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Automated machine learning (AutoML) allows for the simplified application of machine learning 
to real-world problems, by the implicit handling of necessary steps such as data pre-processing, 
feature engineering, model selection and hyperparameter optimization. This has encouraged its use 
in medical applications such as imaging. However, the impact of common parameter choices such as 
the number of trials allowed, and the resolution of the input images, has not been comprehensively 
explored in existing literature. We therefore benchmark AutoKeras (AK), an open-source AutoML 
framework, against several bespoke deep learning architectures, on five public medical datasets 
representing a wide range of imaging modalities. It was found that AK could outperform the bespoke 
models in general, although at the cost of increased training time. Moreover, our experiments suggest 
that a large number of trials and higher resolutions may not be necessary for optimal performance to 
be achieved.

Machine learning has made significant inroads into medicine in recent years1, with numerous successful appli-
cations in various sub disciplines such as radiology2, ophthalmology3 and pathology4 recognized by renowned 
medical journals. Such studies have tended to involve the classification of medical images, due to the relatively 
well-developed ability of deep learning models to automatically infer relevant features from sufficiently large 
quantities of annotated image data. In general, some deep learning model or ensemble of models is selected or 
designed by the study organizers, possibly after some preliminary experimentation, which is then trained to 
provide the diagnosis.

However, with the proliferation of interest in machine learning techniques within the wider medical com-
munity, there has been a rising demand for convenient and reliable automated machine learning (AutoML) 
frameworks that can be deployed for new tasks and data, without necessarily requiring machine learning experts 
to handle details such as pre-processing, feature selection, algorithm or model selection, and hyperparameter 
optimization. Ideally, such details and choices would be systematically tuned by an AutoML framework after 
the data and labels are defined, allowing an ML model to be generated with no particular programming or deep 
learning knowledge being required. Other than allowing the rapid prototyping of benchmark models, AutoML 
may also potentially reduce human bias in ML model choice and evaluation, by impartially exploring a large 
range of up-to-date model architectures and setups. Indeed, AutoML has obtained performances comparable to 
the state-of-the-art in some image classification tasks5.

Despite the potential of AutoML, however, there has been relatively little prior work examining its efficacy 
for medical imaging. This may be partly due to the synergy of AutoML with abundant computational resources 
due to its reliance on comprehensive searching through the model space, which has likely encouraged research 
on cloud platforms such as Google AI, Amazon Sagemaker, Microsoft Azure and H2O. However, the usage of 
such external platforms is often challenging for medical data in practice, due to patient privacy concerns. Still, 
much early investigation on AutoML in medical imaging has been performed on the Google platform6–8, with 
Faes et al. demonstrating comparable performance between AutoML and individual deep learning models, on 
five publicly-available open-source medical image datasets in 20199. Korot et al. further compared six com-
mercial AutoML platforms on four ophthalmic datasets, in 202110, with the results suggesting that the choice of 
platform remains important.
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Locally-executable general AutoML frameworks such as AutoKeras11, Auto-PyTorch12 and Auto-sklearn13 
have since become more accessible, and have been benchmarked against both traditional machine learning 
models, and cloud platforms. On medical claim data, Romero et al. evaluated three AutoML tools (Auto-sklearn, 
H2O and TPOT) against a baseline random forest model, and concluded that the AutoML models performed 
similarly to each other, and better than the baseline14. Schwen et al. found that AutoGluon and Google AutoML 
Vision performed comparably to the best results known in the literature, for three histological image classifica-
tion tasks15. Dael et al. demonstrated fusion on AutoML model subsets on stem cell, brain tumour and prostate 
cancer medical image datasets, using the Auto Tuned Models framework16. Yang et al. introduced MedMNIST17, 
a collection of ten pre-processed datasets of 28 × 28 medical images, and provided initial results from ResNet, 
Auto-sklearn, AutoKeras and Google AutoML Vision. AutoKeras has been applied to prostate cancer malignancy 
detection from multiparametric magnetic resonance images18, and also malaria detection from blood smear 
images19.

