Kalman filter with inputs when the target detection in the 
current frame is complex. It compensates for the problem of inaccurate target prediction in nonlinear motion 
by the Kalman filter, thus achieving higher accuracy and can be well applied in the field of livestock monitoring.

In the area of UAV multi-object tracking, most studies focus only on the optimization of the algorithms70–72, 
and the following issue is neglected. Since the camera is fixed to the UAV, a rapid maneuver of the UAV causes 
dramatic changes in the view of the camera, resulting in the tracking failure or complete disappearance of the 
object from the view. In our study, this problem was taken into consideration. We used the servo control system 
to control the movement of the UAV to ensure the object within the view of the camera and the safe distance 
from the object, so as to assist the UAV in tracking multiple targets.

Conclusion
A real-time target tracking system that can always keep the tracking targets within the view of a UAV camera 
is presented in this paper. The system considering the trade-off between accuracy and real-time performance, 
uses the YOLOv7 algorithm for target detection and the Deep SORT algorithm optimized in this work for target 
tracking. In addition, a visual servo controller for the UAV is designed to complete the automated tracking task. 
Based on the experimental results, the following conclusions are summarized:

In our improvement of the Deep SORT algorithm, the compensation of Kalman filter with optical flow for 
motion prediction is proposed to effectively solve the problem that the bounding box of the target predicted by 
the Kalman filter cannot match the input when the detection of the target in the current frame is complex. The 
embedded low confidence trajectory filtering method can significantly reduce false positive trajectories generated 
by Deep SORT, thus minimizing the impact of unreliable detections on target tracking. In addition, the visual 
servo controller can assist the UAV in multi-target tracking and identification of the yak group to ensure that 
the yak is within the view field of the camera with a safe distance.

Different multi-target tracking algorithms were compared in this study. The experimental results showed that 
among all online tracking algorithms, our tracking algorithm (PR-MOTA) has the highest accuracy, which is 
comparable to that of the batch processing IOU tracking algorithm. In comparison with the original Deep SORT, 
better results of PR-MOTA, PR-FP and IDs are achieved with our algorithm, which also performs better in terms 
of the PR-MOTA and PR-FP evaluation metrics compared to improved algorithms based on deep sorting such 
as MOTDT, proving the high effectiveness and advantage of the algorithm proposed in this study. In addition, 
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this algorithm can be conveniently implanted into unmanned aerial vehicles with limited computing power for 
efficient real-time target tracking.

In the future research, the performance of our tracker will be further improved from the following aspects: 
Firstly, transfer learning will be used to train the YOLOv7 model to further enhance the accuracy of detection. 
Secondly, the IOU matching phase in the Deep SORT algorithm will be optimized to more effectively measure 
the match between the detection and prediction frames to improve tracking efficiency and robustness.

Data availability
Algorithm and dataset for this research can be found at the following data link (https://​github.​com/​hardb​oy12/​
YOLOv7-​DeepS​ORT.​git).

Received: 24 September 2023; Accepted: 23 April 2024

References
	 1.	 Barrett, H. & Rose, D. C. Perceptions of the fourth agricultural revolution: What’s in, what’s out, and what consequences are 

anticipated?. Sociol. Ruralis 62(2), 162–189 (2022).
	 2.	 Jellason, N. P., Robinson, E. J. Z. & Ogbaga, C. C. Agriculture 4.0: Is sub-saharan africa ready?. Appl. Sci. 11(12), 5750 (2021).
	 3.	 Javaid, M. et al. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 3, 150–164 

(2022).
	 4.	 Rose, D. C. et al. Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy 100, 104933 (2021).
	 5.	 Luo, W. et al. High-accuracy and low-latency tracker for UAVs monitoring Tibetan antelopes. Remote Sens. 15(2), 417 (2023).
	 6.	 Luo, W. et al. Intelligent grazing uav based on airborne depth reasoning. Remote Sens. 14(17), 4188 (2022).
	 7.	 Luo, W. et al. Procapra Przewalskii tracking autonomous unmanned aerial vehicle based on improved long and short-term memory 

Kalman filters. Sensors 23(8), 3948 (2023).
	 8.	 Rango, A. et al. Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J. Appl. 