While a number of AutoML benchmarking studies for medical imaging have been performed as surveyed 
above, there may remain some gaps in the literature that we aim to fill in this study. Firstly, the focus of previous 
benchmarking efforts has often been focused on comparing multiple AutoML tools10,15,20,21, and less against a 
variety of commonly-used deep learning models. We therefore report performance against several popular deep 
learning architectures—VGG16, InceptionV3, DenseNet201 and ResNet5022–25—to provide more context about 
the added value of AutoML over typical use-cases. Secondly, the computational trade-off for AutoML has not 
often been considered, and is especially relevant for local implementations with relatively limited resources. We 
therefore examine the impact of varying the number of trials allowed during training. Thirdly, the resolution of 
medical images is known to affect diagnosis accuracy, but the computation costs of AutoML compared to single-
model deep learning has encouraged the use of lower resolutions and image sizes for AutoML. We therefore also 
consider the effect of different image resolutions, on AutoML performance.

Methods
AutoKeras overview
AutoKeras (AK), an open-source AutoML library developed by the DATA Lab at Texas A&M University11, offers 
a powerful and user-friendly approach to automated machine learning. It utilizes Bayesian Optimization26,27, a 
mathematical technique, to optimize model parameters without the need for derivative calculations. By generat-
ing queries and learning from the performance, AK finds the best model architecture.

The Bayesian method consists of three stages: generating architectures, training them, and updating the 
learned probability distribution. To improve training times, AK employs graph-level morphism, which morphs 
parent networks into child networks, and layer-level morphism, which systematically explores and morphs layers 
affected by single-layer mutations.

AK pre-processes datasets by normalizing and augmenting them before passing them to the model searcher. 
The model search algorithm runs on the CPU, while model training occurs in parallel on the GPU. AK adapts to 
varying memory sizes and trains models that fit within the memory limit. The AK image classifier starts with a 
simple model and iteratively mutates it. Once convergence or the time limit is reached, the best model is saved, 
and a final training phase fine-tunes the model using the validation set. The resulting AK model can be exported 
as a Keras model for visualization or inference purposes.

Data source
We utilized five distinct open-source datasets from Kaggle, comprising medical images to develop deep learning 
models for disease diagnosis across various medical specialties (Fig. 1). This approach ensured a robust evalua-
tion of diagnostic accuracy for a diverse range of conditions. The datasets include:

Figure 1.   Sample images for disease classification (diseased vs non-diseased).
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1.	 Chest X-Ray (CXR) images for Pneumonia diagnosis28: Facilitating the binary classification of diseased and 
non-diseased classes for pneumonia detection.

2.	 Brain Magnetic Resonance Imaging (MRI) images for Alzheimer’s diagnosis29: Aids in Alzheimer’s disease 
detection through binary classification, with certain adaptations for combining relevant classes.

3.	 Retinal fundus images from EyePACS for Diabetic Retinopathy (DR) diagnosis30: These images are part of 
the EyePACS dataset and are structured for binary classification in detecting DR.

4.	 Retinal fundus images from ACRIMA for Glaucoma diagnosis31: Provides images for binary classification 
tasks in glaucoma detection.

5.	 Skin Mole images from HAM10000 for Cancer Detection32: Used for the binary classification of skin cancer.

These datasets were meticulously structured for binary classification tasks, with specific adaptations made for 
DR and Alzheimer’s datasets to combine relevant classes. The breakdown of each dataset into training, validation, 
and test sets is detailed in Table 1 of our study, providing a clear understanding of the experimental data setup.

Experimental platform
In this study, the Windows 10 Pro system platform with 64 bits was used as the software platform for implement-
ing the experiments of this research, where the hardware consisted of dual GPU system with 24 GB VRAM with 
NVIDIA RTX 3090, and the Intel(R) also was used as a hardware component with Intel(R) Core(TM) i9-10920X 
CPU @ 3.50 GHz. The experiments were performed in the environment of a Jupyter Notebook with Python 
programming language Version 3.8.13.

Experimental design
In this study, we conducted 3 experiments in total for comparative analysis with standardised experimental 
constraints.

Experiment 1: AK vs bespoke CNN models (single GPU)
In this experiment, our objective was to validate and assess the accuracy of AK in effectively classifying five dif-
ferent classes of diseases. We aimed to compare its performance with CNN models, namely VGG16, InceptionV3, 
DenseNet201 and ResNet50. These CNN models were specifically chosen because they are not commonly found 
in model zoos or image block specifications with their documentation. To train the models, we utilized a single 
RTX 3090 GPU Card and kept the parameters consistent.

For the AK training configuration, we employed the ImageClassifier class to compile and build the image 
classification model for all five datasets. We used default parameters for this purpose. In our case, the Image-
Classifier accepted inputs of size 224 × 224 × 3. It iteratively selected from a range of building blocks, including 
ResNet25, ResNext33, Xception34, EfficientNets35, and simple CNNs. This allowed the construction of neural 
networks with varying complexity, depth, and data augmentation pipelines. ImageClassifier was then fitted to 
the training and validation datasets with evaluation metrics set as “binary_accuracy”, with max_trials to 10 and 
trained the models for 50 epochs. The max_trials parameter determines the number of architectures AK trains 
before determining the best model.

For the Bespoke CNN models, we utilized the concept of transfer learning, a widely used approach in deep 
learning. Transfer learning involves leveraging a pretrained model as the starting point for a new model on a 
different task36. In our case, we employed three popular transfer learning CNN models: VGG16, InceptionV3, 
DenseNet201 and ResNet50, all pretrained on the ImageNet dataset37. To implement these models, we used 
the Keras API, configuring them as base models with specific parameters. The parameters included setting the 
weights as “imagenet”, excluding the top layer (include_top = False), and defining the input shape as (224, 224, 
3). This established the foundation of the models for our experiment. The output from the base models was then 
connected to a global average pooling 2D layer, which summarizes the spatial information, and further linked 
to a final dense layer. The activation function for the dense layer was set as “sigmoid” for binary classification. 
We compiled the models using a batch size of 32, the “Adam” optimizer with a learning rate of 1 × 10−3, and 
evaluated the performance using the ’binary_accuracy’ metric. The training process consisted of 50 epochs, with 

Table 1.   Datasets summary and breakdown for deep learning modelling.

Dataset Medical specialty Task Train Validation Test

Chest X-ray (Kermany) Pulmonology Healthy vs pneumonia Healthy—1260
Pneumonia—1047

Healthy—180
Pneumonia—149

Healthy—360
Pneumonia- 360

Brain MRI (Kaggle) Neurology Non-Dem vs Dem Non-Dem—2304
Dem—2304

Non-Dem—256
Dem—257

Non-Dem—640
Dem—639

Retinal fundus (EyePACS) Ophthalmology Non-RefDR vs RefDR NonRefDR—7839
RefDR—3826

NonrefDR—1120
RefDR—546

NonRefDR—2241
RefDR—1094

Retinal fundus (ACRIMA) Ophthalmology Healthy vs glaucoma Healthy—216
Glaucoma—277

Healthy—30
Glaucoma—39

Healthy—63
Glaucoma—80

Skin mole (HAM10000) Dermatology Benign vs malignant Benign—1260
Malignant—1047

Benign—180
Malignant—149

Benign—360
Malignant—301
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early stopping implemented to minimize validation loss. Specifically, if no improvement was observed for 10 
consecutive epochs, the training would stop.

Experiment 2: AK_10 vs AK_100 (Dual GPU)
In this experiment, we conducted training for two sets of AK models. The first set had a maximum trial count of 
10, while the second set had a maximum trial count of 100. We trained these models on all five datasets, using 
the same training configuration as described in Experiment 1. Notably, for this experiment, we utilized two 
GPU cards to expedite the training process and improve efficiency. By exploring different trial counts, we aimed 
to observe the impact of the maximum trial count on the performance and accuracy of the AutoKeras models 
across the various datasets.

Experiment 3: AK_10 resolution experiments (dual GPU)
In this experiment, we focused on training models using three resolution settings: (224 × 224), (150 × 150) 
and (75 × 75), for each of the five datasets. The training process utilized two GPU cards to enhance efficiency. 
However, we limited the max_trials to only 10 with AK. The objective was to observe any noteworthy findings 
or insights that could arise from these resolution experiments. By exploring the impact of resolution on model 
performance, we aimed to gain a better understanding of the relationship between image resolution and clas-
sification accuracy across diverse datasets.