Remote Sens. 3(1), 033542 (2009).
	 9.	 Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. 

Unmanned Veh. Syst. 3(4), 137–155 (2015).
	10.	 Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 

60, 1–11 (2020).
	11.	 Zhou, M. et al. Improving animal monitoring using small unmanned aircraft systems (sUAS) and deep learning networks. Sensors 

21(17), 5697 (2021).
	12.	 Corcoran, E. et al. Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods Ecol. Evol. 

12(6), 1103–1114 (2021).
	13.	 Schad, L. & Fischer, J. Opportunities and risks in the use of drones for studying animal behaviour. Methods Ecol. Evol. 14(8), 

1864–1872 (2023).
	14.	 Krul, S. et al. Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: A feasibility study. 

Drones 5(2), 41 (2021).
	15.	 Li, G. et al. Practices and applications of convolutional neural network-based computer vision systems in animal farming: A review. 

Sensors 21(4), 1492 (2021).
	16.	 Jiménez, L. J. & Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 3(1), 10 (2019).
	17.	 Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep 

learning. Proc. Natl. Acad. Sci. USA 115(25), E5716–E5725 (2018).
	18.	 Pereira, T. D. et al. Fast animal pose estimation using deep neural networks. Nat. Methods 16(1), 117–125 (2019).
	19.	 Andrew, W. et al. Visual identification of individual Holstein-Friesian cattle via deep metric learning. Comput. Electron. Agric. 

185, 106133 (2021).
	20.	 Andrew, W., Greatwood, C. & Burghardt, T. Aerial animal biometrics: Individual friesian cattle recovery and visual identification 

via an autonomous uav with onboard deep inference. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS) (IEEE, 2019).

	21.	 Andrew, W., Greatwood, C. & Burghardt, T. Deep learning for exploration and recovery of uncharted and dynamic targets from 
uav-like vision. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2018).

	22.	 Andrew, W., Greatwood, C. & Burghardt, T. Visual localisation and individual identification of holstein friesian cattle via deep 
learning. Proceedings of the IEEE International Conference on Computer Vision Workshops (2017).

	23.	 Gao, J. et al. Towards self-supervision for video identification of individual holstein-friesian cattle: The Cows2021 dataset. arxiv 
preprint arXiv:​2105.​01938 (2021).

	24.	 Ardö, H., Guzhva, O. & Nilsson, M. A CNN-based cow interaction watchdog. In Proceedings of the 23rd International Conference 
Pattern Recognition 1–4 (2016).

	25.	 Han, L., Tao, P. & Martin, R. R. Livestock detection in aerial images using a fully convolutional network. Comput. Vis. Media 5, 
221–228 (2019).

	26.	 Zhang, Y. et al. Real-time sow behavior detection based on deep learning. Comput. Electron. Agric. 163, 104884 (2019).
	27.	 Zhu, X. et al. Automatic recognition of lactating sow postures by refined two-stream RGB-D faster R-CNN. Biosyst. Eng. 189, 

116–132 (2020).
	28.	 Kamal, R. et al. Construction safety surveillance using machine learning. 2020 International Symposium on Networks, Computers 

and Communications (ISNCC) (IEEE, 2020).
	29.	 Behrendt, K., Novak, L., & Botros, R. A deep learning approach to traffic lights: Detection, tracking, and classification. 2017 IEEE 

International Conference on Robotics and Automation (ICRA) (IEEE, 2017).
	30.	 Ess, A. et al. Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Robot. Res. 29(14), 

1707–1725 (2010).
	31.	 Mar, C. C. et al. Cow detection and tracking system utilizing multi-feature tracking algorithm. Sci. Rep. 13(1), 17423 (2023).
	32.	 Myat, N. et al. Comparing state-of-the-art deep learning algorithms for the automated detection and tracking of black cattle. Sen-

sors 23(1), 532 (2023).
	33.	 Zin, T. T. et al. Automatic cow location tracking system using ear tag visual analysis. Sensors 20(12), 3564 (2020).
	34.	 Lo, S.-Y., Yamane, K. & Sugiyama, K. Perception of pedestrian avoidance strategies of a self-balancing mobile robot. 2019 IEEE/

RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2019).
	35.	 Islam, M. J., Hong, J. & Sattar, J. Person-following by autonomous robots: A categorical overview. Int. J. Robot. Res. 38(14), 

1581–1618 (2019).
	36.	 Zin, T. & Tin, P. A two dimensional correlated random walk model for visual tracking. ICIC Express Lett. 7, 1501–1506 (2013).

https://github.com/hardboy12/YOLOv7-DeepSORT.git
https://github.com/hardboy12/YOLOv7-DeepSORT.git
http://arxiv.org/abs/2105.01938


15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10463  | https://doi.org/10.1038/s41598-024-60445-4

www.nature.com/scientificreports/

	37.	 Ciaparrone, G. et al. Deep learning in video multi-object tracking: A survey. Neurocomputing 381, 61–88 (2020).
	38.	 Wang, Q. et al. Fast online object tracking and segmentation: A unifying approach. Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (2019).
	39.	 Xu, Y. et al. How to train your deep multi-object tracker. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (2020).
	40.	 Bewley, A. et al. Simple online and realtime tracking. 2016 IEEE International Conference on Image Processing (ICIP) (IEEE, 2016).
	41.	 Chen, L. et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification. 2018 IEEE 

International Conference on Multimedia and Expo (ICME) (IEEE, 2018).
	42.	 He, J. et al. Learnable graph matching: Incorporating graph partitioning with deep feature learning for multiple object tracking. 

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2021).
	43.	 Wojke, N., Bewley, A. & Paulus, D. Simple online and realtime tracking with a deep association metric. 2017 IEEE International 

Conference on Image Processing (ICIP) (IEEE, 2017).
	44.	 Kuhn, H. W. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955).
	45.	 Hamel, T. & Mahony, R. Visual servoing of an under-actuated dynamic rigid-body system: An image-based approach. IEEE Trans. 

Robot. Autom. 18(2), 187–198 (2002).
	46.	 Romero, H. R. B. & Lozano, R. Stabilization and location of a four rotor helicopter applying vision. 2006 American Control Confer-

ence (IEEE, 2006).
	47.	 Azinheira, J. R. et al. Visual servo control for the hovering of all outdoor robotic airship. Proceedings 2002 IEEE International 

Conference on Robotics and Automation (Cat. No. 02CH37292) Vol. 3 (IEEE, 2002).
	48.	 Wu, A. D., Johnson, E. N. & Proctor, A. A. Vision-aided inertial navigation for flight control. J. Aerosp. Comput. Inf. Commun. 

2(9), 348–360 (2005).
	49.	 Bourquardez, O. & Chaumette, F. Visual servoing of an airplane for auto-landing. 2007 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IEEE, 2007).
	50.	 Altug, E., Ostrowski, J. P. & Mahony. R. Control of a quadrotor helicopter using visual feedback. Proceedings 2002 IEEE International 

Conference on Robotics and Automation (Cat. No. 02CH37292) Vol. 1 (IEEE, 2002).
	51.	 Altuğ, E., Ostrowski, J. P. & Taylor, C. J. Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 

24(5), 329–341 (2005).
	52.	 Proctor, A. A., Johnson, E. N. & Apker, T. B. Vision-only control and guidance for aircraft. J. Field Robot. 23(10), 863–890 (2006).
	53.	 Mejias, L. et al. Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field Robot. 23(3–4), 185–199 

(2006).
	54.	 Zhang, D. & Wei, B. A review on model reference adaptive control of robotic manipulators. Annu. Rev. Control. 43, 188–198 (2017).
	55.	 Subramanian, R. G. et al. Uniform ultimate bounded robust model reference adaptive PID control scheme for visual servoing. J. 