Evaluation metrics
The performance of the image classification models on the test dataset using binary_accuracy @0.5 threshold 
and AUC metrics, along with the F1, Precision, and Recall scores (including their macro averages) calculated 
at a 0.5 threshold. Our study emphasizes the models’ discriminatory power by reporting threshold values and 
specificity, while ensuring a fixed sensitivity of 90%. This method allows for an extensive assessment of the clas-
sification models, covering both AutoKeras (AK) and Bespoke Models. This method enables a more thorough 
evaluation of the classification models, encompassing both AutoKeras (AK) and Bespoke Models, ensuring a 
broad and definitive assessment.

By focusing on the ability to maintain high sensitivity while achieving a specific level of specificity, we address 
the clinical implications of the classification models. In medical diagnostics, it is crucial to strike a balance 
between accurately identifying positive cases (high sensitivity) and minimizing false positives (high specificity)38. 
A fixed sensitivity of 90% ensures that the models can consistently capture a significant portion of positive cases, 
while evaluating the specificity allows us to assess their performance in accurately ruling out negative cases. 
In order to determine the threshold that optimizes specificity while achieving a desired sensitivity level. Our 
method involves calculating the confusion matrix and sensitivity initially at 0.5 threshold value. If the calculated 
sensitivity falls below the desired value of 90, the threshold is adjusted using the receiver operating characteristic 
(ROC) curve otherwise the specificity will be calculated at 0.5 threshold. The updated threshold is then used 
to obtain binary predictions, and a new confusion matrix is computed to evaluate the model’s specificity. We 
have a compelling reason for taking this approach: in binary classification, the conventional threshold value is 
typically set at 0.5. Therefore, if the model is already capable of achieving a sensitivity of 90% or higher at the 0.5 
threshold, we will accurately report the corresponding calculated specificity.

This comprehensive evaluation has important clinical implications. Models with high sensitivity and specific-
ity at a fixed threshold can aid in improving diagnostic accuracy, enabling early detection of diseases or abnor-
malities. The ability to differentiate effectively can reduce the chances of false positives, preventing unnecessary 
interventions or treatments for patients who are actually negative. This evaluation approach provides valuable 
insights into the clinical utility and practicality of both AK and Bespoke Models, assisting medical practitioners 
in making informed decisions regarding their implementation in healthcare settings.

Results and evaluation
Experiment 1
Based on the results of Experiment 1 (Table 2), both transfer learning with pretrained CNNs and AK demon-
strated strong performance across the classification tasks. The AK models exhibited accuracies ranging from 
0.62 to 0.98 and AUC scores ranging from 0.68 to 1.00. Notably, the AK models outperformed the bespoke CNN 
models in terms of accuracies, AUC, and specificity metrics in four out of five classification tasks, except for 
Alzheimer’s classification, where DenseNet201 achieved an AUC of 0.77 and accuracy of 0.65 (Table 2).

However, it is important to consider that the training time for the AK models was longer compared to the 
bespoke models, with the longest time reported at 2902 mins for the DR classification task (Table 2). This can 
be attributed to the fact that AK models were trained from scratch without any layer freezing or utilization of 
pre-trained weights. It is worth mentioning that the threshold values remained relatively stable across all models, 
except for the AK models in the DR and Alzheimer’s classification tasks. In these cases, the thresholds were lower, 
at 8.49E−5 and 2.00E−9, respectively (Table 3). The lower thresholds in AK models could potentially be attributed 
to the inconsistency in the datasets, which may have affected the model’s ability to distinguish between classes. 
In contrast, the bespoke CNN models, with their utilization of pre-trained weights and transfer learning tech-
niques, performed better in these cases. Interestingly, while ResNet50 underperformed in all classification tasks, 
it yielded the highest threshold value, nearing the optimal 0.5, yet it also recorded one of the lowest specificity 
values. This indicates that ResNet50’s predictions were somewhat biased or one-sided (Table 3).

While AK demonstrated strong performance across multiple classification tasks, it is important to consider 
the trade-offs in terms of training time and dataset consistency. The bespoke CNN models, leveraging transfer 
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learning, showed promising results, particularly in cases where dataset inconsistencies could potentially impact 
model performance.