Franklin Inst. 354(4), 1741–1758 (2017).
	56.	 Ma, Z. & Sun, G. Dual terminal sliding mode control design for rigid robotic manipulator. J. Franklin Inst. 355(18), 9127–9149 

(2018).
	57.	 Guo, Z. et al. Adaptive neural network control of serial variable stiffness actuators. Complexity 2017, 1–9 (2017).
	58.	 Wang, C.-Y., Bochkovskiy, A. & Liao, H.-Y. M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object 

detectors. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023).
	59.	 Dollár, P., Singh, M. & Girshick, R. Fast and accurate model scaling. Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition (2021).
	60.	 Vasu, P. K. A. et al. MobileOne: An improved one millisecond mobile backbone. Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (2023).
	61.	 Lucas, B. D. & Kanade, K. An iterative image registration technique with an application to stereo vision. IJCAI’81: 7th International 

Joint Conference on Artificial Intelligence, Vol. 2 (1981).
	62.	 Liu, J. & Yao, Y. Real-time Multiple Objects Following Using a UAV. AIAA SCITECH 2023 Forum (2023).
	63.	 Girshick, R. et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (2014).
	64.	 Wang, L. et al. Evolving boxes for fast vehicle detection. 2017 IEEE international conference on multimedia and Expo (ICME) (IEEE, 

2017).
	65.	 Cai, Z., Saberian, M. & Vasconcelos, N. Learning complexity-aware cascades for deep pedestrian detection. Proceedings of the IEEE 

International Conference on Computer Vision (2015).
	66.	 Bochinski, E., Volker E. & Thomas, S. High-speed tracking-by-detection without using image information. 2017 14th IEEE inter-

national conference on advanced video and signal based surveillance (AVSS) (IEEE, 2017).
	67.	 Alameer, A., Kyriazakis, I. & Bacardit, J. Automated recognition of postures and drinking behaviour for the detection of compro-

mised health in pigs. Sci. Rep. 10(1), 13665 (2020).
	68.	 Tu, S., et al. (2022) Automated Behavior Recognition and Tracking of Group-Housed Pigs with an Improved DeepSORT Method. 

Agriculture 12(11): 1907.
	69.	 Wu, T. et al. Research on the method of counting wheat ears via video based on improved YOLOv7 and DeepSort. Sensors 23(10), 

4880 (2023).
	70.	 Jiang, N. et al. Anti-UAV: A large multi-modal benchmark for UAV tracking. arXiv arXiv:​2101.​08466 (2021).
	71.	 Keawboontan, T. & Mason, T. Towards real-time UAV multi-target tracking using joint detection and tracking. IEEE Access (2023).
	72.	 Shen, H. et al. Adaptive update of UAV multi-target tracking based on Transformer. 2023 IEEE 6th Information Technology, Net-

working, Electronic and Automation Control Conference (ITNEC), Vol. 6 (IEEE, 2023).

Acknowledgements
This research was funded by the National Natural Science Foundation of China (No.: 42071289) and the central 
government guides local funds for science and technology development (No. 236Z7201G).

Author contributions
L.W.: Conceptualization, W.P.G.: Methodology, L.X.L.: Supervision, Z.Y.X.: Writing- Reviewing and Editing, L.L.: 
Software, W.G.W.: Data curation, S.Q.Q.: finances, W.D.L.: Software, Z.G.Q.: Writing Original draft preparation, 
W.F.L.: Visualization, L.K.: Investigation, Z.X.Y.: Validation, L.J.D.: field investigation, Y.Z.D.: format editing.

Competing interests 
The authors declare no competing interests.

http://arxiv.org/abs/2101.08466


16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10463  | https://doi.org/10.1038/s41598-024-60445-4

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​60445-4.

Correspondence and requests for materials should be addressed to D.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-60445-4
https://doi.org/10.1038/s41598-024-60445-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An efficient visual servo tracker for herd monitoring by UAV
	Materials and methods
	Area and objects of study
	System overview
	Detector
	Tracker
	Improved deep SORT algorithm
	Combination of KF and optical flow
	Filtering of low confidence tracks

	Visual servo control

	Results
	Metrics for tracking
	Evaluation of benchmarks
	Validation in actual scenarios

	Discussion
	Conclusion
	References
	Acknowledgements