Experiment 2
In this experiment utilizing dual GPU training, it is evident that the training time of the AK_10 model has been 
significantly reduced compared to the results obtained in Experiment 1 (Table 4). Interestingly, minimal to no 
improvements in evaluation metrics (AUC, accuracy, specificity) were observed between the AK_10 (10 Trials) 
and AK_100 (100 Trials) models, and these differences were not statistically significant. Another notable obser-
vation is that, after conducting either 10 or 100 trials, the selected "best" model architectures primarily consisted 
of EfficientNetB7 for the Pneumonia and DR classification tasks, while custom Vanilla CNNs were preferred for 
the other tasks. The observation is intriguing considering that Vanilla CNNs are generally characterized by less 
complex architectures and a lower number of trainable parameters. It is noteworthy that a Vanilla CNN with 
a parameter count of only 19,457 exhibited superior performance in terms of AUC and accuracy for the skin 
cancer classification task compared to other models in the experiment.

Additionally, with dual GPU training, the reported threshold values were more stable compared to those 
obtained in Experiment 1 using AK (Table 5). This stability indicates a reduced variability in the model’s decision-
making process. However, it is important to consider the trade-off between conducting 10 or 100 trials. The 
results suggest that comparable performance can already be achieved with just 10 trials using AK. Therefore, this 
approach proves to be more resource-efficient and offers a practical alternative for obtaining satisfactory results 
without the need for extensive trial runs.

Experiment 3
In this experiment, the variation in training image resolutions or input resolutions had a significant impact on 
the selection of the final “best” model across the trials conducted in AK, as well as the training time required for 
these trials (Table 6). The reason behind this impact lies in the allocation of GPU memory by AK when smaller 
input resolutions are specified.

Table 2.   Experiment 1 results-1 (AutoKeras (AK) vs bespoke CNN models). Bolded values indicate most 
favorable metrics.

Model Training time (mins) AUC​ ACC​ F1 Precision Recall

Pneumonia classification task

 AK 544 1.00 0.98 0.97 0.96 0.98

 DenseNet201 27 0.98 0.94 0.93 0.92 0.93

 InceptionV3 27 0.96 0.92 0.89 0.90 0.89

 VGG16 51 0.96 0.84 0.83 0.81 0.88

 ResNet50 26 0.90 0.80 0.70 0.78 0.68

Alzheimer’s classification task

 AK 206 0.68 0.62 0.62 0.62 0.62

 DenseNet201 40 0.77 0.65 0.63 0.71 0.65

 InceptionV3 36 0.70 0.63 0.63 0.64 0.63

 VGG16 36 0.76 0.62 0.60 0.65 0.62

 ResNet50 12 0.60 0.50 0.41 0.50 0.50

DR classification task

 AK 2901 0.87 0.83 0.80 0.82 0.79

 DenseNet201 103 0.76 0.74 0.67 0.72 0.66

 InceptionV3 104 0.74 0.73 0.64 0.72 0.63

 VGG16 233 0.66 0.69 0.52 0.66 0.55

 ResNet50 44 0.55 0.67 0.40 0.34 0.50

Glaucoma classification task

 AK 29 1.00 0.98 0.98 0.98 0.98

 DenseNet201 5 0.98 0.94 0.94 0.95 0.94

 InceptionV3 3 0.94 0.87 0.87 0.88 0.87

 VGG16 4 0.93 0.80 0.79 0.83 0.78

 ResNet50 5 0.83 0.56 0.36 0.28 0.50

Cancer classification task

 AK 91 0.95 0.87 0.87 0.87 0.87

 DenseNet201 14 0.95 0.86 0.86 0.87 0.86

 InceptionV3 10 0.93 0.86 0.86 0.86 0.85

 VGG16 20 0.92 0.84 0.84 0.84 0.84

 ResNet50 20 0.83 0.67 0.63 0.71 0.64
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Table 3.   Experiment 1 results-2 (autokeras (ak) vs bespoke CNN models). Bolded values indicate most 
favorable metrics.

Model Specificity Threshold

Pneumonia classification task

 AK 0.98 0.50

 DenseNet201 0.91 0.50

 InceptionV3 0.82 0.50

 VGG16 0.90 0.37

 ResNet50 0.71 0.58

Alzheimer’s classification task

 AK 0.31 2.00e-09

 DenseNet201 0.48 0.14

 InceptionV3 0.31 0.28

 VGG16 0.50 0.29

 ResNet50 0.11 0.50

DR classification task

 AK 0.56 8.49e−05

 DenseNet201 0.34 0.16

 InceptionV3 0.32 0.18

 VGG16 0.22 0.19

 ResNet50 0.12 0.31

Glaucoma classification task

 AK 0.98 0.50

 DenseNet201 0.90 0.50

 InceptionV3 0.81 0.50

 VGG16 0.62 0.50

 ResNet50 0.62 0.52

Cancer classification task

 AK 0.84 0.34

 DenseNet201 0.83 0.30

 InceptionV3 0.80 0.30

 VGG16 0.77 0.34

 ResNet50 0.65 0.38

Table 4.   Experiment 2 results-1 (AK_10 vs AK_100). Bolded values indicate most favorable metrics.

MODEL Training time (mins) AUC​ ACC​ F1 Precision Recall Model architecture Parameters

Pneumonia classification task

 AK_10 415 0.99 0.98 0.97 0.97 0.97 EfficientNetB7 63, 789, 521

 AK_100 5181 0.99 0.97 0.96 0.96 0.97 EfficientNetB7 63, 789, 521

Alzheimer’s classification task

 AK_10 165 0.73 0.66 0.65 0.67 0.66 Vanilla CNN 793, 793

 AK_100 1085 0.75 0.66 0.64 0.71 0.66 Vanilla CNN 397, 345

DR classification task

 AK_10 900 0.85 0.81 0.77 0.78 0.77 EfficientNetB7 63, 789, 521

 AK_100 2869 0.84 0.80 0.77 0.79 0.75 EfficientNetB7 63, 789, 521

Glaucoma classification task

 AK_10 23 1.00 0.98 0.98 0.98 0.98 Vanilla CNN 793,793

 AK_100 115 0.98 0.97 0.96 0.97 0.96 Vanilla CNN 3, 252, 289

Cancer classification task

 AK_10 49 0.96 0.87 0.86 0.87 0.86 Vanilla CNN 19, 457

 AK_100 3443 0.94 0.86 0.86 0.86 0.85 Vanilla CNN 2, 374, 657
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When a smaller input resolution is used, AK can allocate more GPU memory to the trials involving larger 
architectures such as EfficientNetB7. Consequently, in most cases, decreasing the resolutions from 224 to 150 to 
75 resulted in an increase in training time for the trials (Table 6).

Notably, the threshold values for pneumonia, glaucoma, and cancer classification tasks consistently 
approached or matched the optimal value of 0.5 (Table 7). Furthermore, for Alzheimer’s classification at a lower 
resolution of 75 × 75, there was an observed increase in specificity and an associated threshold, improving to 0.52 
and 0.24 respectively, compared to higher resolutions. This suggests that lower resolution training and inference 
can, in some instances, enhance results.

The results highlight that both EfficientNetB7 and Vanilla CNNs emerged as the best-selected models across 
the trials conducted in the resolution experiments. This observation underscores the effectiveness and suit-
ability of these architectures for handling variations in input resolutions and their ability to adapt to different 
resolution settings.

Table 5.   Experiment 2 results-2 (AK_10 vs AK_100). Bolded values indicate most favorable metrics.

Model Specificity Threshold

Pneumonia classification task

 AK_10 0.94 0.5

 AK_100 0.97 0.5

Alzheimer’s classification task

 AK_10 0.38 0.018

 AK_100 0.42 0.5

DR classification task

 AK_10 0.52 0.15

 AK_100 0.48 0.12

Glaucoma classification task

 AK_10 0.97 0.5

 AK_100 0.94 0.5

Cancer classification task

 AK_10 0.87 0.35

 AK_100 0.86 0.31

Table 6.   Experiment 3 results-1 (AK_224 vs AK_150 vs AK_75). Bolded values indicate most favorable 
metrics.

Model Training time (mins) AUC​ ACC​ F1 Precision Recall Model architecture Parameters

Pneumonia classification task

 AK_224 415 0.99 0.98 0.97 0.97 0.97 EfficientNetB7 63, 789, 521

 AK_150 520 0.99 0.97 0.96 0.96 0.95 EfficientNetB7 63, 789, 521

 AK_75 750 0.99 0.97 0.96 0.96 0.96 EfficientNetB7 63, 789, 521

Alzheimer’s classification task

 AK_224 165 0.73 0.66 0.65 0.67 0.66 Vanilla CNN 793, 793

 AK_150 199 0.76 0.70 0.70 0.70 0.70 Vanilla CNN 360, 449

 AK_75 330 0.78 0.70 0.70 0.72 0.70 Vanilla CNN 97, 793

DR classification task

 AK_224 900 0.85 0.81 0.77 0.78 0.77 EfficientNetB7 63, 789, 521

 AK_150 1140 0.86 0.82 0.78 0.82 0.77 EfficientNetB7 63, 789, 521

 AK_75 990 0.79 0.76 0.70 0.74 0.69 EfficientNetB7 63, 789, 521

Glaucoma classification task

 AK_224 23 1.00 0.98 0.98 0.98 0.98 Vanilla CNN 793,793

 AK_150 12 1.00 0.98 0.98 0.98 0.98 Vanilla CNN 360, 449

 AK_75 18 1.00 0.98 0.98 0.98 0.98 Vanilla CNN 97, 793

Cancer classification task

 AK_224 49 0.96 0.87 0.86 0.87 0.86 Vanilla CNN 19, 457

 AK_150 247 0.95 0.88 0.88 0.88 0.88 EfficientNetB7 63, 789, 521

 AK_75 350 0.96 0.88 0.88 0.87 0.88 EfficientNetB7 63, 789, 521



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10483  | https://doi.org/10.1038/s41598-024-60429-4

www.nature.com/scientificreports/

Discussion
The experimental results provide evidence to support the notion that a simple CNN architecture can achieve 
the “best” results without the need for complex CNN architectures. Several scientific factors can help explain 
this observation. Simple CNN architectures are often characterized by fewer layers and parameters compared to 
complex architectures, striking a balance between model complexity and generalization ability. While complex 
architectures may possess a higher capacity to capture intricate patterns, they can also be prone to overfitting, 
especially with limited data. In contrast, simple architectures can exhibit better generalization and avoid overfit-
ting in scenarios where the dataset is relatively small or lacks diversity (e.g. Skin Cancer, Glaucoma datasets).

The principle of Occam’s Razor39 supports the idea of favouring simpler models when multiple explana-
tions or models can account for a phenomenon. In the context of CNN architectures, Occam’s Razor suggests 
that simpler models can be sufficient for achieving the “best” results, especially when considering factors such 
as dataset size and complexity. By adhering to this principle, researchers and scientists can prioritize simpler 
models that provide comparable or even superior performance to more complex counterparts. Additionally, 
simpler models offer an advantage during inference, as they require fewer computational resources and can 
make predictions in a shorter time.

However, it is important to note that the suitability of a CNN architecture depends on the specific task, data-
set, and available resources. Complex architectures may be necessary to handle intricate patterns or large-scale 
datasets in certain scenarios. Nevertheless, the experimental results presented here provide evidence that, in 
certain cases, simplicity can be an advantageous attribute in CNN architectures. The development of AutoML 
has raised the possibility for medical practitioners to optimize classification models on their own, offering a 
promising solution. With the availability of open-source, locally-deployable AutoML frameworks such as AK, 
optimizing classification models becomes a streamlined process that can be executed with a single line of code. 
This simplicity eliminates the need for extensive programming knowledge and technical expertise, lowering the 
entry barrier for practitioners and researchers interested in leveraging machine learning for their applications. 
Furthermore, the utilization of these AutoML frameworks mitigates concerns regarding data privacy regula-
tions. By keeping the model optimization process on-premise, sensitive patient data can remain secure within 
the healthcare environment. This alleviates potential compliance issues and ensures that the development and 
deployment of machine learning models adhere to strict privacy protocols.

Also, it is worth mentioning that despite the convenience and accessibility provided by AutoML frameworks 
like AK, the current literature lacks comprehensive analysis on benchmarking these frameworks, particularly 
with respect to common parameters of practical interest. In past literature, there has been a lack of extensive 
experimentation with AK to understand the impact of the number of trials and training image resolutions on 
training time and model performances.

To address this gap, we not only examine the effect of parameters such as the number of required trials and 
image input resolution on a wide range of medical image modalities in this study, but also investigated the 
resource efficiency in terms of computing resources and training time required when building models with AK. 
Limitations of the study include the limited granularity for the parameters being examined, and the possibility 

Table 7.   Experiment 3 results-2 (AK_224 vs AK_150 vs AK_75). Bolded values indicate most favorable 
metrics.

Model Specificity Threshold

Pneumonia classification task

 AK_224 0.94 0.5

 AK_150 0.93 0.5

 AK_75 0.95 0.5

Alzheimer’s classification task

 AK_224 0.38 0.018

 AK_150 0.43 5.36e−03

 AK_75 0.52 0.24

DR classification task

 AK_224 0.52 0.15

 AK_150 0.53 0.092

 AK_75 0.40 0.13

Glaucoma classification task

 AK_224 0.97 0.5

 AK_150 0.98 0.5

 AK_75 0.98 0.5

Cancer classification task

 AK_224 0.87 0.35

 AK_150 0.86 0.39

 AK_75 0.85 0.25
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for interactions between the values of the different parameters, which were not tested. Furthermore, we plan 
to investigate the application of broader and more varied datasets in our subsequent research endeavours. The 
choice to utilize smaller datasets in the current study was strategic, aimed at reflecting scenarios where access 
to extensive data might not be readily available. This decision enabled us to specifically evaluate AutoKeras and 
other neural networks’ performance under conditions that are often a reality for researchers, where limited data 
is the norm. Our approach sought to highlight the efficiency and potential of AutoML technologies in less-than-
ideal data situations, contributing valuable insights into their capabilities. Moving forward, we aim to expand 
our investigations to include more varied datasets, further enriching our understanding of these tools’ perfor-
mance across different data conditions. Nevertheless, we believe that the findings comprise a useful resource for 
researchers wishing to incorporate AutoML into their development pipelines.

Conclusion
The computational cost is a crucial consideration when deploying deep learning models in healthcare. Our 
experiments using AK demonstrated that complex CNN architectures like EfficientNetB7 achieve high accuracy 
but require extensive trials, training time and substantial computational resources. However, our study showed 
that with just 10 trials using AK, we achieved state-of-the-art performance, often selecting custom Vanilla CNN 
architectures as the best models. This means that AK enables the development of on-premise DL models with 
the right computational resources, eliminating data privacy and cloud computing cost issues from commercial 
AutoML solution providers. These lightweight and simple CNN models can be easily built and deployed within 
healthcare, offering high diagnostic accuracy.

Understanding the trade-off between model performance and resource consumption is essential for informed 
decision-making in healthcare DL solutions. Our analysis provides comprehensive insights into the resource 
efficiency of AutoML frameworks like AK, guiding practitioners in selecting the most suitable approach for 
medical image classification. By optimizing classification models effectively and overcoming limited compu-
tational resources, our study aims to facilitate the adoption of resource-efficient DL models in healthcare. This 
advancement paves the way for more accessible and practical machine learning solutions, ultimately enhancing 
patient care and diagnostic accuracy.

Data availability
The datasets we used and analyzed during our study are open source and available from Kaggle, ordered accord-
ing to your request: (1) Pneumonia Chest X-Ray data was retrieved from: https://​www.​kaggle.​com/​datas​ets/​pault​
imoth​ymoon​ey/​chest-​xray-​pneum​onia. (2) Alzheimer’s Disease data was retrieved from: https://​www.​kaggle.​
com/​datas​ets/​touri​st55/​alzhe​imers-​datas​et-4-​class-​of-​images. (3) Diabetic Retinopathy—EyePACS data was 
retrieved from: https://​www.​kaggle.​com/​compe​titio​ns/​diabe​tic-​retin​opathy-​detec​tion/​data. (4) Glaucoma—
ACRIMA data was retrieved from: https://​www.​kaggle.​com/​datas​ets/​sshik​amaru/​glauc​oma-​detec​tion. (5) Skin 
Cancer—HAM10000 data was retrieved from: https://​www.​kaggle.​com/​datas​ets/​fanco​nic/​skin-​cancer-​malig​
nant-​vs-​benign.
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